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descriptions of surficial environments, pollen analyses, and radiocarbon dating. Modern marsh sequences in
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Great Bay Estuary initiated with a time-transgressive basal peat that formed at the upland-brackish marsh
boundary. The oldest basal peat deposit sampled during this study was dated at ~4560 cal yr B.P. (based on
an age of 4060+40 C yr B.P.). The original tidal marshes that formed in Great Bay Estuary apparently were
unable to accrete at a high enough rate to allow seaward expansion, resulting in a transgressive sequence of
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stratigraphy low marsh or mudflat sediments overlying the basal peat. The transgressive tidal marsh sequence is capped
pollen by high marsh sediments that corresponded to a slowing of relative sea-level (RSL) rise in the region and
accretion regressive seaward expansion of the tidal marshes. However, significant variations from these transgressive-
relative sea level regressive sequences occur in the Great Bay tidal marshes as a result of more recent marsh expansion and
climate effects tidal channel migrations.

Detailed pollen analyses of a vibracore taken in a tidal marsh along Squamscott River with a sedimentary
record spanning the last ~3900 cal yr B.P. exhibit five well-documented marker horizons including: 1) an
increase of Tsuga (hemlock); 2) the appearance of Picea (spruce); 3) Tsuga and Fagus (beech) declines; 4) an
increase in Ambrosia (ragweed) coupled with a sudden decrease in Quercus (oak); and 5) the Castanea
(chestnut) decline. Using published ages for these pollen horizons and a calibrated 'C age obtained during
this study for a basal peat, accretion rates for this marsh system over five time intervals were calculated: 1)
0.4 to 0.5 mm yr~ ! from ~3900 to 2850 cal yr B.P.; 2) 0.6 mm yr~ ! from ~2850 to ~1960 cal yr B.P.; 3) 0.8 mm
yr~! from ~1960 to ~580 cal yr B.P.; 4) 0.7 to 0.8 mm yr~ ! from ~580 to ~210 cal yr B.P.; and 5) 0.8 to 0.9 mm
yr~ ! over the last 210 years. The long-term accretion rate for the entire sequence based on the calibrated C
age of the basal peat was 0.6 to 0.7 mm yr . This result agrees with accretion rates determined from
calibrated C ages from two other tidal marsh systems in Great Bay Estuary with accretion rates between
~0.6 to ~0.8 mm yr~ .. Higher accretion rates were obtained at a nearby tidal marsh with 1.2 mm yr™! for just
the marsh and 1.3 mm yr! for the marsh and underlying subtidal sediment.
The results of this study indicate that the sedimentology and stratigraphy of moderate-size tidal marshes in
rocky, glaciated coasts are highly variable and are strongly influenced by complex interactions among RSL,
climatic variations, and anthropogenic influences. For instance, the early development of many of the
marshes in the Great Bay Estuary area were likely driven by changes in rates of RSL resulting in transgressive
onlap boundaries, subsequently overlain by regressive intertidal marsh sequences. However, more recent
changes in tidal marsh sediment composition deposited during a relatively slow, steady RSL rise likely result
from other forcings, such as changes in minerogenic and orogenic sediment inputs due to anthropogenic
effects, tidal channel migrations, major storms causing erosion of the marsh, or climatic changes causing
shifts in sediment delivery or vegetation.
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1. Introduction

During the last several decades, systematic studies of tidal marsh
systems have led to major advances in our understanding of marsh
origin, development, and maintenance (for reviews see Frey and Basan,
1985; Fletcheret al., 1993; Cahoon and Reed, 1995; Jennings et al., 1995;
and Ward et al., 1998). However, accompanying these advances in our
understanding has been the realization that tidal marsh systems are
inherently complex and are influenced by interactions among physical,

biological, and chemical processes (Torres et al., 2006). In addition,
these processes tend to vary, sometimes dramatically, with shifts in

climatic settings, local or relative sea-level (RSL) fluctuations, and tidal
regimes.

Fletcher et al. (1993) found strong evidence that fluctuations in the
rates of RSL rise shifted the balance between marine and terrestrial
influences in a tidal marsh system along the mid-Atlantic seaboard of
the United States, resulting in identifiable transgressive onlap
boundaries and regressive sequences. However, Kelley et al. (1995)
found no evidence over the last several millennia of changes in the
rate of RSL rise driving shifts between emergent and submergent
sequences in a tidal marsh system in the western Gulf of Maine.
Rather, Kelley et al. (1995) attributed changes in composition of the
salt marsh sediment column to tidal channel migration and salt panne
deposits. Furthermore, Kelley et al. (2001) pointed out that shifts from
high to low marsh plant zonations could be caused by a number of
factors other than sea level including tidal channel migration, salt
panne formation and filling, storm deposition or erosion, and ice-
rafting.

Orson and Howes (1992) found that shifts in vegetation in New
England salt marshes were strongly influenced by changes in the
geomorphic setting, as well as RSL. Warren and Niering (1993) and
Donnelly and Bertress (2001) documented changes in vegetation in
tidal marsh systems driven by an acceleration in the rate of RSL rise
over the last several decades. Donnelly and Bertress (2001) demon-
strated a shift from high marsh to low marsh vegetation and a
decrease in the organic content of the sediment in a salt marsh system
in Narragansett Bay, Rhode Island (located just south of the Gulf of
Maine), starting in the late 19th century and attributed this shift to an
acceleration in local RSL rise increasing tidal inundations. Warren and
Niering (1993) presented a model that implied that an imbalance
between marsh accretion and RSL rise resulted in longer hydroper-
iods, increasing sediment water content (and anoxic conditions),
salinity, and sulfide levels, while lowering redox potential, resulting in
a change in the plant community.

Based on studies conducted further north in Nova Scotia, Jennings
et al. (1995) argued that tidal marsh sediments appearing to be
emergent and submergent sequences could have developed during
steady RSL rise due to episodic storm events. Jennings et al. (1993)
showed evidence that storm inputs could shift the balance between
minerogenic and organogenic sedimentation. Stumpf (1983), Cahoon
et al. (1995), and Goodbreed et al. (1998) verified the importance of
storm deposition to salt marshes on the mid-Atlantic and Gulf coasts
of the United States. More recently, Donnelly et al. (2001) demon-
strated that major storm events such as hurricanes are recorded in
tidal marsh deposits in northeastern United States. Van de Plassche
et al. (2006) argued that major storms can erode marshes creating
accommodation space, ultimately resulting in higher accretion rates
and regressive sequences. Furthermore, storm activity could cause a
shift in the balance of minerogenic versus organic driven accretion in
tidal marshes.

It is clear from these studies, and others, that tidal marsh
morphology, sedimentology, and stratigraphy vary considerably due
to a suite of factors. Therefore, detailed studies assessing basic tidal
marsh properties and processes, such as controls of minerogenic or
organogenic sediment composition (Allen 1990, 1995), accretion rates
and processes over varying temporal and spatial scales (Kearney and

Ward, 1986; Cahoon and Reed, 1995; Ward et al., 1998; Churma et al.,
2001; Churma and Hung, 2004; Leonard and Croft, 2006; Nyman et al.,
2006; van Proosdij et al., 2006; Turner et al., 2006; Wood and Hine,
2007), and marsh geochronology (Fletcher et al., 1993) are needed. In
addition, a range of environmental settings must be studied to
evaluate regional variations in depositional environments (Torres
et al,, 2006). Ultimately, the integration of these studies will lead to
the development of new and more refined predictive numeric models
of basic processes such as tidal marsh formation and composition,
tidal channel evolution, marsh hydrology, or marsh surface elevation
change (Allen, 1990, 1995; Callaway et al., 1996; Rybczyk and Cahoon,
2002; D'Alpaos et al., 2006; Gardner and Wilson, 2006; Marani et al.,
2006).

In this paper we synthesize the results of our studies conducted in
estuarine salt marshes in Great Bay Estuary, New Hampshire, United
States (Fig. 1). Depositional environments, stratigraphic relationships,
pollen assemblages, and late Holocene accretion rates were examined
in order to further our understanding of marsh development and the
influence of external forcings such as RSL or climate change over the
last several thousand years. Our results provide insights into the
composition, geologic history, and controlling processes of temperate
tidal marshes where biological, geochemical, and sedimentological
processes tend to vary seasonally between cold harsh winters when
ice impacts can be important and the summers when rapid plant
growth and larger freshwater inputs can dominate. With new efforts
to understand and model tidal marsh systems (Torres et al., 2006), as
well as manage these valuable resources, these studies are particularly
timely.

2. Site description
2.1. Relative sea level (RSL)

The late Quaternary sea-level history for the western Gulf of Maine is
complex as a result of major eustatic changes and large isostatic
adjustments of the crust from the Laurentide ice sheet (Belknap et al.,
1987; Belknap et al., 1989a,b; Birch, 1990; Kelley et al., 1992; Gehrels and
Belknap, 1993; Barnhardt et al., 1995; Kelley et al., 1995; Gehrels et al.,
1996; Belknap et al., 2002). During the late Pleistocene, the Laurentide
ice sheet extended across southern Maine and New Hampshire into the
Gulf of Maine (Schnitker et al., 2001; Kelley et al., 1992; Belknap et al.,
2002). Although limited in scope, the general deglacial history for coastal
New Hampshire area was summarized in Moore (1978), largely based on
a number of earlier studies conducted in Maine. According to Moore
(1978), ice thickness in the Great Bay Estuary area during the maximum
glacial extent was on the order of 1500 m. During deglaciation, the ice
retreated northwesterly through the Great Bay region. As was described
for southern Maine (Belknap et al., 1987; Hunter and Smith, 2001;
Retelle and Weddle, 2001; Schnitker et al., 2001), ice retreat was
probably in contact with the ocean, resulting in a marine incursion
landward of the present coast and deposition of glaciomarine sediments
to the marine limit in New Hampshire (Moore, 1978; Birch, 1989).
Following the removal of the ice sheet, isostatic uplift of the crust led to a
marine regression. The magnitude of the RSL lowstand has been
debated, but extensive studies conducted in Maine argue convincingly
for a RSL at ~55 to ~60 m below present (Belknap, 1987; Shipp et al.,
1989; Kelley et al., 1992; Belknap et al., 2002). Following the lowstand
between ~11,000 and ~10,800 yr B.P,, RSL transgressed rapidly until
between ~10,000 and ~9000 yr B.P,, then very slowly until ~7000 yr B.P,,
then continued to rise, but not as rapidly as in the early Holocene, until
~5000 to ~4000 yr B.P. (Barnhardt et al., 1995; Belknap et al., 2002). A
well-constrained RSL curve for the last 4000 years has been developed
based on studies conducted in the backbarrier salt marshes at Wells,
Maine, located ~45 km to the north of Great Bay Estuary, and is most
applicable to this study (Gehrels, 1994; Kelley et al., 1995; Gehrels et al.,
1996; Gehrels et al., 2002). Kelley et al. (1995) reported RSL rise at Wells
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Fig. 1. Location map of the study sites in Great Bay Estuary, New Hampshire. Five estuarine tidal marshes were cored during this study including Adams Point Marsh (AP), Sandy Point
Marsh (SP), Chapmans Landing Marsh (CL), Southern Meander Marsh (SM), and Oxbow Marsh (OX). The locations of each of these sites are shown in the upper right figure. Vertical
aerial photographs of the marshes show the locations of the vibracores discussed in the text. The solid line in the image of Southern Meander Marsh marks the location of the surface

transect sampled to describe modern marsh environments.

was about 0.8 mm yr~ ! at 4000 yr B.P,, 0.4 mmyr ! at 2000 yr B.P, and
0.2 mmyr ! at 1000 yr B.P. Gehrels et al. (2002) showed that the rate of
RSL rise at Wells, and other locations in Maine, has accelerated over the
last several centuries and has risen ~30 cm since ~1800 A.D.

The displacement of the New Hampshire coastline as a result of the
RSL changes described above was summarized in Ward and Adams
(2001). Due to the magnitude of the changes in RSL in the Gulf of
Maine, the position of the New Hampshire shoreline shifted over
40 km. During the maximum transgression with ice retreat, the ocean

flooded inland approximately 25 km. During the maximum regres-
sion, the coastline was ~15 km seaward of its present position.

2.2. Great Bay Estuary

Great Bay Estuary is located at the boundary between Maine and
New Hampshire on the western margin of the Gulf of Maine (Fig. 1). The
estuarine system is strongly influenced by outcropping bedrock
and antecedent topography, as well as the character of the overlying
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Fig. 2. Ground photographs of Adams Point Marsh (labeled as AP in Fig. 1) in August
2006 (A) and in March 2005 (B) and (C). Note the large salt panne shown in A. The image
in B shows the extent of ice cover during some winter periods. The ice tends to clip or
remove aboveground biomass and erodes, transports, and deposits sediment as shown
in C.

Quaternary deposits (Birch, 1989; Ward, 1992; Ward and Bub, 2005).
Bedrock typically underlies glacial till, sandy drumlins, stratified sand
and gravel of ice-marginal deposits, or glaciomarine sediments (Birch,
1989; Koteff, 1989). Estuarine sediments cap the sequence. The glacio-
marine deposits, which are commonly exposed in low-lying areas (Birch,
1990), are largely composed of silt and clays with intermittent fine sands

and are equivalent to the Presumpscot Formation found in coastal
Maine (Bloom, 1963). Because of the influence of bedrock on Great Bay
Estuary, relatively steep nearshore gradients are common.

The largest expanses of salt marshes in Great Bay Estuary are found
in the Great Bay area, especially along the Squamscott River (Fig. 1),
one of three rivers that empty into the upper estuary (Ward et al.,
1993). The salt marshes are defined as New England-type (Frey and
Basan, 1985), which formed when river valleys were flooded by the
Holocene marine transgression (McIntire and Morgan, 1964; Trainer,
1997). The tidal marshes in Great Bay Estuary are an important
component of the estuarine environment, as elsewhere in the Gulf of
Maine, serving as nurseries for many types of juvenile fish (Dionne
et al., 1999; Eberhardt, 2004), filtering nutrients and sediments from
the incoming rivers, and acting as a buffer against flooding (Burdick
et al., 1997; Short et al., 2000; Morgan and Short, 2002).

Tidal marshes in Great Bay Estuary typically are composed of
Spartina alterniflora in the low marshes and dominantly Spartina
patens with Distichlis spicata, Juncus gerardii, and Salicornia europaea in
the high marshes (Short, 1992). However, depending on the range of
salinity, more complex admixtures of plants can occur in the high
marsh including Amaranthus cannabinus, Aster spp., Atriplex patula,
Impatiens capensi, Iva frutescens, Limonium nashii, Lythrum salicaria,
Phragmites australis, Scirpus robustus, Solildago sempervirens, Spartina
pectinata, Triglochin maritimum, and Typha augustifolia (Josselyn and
Mathieson, 1980; Ward et al., 1993). The high marsh environment
largely dominates the estuarine marshes, with salt pannes being
common (Fig. 2). Many of the marsh systems are dissected by large
tidal channels, as well as by some human-made drainage ditches.
Forest cover adjacent to the tidal marshes is common. However,
following the European settlement of the area in the early 1600s, much
of the watershed in Great Bay Estuary was stripped of its forests for
lumber and farming (Bampton, 1999). Subsequently, the area was
farmed heavily until the mid-1800s, when agriculture shifted west-
ward and the present forests grew back (Fitts, 1912; Hart, 1994). Today,
the nearby upland areas also include combinations of open water,
freshwater wetlands, fields, and urban areas in addition to forests.

The tidal range in Great Bay Estuary varies from 2.6 m (3.0 m for
spring tides) at the mouth to 2.1 m (2.4 m for spring tides) at the
entrance to Squamscott River in the upper estuary (NOAA, 2005). The

Table 1
Location, elevation, and recovery data for vibracores taken in Great Bay Estuary tidal
marshes

Core Latitude Longitude Elevation Core Core Surface  Difference
no. NAVD88 Length Displacement (%)
(m) (m) (m)
SPVC-1 43.0554972 -70.8997639 1.23 5.95 -0.01 0
SPVC-2  43.0556806 -70.8999528 1.23 5.89 0.25 4
SPVC-3 43.0558250 -70.9000389 1.16 5.92 0.28 5
SPVC-4 43.0561167 -70.9000111 0.88 5.88 0.09 1
CLVC-1 43.0414917 -70.9253111 119 522 0.05 1
CLVC-2  43.0405806 -70.9243028 1.16 4.72 0.16 3
CLVC-3 43.0398056 -70.9257722 1.30 3.87 0.23 6
CLVC-4 43.0406250 -70.9258139 1.23 7.38 0.02 0
CLVC-5 43.0399389 -70.9247139 1.21 5.37 017 3
CLVC-6 43.0372806 -70.9221611 1.16 341 0.18 5
CLVC-7 43.0396167 -70.9266139 1.30 3.18 0.09 3
SMVC-1 43.0191556 -70.9357528 1.24 2.83 0.05 2
SMVC-2 43.0188167 -70.9345917 1.24 5.90 0.38 6
SMVC-3 43.0187611 -70.9337139 1.14 3.17 0.05 1
OXVC-1 43.0025528 -70.9417278 1.03 3.78 0.21 6
OXVC-2 43.0027611 -70.9407389 1.11 5.85 0.24 4
OXVC-3 43.0030056 -70.9394083 1.12 3.00 0.24 8
APVC-1 43.0953139 -70.8698333 1.23 3.04 unknown unknown
APVC-2 43.0953667 -70.8700389 1.12 4.46 unknown unknown
APVC-3 43.0954278 -70.8702694 1.04 4.31 0.66 15

See Fig. 1 for locations. The core surface displacement is the difference between the
elevation of the marsh surface adjacent to the core barrel versus inside the barrel at the
end of the coring process. This difference was used to compute a depth correction factor
for samples taken for radiocarbon dating (Table 2) and for pollen horizons (Table 3).



L.G. Ward et al. /| Marine Geology 256 (2008) 1-17 5

Table 2
Supporting information for location, type of material analyzed, radiocarbon ages, and computed accretion rates for samples taken in Great Bay Estuary tidal marshes
Location (core Sample Sample  NOSAMS lab  Type of material 813 Age Age Age Age Minimum Maximum
number) depth  depth and accession dated (%0) (*Cyr B.P.) (mean calyrBPP.) (2 omincal (20max accretion rate accretion rate
(cm)  adjusted no. PDB yr B.P) cal yr BP) (mmyr') (mm yr 1)
(cm)
Adams Point 274 323 16812 Basal Peat -14.60 4060+40 4560 4540 4654 0.6 0.7
Marsh (APVC-3) 0S-11525 (S. alterniflora
roots and stems)
Southern 251 268 16668 Basal Peat -25.00 3590+35 3900 3838 3959 0.6 0.7
Meander 0S-11527 (unknown)
(SMVC-2)
Oxbow Marsh 134 140 16667 Base of High Marsh  -12.66 1810+25 1750 1695 1775 0.8 0.8
(OXVC-2) 0S-11526 (S. alterniflora stems)
Oxbow Marsh 550 574 16665 Channel Floor (tree  -26.23 7590+40 8400 8317 8451 0.7 0.7
(0XVC-2) 0S-11192 bark)
Chapmans 101 same 16670 Base of Marsh -14.77  955%55 860 826 909 12 12
Landing (CLVC-4) 0S-11180 (S. alterniflora stems)
Chapmans 730 same 16669 Tidal Flat (tree bark) -28.54 4900+55 5640 5554 5686 13 13
Landing (CLVC-4) 0S-11193

See Fig. 1 for vibracore locations. Minimum accretion rates calculated from sample depth and mean calibrated age with no adjustment for possible compaction. Maximum accretion
rates determined from adjusted sample depth (computed depth accounting for possible compaction in core). C ages converted to calibrated years using Calib 5.0.2 (Stuiver and

Reimer, 1993; Stuiver et al., 2005).

freshwater discharge into Great Bay Estuary averages ~3.1 m> s}, with
strong seasonal patterns (Short, 1992). Highest average discharges
occur in the late winter to early spring and commonly are associated
with snow melt, while the lowest average discharges occur in summer
and fall (Ward and Bub, 2005). New Hampshire has a temperate
climate with distinctive seasons. The mean annual temperature for
coastal New Hampshire (measured near Great Bay) is 8.9 °C (48.0 °F)
for 1971-2000, with monthly averages ranging from -4.1 °C (24.7 °F)

UPLAND BORDER
Agropyron repens
+ arboreal saplings

in January to 21.5 °C (70.7 °F) in July. The tidal marshes and estuarine
tributaries are frequently ice covered in winter, which has major
impacts on biological, chemical, and sedimentological processes
(Fig. 2) (Meese et al., 1987; Argrow and FitzGerald, 2006). The mean
annual precipitation is 1222.5 mm (48.13 in.), with a nearly uniform
monthly pattern (NOAA, 2002). The rate of RSL rise in Great Bay
Estuary measured at Portsmouth from 1926 to 1986 is 1.75 mm yr ™!
(NOAA Tides and Currents, 2008; WWW).
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Fig. 3. Transect across Southern Meander Marsh (see Fig. 1). The transect extends from the upland border to the channel edge. The particulate organic content of the surficial marsh
sediment determined from loss on ignition for each station along the transect is shown on the lower figure.
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2.3. General Holocene stratigraphy

Holocene stratigraphic sequences for estuarine and tidal marsh
deposits in New Hampshire were described by Haug (1976) and Keene
(1970, 1971), respectively. Haug (1976) focused on the late Quaternary
stratigraphy in the main tidal channel in Great Bay (Fig. 1) and found
that the pre-Holocene sediments (glacial tills, outwash, marine
sediments) typically underlie (often unconformably) an organic-rich
layer that was dated about 9290 cal yr B.P. (8340200 '*C yr B.P.).
Haug (1976) identified the organic layer as indicative of the initial
Holocene transgression into upper Great Bay Estuary. In a more
detailed study of the tidal marshes in Hampton-Seabrook Estuary,
Keene (1970) described the Holocene sediments in the salt marshes
and noted the presence of an organic-rich layer composed of the
remains of twigs, leaves, and plants debris in a silty or sandy matrix
directly overlying pre-Holocene sediments. The plant debris was
predominantly salt marsh, but contained some fresh to brackish
marsh plants. The oldest age obtained for this peat layer was about
7710 cal yr B.P. (6850+155 “C yr B.P.). Keene (1970) argued that the
peat layer was likely deposited at the marine limit as the marsh
transgressed over the uplands. Keene (1970) also noted that the
organic-rich, time transgressive peat deposit graded upward into tidal
flat or subtidal estuarine sediments, but was capped by the typical
marsh building sequence of low marsh grading upward into high or
brackish marsh sediments.

3. Methods

Representative modern marsh environments were sampled in
summer 1997 along a 229-m transect using standard techniques. The

transect, which was located on the Southern Meander Marsh study
site (Fig. 1), extended from the fringing forest just above the upland
boundary seaward to the adjacent tidal channel. The transect
intersected vibracore site SMVC-1 ~60 m from the upland border
(between stations 11 and 12). Relative elevations of the marsh surface
along the transect were estimated relative to SMVC-1, which had an
elevation of 1.24 m (NAVD88; Table 1), using a Brunton compass, rod,
and a tape (after Compton, 1985). Cores, ranging in length from 12 to
26 cm, were collected at 31 stations along this transect and analyzed
for root size and density, as well as organic content by loss on ignition
(LOI). Each LOI analysis consisted of three replicas taken from near the
surface of the core.

Stratigraphic relationships and subsurface sediment characteristics
of five tidal marshes were determined from 20 vibracores collected in
summer and fall, 1996 (Fig. 1). The vibracores, which were 7.6 cm in
diameter and ranged in length from 2.83 to 7.38 m (Table 1), were
collected using methods described by Lanesky et al. (1979). Each
vibracore was surveyed with a total station with reference to bench-
marks at Adams Point or near the mouth of the Squamscott River. Care
was taken in the field and during transport of the cores not to cause
compaction and to minimize any loss of the sediment column.
Examination of the cores after opening revealed no evidence of
compaction or disturbances (i.e., distortion of bedding planes). However,
differences (typically <6%) in the elevation of the sediment surface
outside the core barrel versus inside the barrel at the completion of the
coring processes were observed at most of the sampling sites (Table 1).
This difference between elevations was most likely due to “rodding,”
where friction between the core barrel and the sediment inside the
barrel essentially prohibits new material from entering the nose of the
core barrel. At this point the core barrel and the sediment act as a solid
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APVC-1 to APVC-3 is ~30 m. The depth scale is the same for all three cores. Relative elevations among the cores indicated by the vertical position in the figure. All three vibracores

display stratigraphic sequences that reflect the vertical building of the marsh.
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rod and continued coring simply pushes the entire unit through the
sediment. Nevertheless, since it could not be discounted that compac-
tion of the core may have occurred, all sample depths used for C or
pollen analyses and subsequently calculation of accretion rates were
recomputed and adjusted so that the recovered core was the same
length as the amount of penetration into the marsh (Table 1). The
stratigraphic profiles and core logs were not adjusted as the small
changes in almost all instances had no effect on the interpretations.
All vibracores were analyzed for sediment and root characteristics,
LOI, and bulk density. Selected cores were analyzed for grain size. Six
organic samples for C dating were extracted from four of the cores.
Either small bits of what appeared to be tree bark or individual
Spartina alterniflora plant fragments were used for the C analyses
(Table 2). However, in one case (SMVC-2) the material was not
identifiable (Table 2), but the stratigraphic position (basal peat), color
(blackish), and 6'3C value (-25.00) indicated it was from the upland
marsh border (Belknap et al., 1989b; Churma et al., 1987; Gehrels et al.,
1996; Lamb et al., 2006). Grain size was determined on sediment
samples using standard sieving and pipetting techniques described in
Folk (1980). Sediment organic content was estimated by determining
LOI after Ball (1964); the samples were dried in an oven at 55 °C for
24 h, and then ignited at 450 °C for 4 h. Bulk density was determined
by removing a ~1-3 cc sample from the cores with a scalpel or syringe,
determining volume by displacement in water (if removed by a
scalpel), and weighing. Organic matter samples were C dated with
accelerator mass spectrometry (AMS) at the National Ocean Sciences
Accelerator Mass Spectrometry (NOSAMS) facility at Woods Hole
Oceanographic Institute, Woods Hole, Massachusetts. Radiocarbon

ages were calibrated using CALIB 5.0.2 (Stuiver and Reimer, 1993;
Stuiver et al.,, 2005). Pollen analyses were done using methods
outlined in Faegri and Iverson (1989), with Lycopodium grains added
as a tracer. At least 300 terrestrial pollen grains were counted for each
sample and identified to the genus level, if possible (cf. Kapp, 1969;
Richard, 1970; McAndrews et al., 1973; Faegri and Iverson, 1989;
Moore et al., 1991). Species of Poaceae (grasses), Quercus (oak), Betula
(birch), Acer (maple), Picea (spruce), and Ostrya-Carpinus (hornbeam)
were grouped together under the genus heading, while Pinus grains
were identified to the species level and then grouped into two
categories: Pinus strobus (white pine) and “Other pine”. Rare grains of
non-arboreal (NAP) or arboreal (AP) pollen (i.e. only seen once or
twice in 35 samples) were grouped under the categories “Other NAP”
and “Other AP.” Grains that could not be identified were counted but
noted as “Indeterminate.”

4. Results
4.1. Modern marsh environments

Tidal marsh systems found in the Great Bay Estuary typically
display distinct zonations with characteristics plants, organic content,
and soil characteristics that have been frequently described for salt
marshes along the eastern seaboard of the United States (Redfield,
1967,1972; Harrison and Bloom, 1977; Niering and Warren, 1980; Frey
and Basan, 1985; Kennish, 1990; Fletcher et al.,, 1993; Kelley et al.,
1995). Although some of the smaller fringing marshes in Great Bay
Estuary are primarily composed of low marshes, the more mature
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Fig. 6. Core log and sediment characteristics for a vibracore taken at Chapmans Landing Marsh (Fig. 1). Most of the cores taken at Chapmans Landing are similar to CLVC-4 and are not
included here. The marsh system is made up of a thick sequence of channel fill deposits composed of olive fine sands and silts, with some fine horizontal laminations and organic
debris (sticks, acorns). Overlying the channel fill are mudflat sediments that are similar in size (olive silts and clays), but lack laminations. Both units have occasional sand lenses
indicative of high-energy events (e.g., flooding). The tidal-marsh sediments are organic-rich silts and clays.
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systems, such as those sites sampled during this study, contain a full
range of environments from terrestrial/palustrine to marine intertidal.
For example, the sediments at the upland border adjacent to the forest
in the Southern Meander Marsh (Fig. 1) tend to be blackish in color
with moderate organic content (mean LOI=26%8.5%, see Fig. 3).
Agropyron repens and Myrica gale are the major vegetation types. Just
seaward of the upland border, the brackish marsh subenvironment is
composed largely of Typha angustfolia, Scirpus sp., Distichilis sp., and
Spartina patens, which form organic-rich (mean LOI=66+10%),
black-brown muds. Standing water is common in this area. The
brackish marsh transitions abruptly into the high marsh environment,
the largest subenvironment in the tidal marshes in Great Bay Estuary
(Ward et al.,, 1993). Vegetation consists of Juncas gerardii common
closest to the brackish marsh boundary and predominantly S. patens
with some Distichilis sp. The sediments are organic-rich (mean
LOI=53+10%) and brown to dark brown in color. Within this
subenvironment are several large salt pannes that frequently contain
standing water. Between the high and low marsh, a transitional or
middle marsh occurs that has vegetation types similar to the high
marsh environment (S. patens, Juncus gerardii, Scirpus sp.), but dark
brown soils with lower organic content (mean LOI=27+10%). The low
marsh environment is dominated by S. alterniflora and has gray-
brown muddy soils with low organic content (mean LOI=15+6%). The

Oxbow Marsh System

surface elevation of the marsh quickly declines through the low
marsh, grading into the tidal flats. The tidal flats are composed
predominately of gray sediments with very low organic content
(mean LOI=9+1%) and no vegetation.

4.2. Stratigraphic relationships

4.2.1. Holocene marsh stratigraphy

Two vibracores taken at Adams Point Marsh (APVC-2 and APVC-3;
Fig. 4) and one vibracore from the middle of the Southern Meander
marsh (SMVC-2; Fig. 5) are representative of the marsh building
processes where it appears that tidal channel migrations or channel-
ward or upland expansions have not occurred. Hence, these sites likely
depict tidal marsh development from the initial marine transgression
through the modern marsh building process. Underlying the marsh
stratigraphic sequence are glaciomarine sediments composed of
cohesive, blue-grey silts and clays with some silty sands. The
glaciomarine sediments, which tend to underlie many of the Holocene
deposits found in Great Bay Estuary, were deposited during the late
Quaternary marine incursion that occurred during the deglaciation of
the Gulf of Maine. Subsequent subaerial exposure caused by crustal
rebound created an erosional unconformity on the surface of the
glaciomarine sediments. As a result, the uppermost portion of the
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Fig. 7. Core logs, interpreted depositional environments, and major processes influencing the marsh system at the time of deposition for Oxbow Marsh (Fig. 1). The total distance
between OXVC-1 and OXVC-3 is ~180 m. The depth scale is the same for all three cores. Relative elevations among the cores indicated by the vertical position in the figure. The
vibracores display three stratigraphic sequences that reflect the recent transgression over the upland boundary (OXVC-3), meandering of the main estuarine tributary tidal channel

(OXVC-2), and the tidal channel being cutoff with an oxbow forming (OXVC-1).
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glaciomarine sediments has a rusty-orange weathered zone indicating
subaerial exposure. At the Southern Meander Marsh site, the
glaciomarine sediments contain medium to coarse sand lenses up to
50 cm thick that may represent subaqueous outwash deposition.

Above the weathered glaciomarine unit, the sediments rapidly
change into organic-rich material with flakes of mica and plant
macrofossils (e.g., twigs, sparse pine needles). This organic-rich layer,
also called the basal or transgressive peat, overlies the glaciomarine
sediments and marks the boundary of the initial marine transgression
at that location. Based on comparison to the characteristics of the
surface transect, the basal peat is interpreted as the forest and upland
border subenvironments (Figs. 3-5). Radiocarbon dating of the basal
peat at Adams Point Marsh and Southern Meander Marsh yielded ages
of 4560 cal yr B.P. (4060+40 'C yr B.P.) and 3900 cal yr B.P. (3590
35 MC yr B.P.), respectively (Table 2).

Directly above (e.g., 240-190 cm in SMVC-2) the forest/upland
border section, LOI increases to ~50-70% and the sediments have a dark
brown to black color, high root density, and a texture similar to “coffee-
grounds.” The high LOI values and stratigraphic position indicate that
this unit is likely the brackish or upper high marsh environment. This
entire sequence, including the forest/upland border and brackish and
upper high marsh, is analogous to the time-transgressive peat deposited
during the latest marine transgression that has been previously
described in the region (McIntire and Morgan, 1964; McCormick,
1968; Keene, 1970, 1971; Haug, 1976; Kelley et al., 1995; Trainer, 1997).

The organic content of the sediment column directly above the
transgressive peat gradually decreases, indicating a shift towards low
marsh environments. In SMVC-2 (Fig. 5), the LOI decreases from

nearly 60% at 190 cm to 18% at 97 cm and the sediment becomes
grayish in color and has low root density. However, the sediment
column is capped at both locations by the typical marsh building
sequence of low marsh transitioning back into high marsh. For
instance, the organic content in core SMVC-2 gradually increases from
18% at 97 cm to nearly 70% at 26 cm, indicating a shift back towards
high marsh environments. However, from 26 cm to the surface, the
organic content of the sediments fluctuates. Here, the marsh
sediments are brownish silts and clays with generally lower organic
content.

4.2.2. Effect of marsh expansion and channel migrations

The Holocene tidal marsh sequence described in the previous Section
4.2.1 was not found at all sites sampled during this study. Furthermore,
within a single marsh system, the stratigraphic sections also varied
depending on the location. For example, while the core taken in the
middle of the marsh system at Southern Meander (SMVC-2) appears to
record the initial marine transgression and the marsh building process,
the most landward core (SMVC-1) is typical of submerged upland
marshes (Fig. 5). Here, brackish marsh deposits overlie weathered
glaciomarine sediments reflecting the more recent marine transgression
of the landward edge of the marsh over the upland (Stevenson et al.,
1986; Ward et al,, 1998). Similarly, core SMVC-3 taken at the channel
margin has a thin marsh sequence over channel fill and/or mudflat
deposits formed as the marsh expanded channelward (Ward et al.,
1998). Keene (1970) found similar patterns in the backbarrier marshes at
Hampton-Seabrook Estuary, located ~15 km to the southeast along the
coast of New Hampshire.

Sandy Point Marsh System
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Fig. 8. Core log and sediment characteristics for a vibracore taken at Sandy Point Marsh (Fig. 1). The tidal marsh at Sandy Point overlies glaciomarine sediments consisting of sand
lenses (dotted pattern), likely deposited by submarine glacial discharge, interbedded with muddy marine sediments of the Presumpscot Formation (dashed lines). The sand lenses
tend to be buff to gold, fine to medium sands near the marsh deposits, becoming gray, fine sands at depth. The glaciomarine sediments are gray silts and clays. The marsh sequence
capping the core consists of brownish silts and clays, along with fine to medium sands deposited during storm events.
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Whereas the variability in tidal marsh stratigraphy over relatively
short distances is demonstrated at the Southern Meander Marsh
system as a result of changes in depositional environments (recent
transgression over uplands or channelward expansion), the strati-
graphic sections found at Chapmans Landing (Fig. 6) and Oxbow
Marsh sites (Fig. 7) display the impacts of channel migration and
abandonment. At these sites, the sediments are dominated by tidal
channel deposits or subtidal estuarine deposits that transition upward
into low, then high marsh sediments. For example, the marsh section
cored at OXVC-2, located near the middle of Oxbow Marsh (Figs. 1 and
7), clearly shows an active channel fill sequence with a channel lag
deposit and a large slump block of the glaciomarine sediments (blue-
grey muds with some fine sand) that was likely eroded from the
channel bank as meandering occurred. The channel lag deposits are
composed of olive silts grading downward into laminated sands with
wood debris. The marsh sediments capping the sequence are brown
silts and clays with increasing organic content towards the surface. In
contrast, the marsh site cored at OXVC-1 was a low-energy environ-
ment at the margin of an abandoned channel and is primarily
composed of fine-grained silts and clays with increasing organic
content upward. This sequence is similar to sequence found at SMVC-3,
a channel margin location at the Southern Meander Marsh (Fig. 5).

Other variations also occur in the tidal marsh sequences in Great
Bay Estuary. For instance, at Sandy Point the tidal marshes have
developed directly over glaciomarine sands (likely deposited sub-
tidally) that interfinger with fine-grained sediments of the Presumps-
cot Formation (Fig. 8). In addition, the seaward edge of the Sandy Point
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marsh has coarse-grained sediments within the modern marsh, likely
eroded from the sandier subtidal sediments that lie seaward of Sandy
Point and deposited on the adjacent marsh surface during storm
events. Ward et al. (1998) described similar deposits in a tidal marsh in
Chesapeake Bay that was located adjacent to an open bay where
significant wave energy could develop, creating small coarser-grained
deposits during storms.

4.3. Pollen distribution

Core SMVC-2 was chosen for the description of pollen assemblages
because the stratigraphic analyses showed no erosional unconformi-
ties or other evidence of a hiatus in the Holocene sediments. Therefore,
the sediment column likely contains an uninterrupted sequence for the
last ~3900 cal yr B.P. (3590 C yr B.P.) (Table 2). Results of the pollen
analyses reveal distinctive changes from the basal peat to the surface
that are consistent with pollen studies conducted elsewhere in New
England, largely lakes and bogs (Davis, 1969, 1983; Davis et al., 1975,
1980; Webb et al., 1983; Davis and Jacobson, 1985; Gaudreau and
Webb, 1985). Consequently, the pollen stratigraphy sheds light on
events occurring within the Squamscott River watershed and provides
a general geochronology for the sediment column.

The chief arboreal pollen types found at 250 cm depth directly
above the unconformity in the glaciomarine sediments, which
signifies the base of the Holocene sedimentary package, are Pinus
strobus (white pine), Quercus (oak), Castanea dentata (chestnut), and
Betula (birch) (Fig. 9). There are also minor amounts of Acer (maple),
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Fagus (beech), Tsuga (hemlock), Ostrya (hornbeam), Ulmus (elm), and
Carya (hickory). The non-arboreal pollen components at 250 cm
depth consist chiefly of Cyperaceae (sedges) and Poaceae (grasses).
From 250 to 190 cm depth the amounts of Quercus, Pinus strobus,
Carya, and Castanea dentata generally decrease from the base upward.
Tsuga percentages started out low at the bottom of the Holocene
sediments (250 cm depth), but rapidly increase at 200-210 cm depth
to become one of the dominant forest species. With the exception of
Tsuga, it appears from the pollen assemblages in the core that the
forest composition of the area was fairly consistent from 200 to 50 cm
depth, although all species fluctuate independently. From 200 to
50 cm depth Quercus, Pinus strobus, Tsuga, Castanea dentata, and Be-
tula are the dominant species with minor amounts of Fagus, Acer,
Picea (spruce), Ulmus, and Alnus (alder). Picea first appears at 150-
160 cm depth. At 40-50 cm depth, changes take place among several
species, as Tsuga begins to go into a decline that continues to the
surface, Pinus strobus declines slightly, and Quercus, Betula, and Ostrya
increase. At 30-40 cm depth, Fagus begins to decrease. Overall,
arboreal species compose over 80% of the pollen at the 40-50 cm
depth. However, at 25 cm depth, a sharp decline occurs in almost
every arboreal species. At the same time, percentages of all non-
arboreal species begin to increase. Exotic non-arboreal species such as
Ambrosia (ragweed) also begin to appear. This trend reverses around
the 10 cm depth as Pinus strobus, Betula, Quercus, Picea and Carya
increase and non-arboreal species decrease. Castanea dentata begins
to decline at the 5 cm depth and disappears from the record at the top
of the core.

5. Discussion
5.1. Holocene accretion rates and marsh geochronology

5.1.1. Based on radiocarbon dating

Accretion rates of four of the marshes studied in the Great Bay
Estuary were estimated from six 1“C ages (Table 2). The average accretion
rate for the core from Southern Meander Marsh (SMVC-2), based on an
age of ~3900 cal yr B.P. (359035 ™C yr B.P.) for an unidentified plant
fragment taken from a basal peat at a depth of 251 cm (268 cm if
adjusted for compaction), is 0.6 mmyr~! (0.7 mmyr~ ! adjusted) (Fig. 5,
Table 2). This accretion rate agrees with the long-term accretion rate
(~0.6 to ~0.7 mm yr ') determined from a 'C age on a basal peat (a
Spartina alterniflora fragment) from Adams Point Marsh (APVC-2, Fig. 4).
The plant fragments used for the C analyses from the Southern
Meander Marsh and from Adams Point Marsh were from the basal peat
that represents the initial Holocene transgression at that location.

Accretion rates determined from Spartina alterniflora fragments from
nearer the surface of marsh deposits at the Oxbow Marsh (OXVC-2) and
Chapman Landings (CLVC-4) were higher than those determined for the
basal peat. For instance, the *C age from a Spartina alterniflora fragment
taken from 134 cm depth (140 cm if adjusted for compaction) from
the Oxbow Marsh (OXVC-2) had an age of ~ 1750 cal yr B.P. (1810425 Cyr
B.P.) giving an accretion rate of 0.8 mmyr ! (Fig. 7; Table 2). The C age for
a Spartina alterniflora fragment from 101 cm depth from Chapmans
Landing (CLVC-4) was ~860 cal yr B.P. (955+55 '“C yr B.P.), indicating
an accretion rate of ~1.2 mmyr~ ! (Fig. 6; Table 2). The increase in the
accretion rate as the marshes become younger is not unexpected and
partially reflects the relatively high proportion of the sediments that
are low marsh, increased sediment input since European colonization
(Ward et al., 1998), the high rate of RSL rise that has occurred over the
last two centuries (Donnelly, 2006a), and minimal autocompaction.

The long-term accretion rate for the entire core from Chapmans
Landing Marsh based on the C age (~5640 cal yr B.P.) of a tree bark
fragment collected at 730 cm depth was high as well (1.3 mm yr 1),
indicating relatively rapid deposition in a channel fill-tidal flat
sequence capped by a thin marsh (CLVC-4, Fig. 6). In contrast, the
accretion rate determined from a '“C age (~8400 cal yr B.P.)on tree bark

from channel lag deposit at 550 cm depth (574 cm if adjusted for
compaction) in the Oxbow Marsh (OXVC-2) was relatively low at
0.7 mm yr~ ' (Fig. 7; Table 2). The low accretion rate may not be
representative of the channel fill sequence since the tree bark found in
the channel lag deposit used to date the core could have been eroded
from an older deposit.

5.1.2. Based on pollen geochronology

Five major dated horizons (Fig. 9) were identified in core SMVC-2
from Southern Meander Marsh based on well-documented local and
regional shifts in pollen assemblages and include the following.

1. An increase in Tsuga initiates at 200-210 cm below the marsh
surface. This increase corresponds to a recovery of Tsuga that
occurred between ~2850 cal yr B.P. (Davis, 1969; Winkler, 1982;
Allison et al.,, 1986) and ~3500 cal yr B.P. (Fuller, 1998) from a
parasitic disease that decimated the species at ~5500 cal yr B.P. For
this study, the 2850 cal yr B.P. age has been assigned for the horizon
because of the proximity of the study area (within New Hampshire)
used by Allison et al. (1986). Furthermore, 2850 cal yr B.P. is a more
reasonable age for the horizon location in the stratigraphic column
and yields a more consistent accretion rate for the time period.

2. Picea appears at 150-160 cm depth, corresponding to an increase
observed at many locations in the New England area at ~1960 cal yr
B.P. (Deevey, 1951; Davis, 1969, 1983; Davis et al., 1975, 1980; Webb
et al., 1983; Gaudreau and Webb, 1985; Gajewski, 1988).

3. Tsuga begins to decrease at 40-50 cm depth corresponding to a major
decline at ~580 cal yr B.P. over a wide region of northeastern United
States (Davis et al., 1980; Spear et al., 1993; Campbell and McAndrews,
1994). Pinus strobus also declined during this time (Davis et al., 1980).

4. Ambrosia concentrations peak and Quercus declines at 15-20 cm
depth. Brush and DeFries (1981), Brush et al. (1982), Brush (1984),
Clark and Patterson (1984, 1985), Kearney and Ward (1986), and
Kearney et al. (1994) have demonstrated that shifts in arboreal and
non-arboreal pollen species in tidal marshes reflect the impact of
European settlers in the surrounding watersheds. Gehrels et al.
(2002) documented an increase in Ambrosia in salt marshes in
Maine and assigned a date of ~1760 A.D. due to rapid population
growth. Historical data from southeastern New Hampshire place
the beginning of the European settlement in this region at ~1631
A.D. (Fitts, 1912; Nelson, 1965). The Ambrosia peak, along with the
decrease in Quercus, represents the height of land clearing and
agricultural activities and is assigned a date of ~1785 A.D. for this
study (Webb, 1973; Davis, 1976; Brugam, 1978; Winkler, 1985; Hart,
1994; Bampton, 1999).

5. Castanea (chestnut) begins to decrease at 5 cm depth, which agrees
with the well-known pathogen-caused chestnut decline starting in
~1915 A.D. (Anderson, 1974; Allison et al., 1986).

Using the unadjusted mid-points of the depth intervals over
which the pollen horizons occurred, the published ages of
correlated pollen horizons, and the C age from the basal peat in
SMVC-2, the geochronology and the accretion rates for five time
intervals over the last ~3900 cal yr (~3590 'C yr B.P.) were
estimated for core SMVC-2: 1) ~0.4 mm yr ! from ~3900 to
~2850 cal yr B.P.; 2) ~0.6 mm yr~ ! from ~2850 to ~1960 cal yr B.
P.;3)~0.8 mmyr ! from ~1960 to ~580 cal yr B.P.; 4) ~0.7 mm yr~ '
from ~580 to ~210 cal yr B.P; and 5) 0.8 mm yr~ ! over the last
210 years (Fig. 10, Table 3). The accretion rates were also computed
using the adjusted mid-point of the depth interval for the pollen
horizons, which makes little difference in the results (Table 3).

In general, the estimated accretion rates using the pollen horizons
agree reasonably well with accretion rates determined from the C
ages from this study and with other reported observations for salt
marshes in the region (Keene, 1971; Orson and Howes, 1992). In
addition, these accretion rates are well within the range expected
considering published RSL rise estimates over similar periods (Kelley
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Fig. 10. Pollen marker horizons, sediment column geochronology, and accretion rates for core SMVC-2.

et al., 1995; Gehrels et al., 1996; Gehrels, 1999; Donnelly et al., 2004;
Donnelly, 2006a). Furthermore, the increase in accretion rates as the
salt marsh becomes younger is not unexpected. Undoubtedly, the
highest accretion rate occurring over the most recent interval (last
~210years) is caused or enhanced by the two- to three-fold increase in
RSL rise over the last century (Donnelly et al., 2004; Donnelly, 2006a)
and the increase in inorganic sediment supply (Kearney and Ward,
1986). In contrast, the trend of decreasing accretion rates as the marsh
sediments become older at Southern Meander Marsh is most likely
caused in part by autocompaction of the sediment column with time
(Gehrels et al., 1996, 2002; Gehrels, 1999).

5.1.3. Recent accretion rates

Although the accretion rate at Southern Meander Marsh for the
last ~210 years was the highest measured during this study based on
pollen horizons for predominantly high marsh sediments, it likely
underestimates more recent accretion rates significantly. For example,
accretion rates based on 2'°Pb and '3Cs profiles (Ward, 1994) for two
high marsh sites in Great Bay Estuary (Adams Point and Chapmans
Landing) were close to or exceeded the recent local RSL rise of
~1.75 mm yr~ ! measured by a tide gage in Portsmouth Harbor (NOAA
Tides and Currents, 2008; WWW). In addition, recent accretion rates
based on measuring changes in the elevation of the marsh surface at
several sites in Great Bay Estuary over the last decade (Boumans et al.,
2002) are also similar to or exceed recent rates of RSL rise. This

increase in accretion rates over the recent past (last century) is a well-
documented phenomenon that has been recorded at many sites along
the eastern seaboard of North America (Kearney and Ward, 1986;
Orson and Howes, 1992; Orson et al., 1998; Fletcher et al., 1993; Roman
et al., 1997; Varekamp and Thomas, 1998; Ward et al., 1998; Gehrels,
1999; Van de Plassche, 2000; Churma et al.,, 2001; Donnelly and
Bertress, 2001; Kearney, 2001) and in England (Long et al., 1999; Plater
et al., 1999). For instance, Goodman et al. (2007) reported accretion
rates for marshes along the coast of Maine over a 17-year period from

1986 to 2003 between 1.4 and 4.2 mm yr~ !, averaging 2.8 mm yr~ .

5.2. Relative sea level, climatic, and anthropogenic effects on salt marsh
stratigraphy and composition

5.2.1. Effect of late Holocene relative sea-level rise

The development of the general stratigraphic sequences found in
the tidal marshes of Great Bay Estuary was strongly influenced by RSL
fluctuations starting with a marine regression with a lowstand
between ~11,000 and ~10,800 yr B.P. (Belknap et al., 2002) in the
western Gulf of Maine that resulted in the erosion of the surface of the
pre-Holocene glaciomarine sediments. The lowstand was followed by
a transgression and deposition of organic-rich upland and high marsh
sediments that initiated a transgressive onlap boundary. Two of the
salt marshes cored during this study, Adams Point Marsh (APVC-2;
Fig. 4) and Southern Meander Marsh (APVC-2; Fig. 5), clearly reveal
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Table 3

Marsh accretion rates based on pollen horizons (dated from the literature) and a calibrated '“C age for a vibracore taken in Southern Meander Marsh (SMVC-2)

Sample Adjusted Pollen horizon or Age of Age of Accretion rate Accretion rate Time period Minimum Maximum

depth  sample radiocarbon age horizon horizon surface to horizon surface to (cal yr B.P.) accretion rate accretion rate

(cm) depth (*CyrBP) (calyrB.P.) (mmyr') adjusted horizon for Interval for interval

(cm) (mm yr ') (mm yr 1) (mm yr )

2.5 2.5 Decline in Castanea - ~100 - - - - -

17.5 18 Peak land clearance - ~210 0.8 (0-17.5 cm) 0.9 (0-18 cm) Present to ~210 0.8 (0-17.5 cm) 0.9 (0-19 cm)
(shift in aboreal/
non-aboreal species)

45 47 Decline of Tsuga, Fagus, ~550 ~580 0.8 (0-45 cm) 0.8 (0-47 cm) ~210 to ~580 0.7 (17.5-45 cm) 0.8 (19-47 cm)
and Pinus strobus

155 162 Appearance of Picea ~2000 ~1960 0.8 (0-155 cm) 0.8 (0-162 cm) ~580to ~1960 0.8 (45-155 cm) 0.8 (47-162 cm)

205 214 Rebound in Tsuga ~2750 ~2850 0.7 (0-205 cm) 0.8 (0-214 cm)  ~1960 to ~2850 0.6 (155-205 cm) 0.6 (162-214 cm)

251 262 Radiocarbon age of basal peat ~3590 ~3900 0.6 (0-251 cm) 0.7 (0-262 cm)  ~2850to ~3900 0.4 (205-251 cm) 0.5 (214-262 cm)

See Fig. 1 for core location and Fig. 5 for stratigraphy. Sample depth is the mid-point of the depth interval identified for the pollen horizon. The adjusted depth is the mid-point of the
depth interval allowing for possible compaction. The accretion rate (surface to horizon) shows the average accretion rate for the sediment column from the surface to the dated
horizon. The accretion rate (surface to adjusted horizon) is based on the adjusted sample depth. The minimum accretion rate is for the time interval between horizons based on the
ages and the unadjusted sample depth. The maximum accretion rate for interval is based on the adjusted depths. The accretion rate based on the decline in Castanea was not
computed as the sampling interval does not provide great enough resolution to determine accurately the horizon.

the transgressive onlap boundary above the erosional unconformity in
the glaciomarine sediments. Overlying the erosional unconformity are
forest/upland to low marsh sediments. The transgressive onlap
boundary initiated at ~4560 and ~3900 cal yr B.P. at Adams Point
Marsh and at Southern Meander Marsh, respectively.

Although there are several processes observed in tidal marshes that
can cause a shift from upland or high marsh to low marsh environments
with an accompanying decrease in organic content, including storm
erosion and salt panne formation (Kelley et al., 2001), the initial changes
in marsh composition (organic content) demonstrated in cores APVC-2
and SMVC-2 are attributed at least in part to RSL rise from ~4000 to
~3000 cal yr B.P. Despite the slowing of RSL rise in the region from earlier
Holocene rates (Belknap et al., 1989a), RSL appears to have still outpaced
accretion and created an accretionary deficit. Evidence of RSL rise
outpacing sediment deposition during the early marine incursion can be
found in the accretion rates estimated from the pollen horizons
identified in core SMVC-2 from Southern Meander Marsh (Table 3)
and from the RSL curve for nearby Wells, Maine (~40 km to the
northeast). For instance, the accretion rate in core SMVC-2 from ~3900
to ~2850 cal yr B.P. in the lower portion of the marsh sequence is on the
order of 0.4 to 0.5 mmyr~ ! (Table 3), whereas the rate of RSL determined
at nearby Wells, Maine at ~4000 yr B.P. is 0.8 mm yr~! (Kelley et al,,
1995). Although other factors are clearly involved, such as under-
estimating the rate of sediment accretion due to autocompaction or
differences in RSL in Great Bay Estuary as compared to Wells, Maine, it
appears an accretionary deficit may have occurred during this interval
that caused or contributed to a transgressive sequence or a reduction in
the organic content of the marsh sediments. Ultimately, an accretionary
deficit can lead to increased flooding of the marsh surface (Stevenson
et al., 1986) and longer hydroperiods (Cahoon and Reed, 1995), resulting
in a shift towards more salt tolerant or low-marsh plant species, and
higher rates of inorganic sedimentation (Warren and Niering, 1993;
Ward et al., 1998). This shift has been seen at several other locations in
the region (Keene, 1971; Haug, 1976), increasing the probability that it is
related to an accretionary deficit.

Above the apparent transgressive sequence in the marshes at
Adams Point (APVC-1 and APVC-2) and Southern Meander Marsh
(SMVC-2), a progression from low marsh to high marsh occurs
indicating a marsh building or regressive sequence. This marsh
building sequence is seen in SMVC-2 from ~100 to ~30 cm depth.
Part of the reason for the likely expansion of the marsh and the increase
in organic content of the marsh sediments is the continued slowing of
RSL and relatively high sediment accretion rates. For instance, the rate
of marsh accretion in SMVC-2 from ~ 1960 to ~580 cal yr B.P. was on the
order of 0.8 mm yr ! (Table 3). However, the rate of RSL rise at
~2000 cal yr B.P. at Wells, Maine, had slowed to ~0.4 mmyr~' and by

~1000 yr cal yr B.P. RSL had slowed to 0.2 mmyr~' (Kelley et al., 1995).
Again, other factors are undoubtedly involved, but marsh accretion
rates substantially exceeding local RSL would push towards a positive
accretionary balance. Ultimately, the positive accretionary balance
would lead to expansion of high-marsh (less salt tolerant) plant species
and a shift from minerogenic to more organogenic sedimentation. The
shift towards the higher organic content (LOI) of the sediments from
~100 to ~30 c¢cm of core SMVC-2 may reflect this trend.

5.2.2. Climatic effects

Organogenic input to salt marshes and consequently organic
content of the sediments is strongly influenced by primary produc-
tivity and preservation of organic matter, which, in turn, is linked to
the salinity of the substrate (Niering and Warren, 1980). Salinity of an
estuarine marsh is not only controlled by tidal fluctuations, but also by
variables such as height of the groundwater table, river discharge, and
the amount of precipitation that falls onto the marsh surface and in
the watershed (de Rijk and Troelstra, 1997; Hughes et al., 1998; Cronin
et al,, 2000). Regional climate change, particularly precipitation, or
lack thereof, influences all of these variables. A number of recent
studies have shown that the precipitation patterns have changed
significantly over the Holocene (Cronin et al., 2000; Newby et al.,
2000; Shuman et al., 2001; Shuman and Donnelly, 2005). Although it
is not possible with the data at hand from this study to relate specific
climate variations to shifts in marsh vegetation (e.g., low or high
marsh species) or changes in the organic content of the sediment
column, it is reasonable to assume that climatic fluctuations causing
changes in fluvial discharge and salinity have had an impact on the
composition of the tidal marshes in Great Bay Estuary.

Along with shifts in temperature and precipitation, it has been well
documented in recent studies in northeastern United States that the
frequency and intensity of storms has varied over the Holocene (Noren
et al., 2002; Donnelly, 2006b). The impact of storm activity eroding
marshes and ultimately forcing longer periods of inundation and
higher inorganic sedimentation rates cannot be discounted (Stumpf,
1983; Jennings et al., 1993, 1995; Cahoon and Reed 1995; Cahoon et al.,
1995; Roman et al., 1997; Goodbreed et al., 1998; Donnelly et al., 2001;
Van de Plassche et al., 2006). Ultimately, these effects could cause a
shift in the balance of minerogenic versus organic driven accretion in
tidal marshes.

At two of our study sites (Adams Point Marsh and Southern
Meander Marsh; Figs. 4 and 5, respectively), the low marsh sediments
overlying the high marsh environment, as indicated by a decrease in
organic content, may be the result of other forcings such as shifts in
climatic patterns or storm erosion in the tidal marshes, rather than an
accretionary deficit as discussed above. This explanation is especially
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true for Adams Point Marsh, which is located within Great Bay and
more exposed to potentially erosive forces. In contrast, the changes in
marsh composition seen at the Southern Meander Marsh, located
along the Squamscott River, may reflect changes in river discharge and
precipitation in the watershed.

Clearly, the concept that climatically-controlled changes in salt-
marsh processes needs to be given consideration in the study of salt-
marsh development and composition over time (cf. Varekamp et al.,
1992; Fletcher et al., 1993; Nydick et al., 1995; Van de Plassche et al.,
1998; Varekamp and Thomas, 1998; Van de Plassche, 2000). Thus, the
fluctuations in the composition of the marsh in the sediment column
from cores APVC-1 and APVC-2 at Adams Point Marsh and from core
SMVC-2 at Southern Meander Marsh may have been forced, at least in
part, by changes in precipitation, cooler weather, or increases in storm
activity.

5.2.3. Anthropogenic effects

Previous studies have shown that changes in inorganic sediment
inputs related to land clearing over the last two centuries certainly had
an impact on accretion rates and marsh composition (Brush et al.,
1982; Kearney and Ward, 1986; Stevenson et al., 1988; Ward et al.,
1998; Gehrels et al., 2002). Kearney and Ward (1986) demonstrated
that accretion rates in marshes along the Nanticoke River in
Chesapeake Bay (United States) nearly doubled in a number of areas
over the last century compared to the early 19th century, most likely
due to increases in inorganic sediment supply related to clearing of
the watersheds (Meade and Trimble, 1974; Meade, 1982) and the
increase in the rate of RSL rise. Furthermore, the impacts of an increase
in RSL rise, inorganic sediment loading, or changes in salinity may be
enhanced by ditching in the salt marshes (Orson and Howes, 1992;
Warren and Niering, 1993). Since the forests in the watershed around
Great Bay Estuary were cleared, largely for ship building, the decreases
in LOI content near the surface seen in most of the vibracores taken
during this study (Zaprowski, 1998) and the higher accretion rate over
the last two centuries in core SMVC-2, are likely related at least in part
to higher inorganic sediment runoff.

6. Conclusions

The stratigraphic characteristics, sediment column geochronology,
long-term accretion rates, and pollen history of mesotidal, temperate
estuarine salt marshes in Great Bay Estuary were assessed from the
mapping of modern depositional environments, vibracores, radio-
carbon dating, and pollen analysis. Collectively, this dataset provides
insights into the controls of marsh development and composition for
Gulf of Maine tidal marshes in estuarine settings. Based on the results
of this study, the following conclusions are made.

1. Basal peat from two tidal marshes in upper Great Bay Estuary found
at depths of 2.51 m and 2.74 m below the surface during this study
were identified as transgressive marsh deposits and dated at
~3900 cal yr B.P. (359035 C yr B.P.) and ~4560 cal yr B.P. (4070 +
40 'C yr B.P.), respectively.

2. Determination of pollen assemblages in marsh sediments identi-
fied five marker horizons previously described and dated in the
literature including the following: the rebound of Tsuga (assigned
an age of ~2850 cal yr B.P. for this study); the appearance of Picea
(~1960 cal yr B.P.); the decline of Tsuga, Fagus, and Pinus strobus
(~580 cal yr B.P.); an increase of non-arboreal species, especially
Ambrosia coupled with a sudden decrease of arboreal species,
especially Quercus, (~210 cal yr B.P.); and a dramatic decrease in
Castanea (~1915 A.D.).

3. 1Cages (~4560 and ~3900 cal yr B.P.) of basal peat indicate that the
long-term accretion rates for the marsh sequences in Great Bay
Estuary were ~0.6 to 0.7 mm yr~ . However, more recent accretion
rates based on 'C ages of marsh deposits over the last ~1750 and

~860 cal yr B.P. were 0.8 and 1.2 mm yr~ !, respectively. Determi-

nation of accretion rates over varying time intervals based on
pollen horizons from a sediment core indicate a gradual increase
over the last ~3900 cal yr B.P. from 0.4 to 0.5 mmyr~ ' at the base of
the marsh sediments (3900 cal yr B.P.) to 0.8 to 0.9 mm yr™! over
the last 210 years. More recent accretion rates (within the last
century) are likely significantly higher.

4, Changes in depositional environments and resulting tidal marsh
composition and stratigraphic sequences are largely driven by
changes in RSL when viewed over the last several millennia.
However, local changes in marsh stratigraphy results from internal
processes such as marsh expansion and tidal channel migrations.
Also, shifts in the organic content of the marsh sediment column
over the last several centuries likely also reflect the influence of
climate fluctuations and anthropogenic influences.
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