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ABSTRACT

AUTOMATIC ILLUSTRATION OF OCEAN CURRENTS

By

Matthew Quinn

University of New Hampshire, September, 2005

Illustrations of ocean currents are radically different from the typical images

automatically generated from ocean model data.  Commonly used visualization methods

for this data, such as arrow diagrams and Line Integral Convolution, produce dense

images with uniform representation over the entire flow field.  In contrast, illustrations

mainly consist of long, wide arrows or ribbons that highlight only the major patterns in

the flow field.

This thesis presents an algorithm to automatically produce images from ocean

model data that have the important characteristics of ocean current illustrations.  The

resulting images are comprised of a set of long, variable-width ribbons overlaid with

wide arrows.  The color of the arrows and ribbons depict the temperature and salinity

levels, respectively, and the length of the arrows is proportional to the velocity of the

underlying currents.  Secondary, or minor, currents are represented solely as thin arrows.

The vertices of the ribbons are constructed from sets of proximal, parallel running

streamlines that are seeded around the longest and strongest streamlines possible in the

domain. The resulting structures are called super-streamlines.  The algorithm described

in this thesis was designed to create super-streamlines from two and three-dimensional
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data sets.  Super-streamlines constructed from three-dimensional data may be drawn as

variable-width tubes or ribbons.  The algorithm is illustrated by applying it to output from

a finite volume model of flow patterns in the Gulf of Maine.
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INTRODUCTION

Figure 1: An illustration of currents in the Gulf
of Maine.

Figure 2: A representation of the Gulf of Maine
flow using a regular grid of arrows.

Images depicting the flow of ocean currents are typically produced by one of two

methods:  through illustrative methods by a person who has expert knowledge of regional

flow patterns, or automatically through algorithmic interpretation of ocean model data by

a computer graphics system.  The resulting images produced by these two methods

contrast greatly in their overall appearance and aesthetic.  Despite obvious differences, as

can be seen in Figures 1 and 2, both methods have merit.  Illustrations provide an abstract

overview of the behavior of the currents over an area by highlighting only the most

important or interesting features.  Automatically generated images are produced through

precise theoretical methods that may be employed on a variety of data sets with

consistent results.  Therefore, a method that automatically generates images of ocean

currents from ocean model data that have the aesthetic value of illustrative images would

benefit from the best qualities of both of these methods.
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Figure 3: A LIC representation of flows in the Gulf of Mexico

The most commonly used method for automatically generating images of ocean

currents is a grid of little arrows over the entire domain, which represent direction and

magnitude of the currents in the small local area occupied by the arrow (see Figure 2).

The popularity of these diagrams may be attributed to their ease of creation when using

scientific computing software packages, such as MatLab®.  Despite the prevalence of

such images, arrow diagrams are relatively poor at representing global patterns or

exposing long-term behavior of a flow field.  Additionally, the placement of the arrows

may produce aliasing effects, which lead to the perception of false patterns in the data

[Ware, 2004].

Line integral convolution (LIC), a dense texture based method used in Figure 3, is

also common among automatically generated ocean current images.   This method is a

popular topic of research in the field of flow visualization due to the highly detailed

images produced and the visual beauty of the results.  The images produced by LIC are

fairly good at exposing global patterns in terms of the flow orientation but lack

directional cues and do not inherently show velocity magnitude.  In addition, the high
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level of detail is constant over all areas of the image.   This can make it more difficult for

one to locate areas where major currents are present.

Figure 4: Illustration of North Atlantic currents

Figure 5:  Illustration of North
Western Europe coastal currents

Figure 6: Illustration of global ocean currents.

Figures 4, 5, and 6 give three examples of hand-designed ocean current

illustrations.  Although they are each stylistically quite different, they all use smooth

broad strokes to depict major flow patterns. Arrow glyphs provide clear directional cues.

None of the representations is dense, i.e. all have regions where there is no representation
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of the flow field.  It is common for such diagrams to use the width of the strokes to depict

current magnitude as is shown in Figures 4 and 5, although in these examples it is

ambiguous as to whether width represents a strong current or a wide current.  Another

quite common device is to use secondary thin arrows to show secondary flow patterns, as

shown with the Gulf Stream in Figure 6. Overall, illustrations have a higher level of

abstraction in comparison to automatically generated images, and represent the particular

properties of the currents the scientist deems most important.

This thesis presents an algorithm for automatically generating images that have

the most important characteristics of common ocean current illustrations showing major

current streams. Chapter 1 provides an overview of the field of flow visualization and

includes a discussion of research relevant to automatic illustration.  Chapter 2 contains

information relevant to the ocean model used to illustrate the algorithm. In Chapter 3, the

algorithm to automatically generate illustrative ocean current images is described in

detail. Conclusions and proposed future research goals are stated in Chapter 4.
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CHAPTER 1

1 FLOW VISUALIZATION

Figure 7: Illustration from a turbulent flow experiment by Leonardo da Vinci

“Flow visualization is the study of methods to display dynamic behavior in liquids

and gases” [Ward, 1997].  Traditionally, this has been accomplished by injecting an

appropriate visible medium into a volume of transparent material where some flow

phenomena are present.  The behavior of the visible medium is then recorded to visual

media through photography or by human observation and illustration.  The earliest such

experiments has been attributed to Leonardo da Vinci’s illustrations from the mid-

fifteenth century of sand particles injected into a box of swirling water [Gad-el-Hak,

2000].  Similar experiments continue today with dye injections used in fluid dynamics

and smoke streams used in aerodynamics.
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Most modern flow visualization is concerned with computational flow models and

the visual representation is done using computer graphics imaging.  With the ability to

create large, complex computer models and the ever-increasing power and capacity of

personal computers, computational fluid dynamics has burgeoned as the dominant area of

research in flow visualization. Although the distinction is not always made, flow

visualizations of computational fluid dynamic models have been categorized as

computational flow visualizations.  Since this thesis concerns automatically generating

images from ocean model data, from this point forward all references to flow

visualization shall refer to computational flow visualizations.

Flow visualization is a broad and growing field within scientific visualization

with a wide range of applications, including design for vehicle aerodynamics, engines,

propulsion and wind turbines, as well as applications in cardiology, meteorology and, of

course, oceanography.   Properties of the modeled data used in each of these applications

are most often suited to best serve application related tasks.  Thus, the models used in

flow visualization can vary greatly in many aspects, such as physical shape,

dimensionality (2D, 3D, time-varying) and geometry of the data sample point locations.

This section presents a generalized overview and categorization of flow visualization

methods.  A discussion of specific works related to automatic illustration follows.

1.1 Overview of Flow Visualization

In a report on the state of the art of flow visualization, Hauser, Laramee and

Doleisch presented a categorization of flow visualization research [Hauser et al., 2002].

Their work classifies the field into four categories: direct flow visualization, flow

visualization with integral objects, dense integration-based flow visualization, and flow
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visualization based on derived data. The following sections provide an overview of flow

visualization following the organization presented by Hauser, Laramee and Doleisch.  An

emphasis is placed on the section concerning flow visualization with integral objects,

because topics from this section are most relevant to this thesis.

1.1.1 Direct Flow Visualization

Direct flow visualization methods involve minimal translation and computation

between the acquisition of data and rendering.  The images produced are intended to be

straightforward representations of the data and are often used to verify the data

acquisition process.  These representations are, however, inferior in portraying the long-

term behavior of a flow field.

Figure 8: Left- arrow diagram with arrows placed at sample point locations of a regular Cartesian grid.
Right – arrow diagram of the same flow pattern with arrows placed on jittered grid.

Most direct representations consist of arrow diagrams and/or contour maps.  In

arrow diagrams, also called hedgehog visualizations, each arrow directly represents the

direction and magnitude of the vector where it is positioned.  If the arrows are positioned
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exactly where the sample points in the data are located, the images may have misleading

visual artifacts [Turk & Banks, 1996].  As shown in Figure 8, jittering the arrow locations

is a common solution to reduce this effect.

Contour maps in flow visualizations represent one attribute of the flow, typically

magnitude or direction, by using a color sequence to depict a range of values over an

area.  This representation is most often useful for exploring cross sections of three-

dimensional data as shown in Figure 9.

Figure 9: Color-coded contour map cross-sections of flow along an automobile.

Although often useful for initially exploring a data set, direct representations are

unfit for exposing larger patterns in the behavior of the flow field.  Methods that aim to

expose larger patterns or more long-term behavior require task specialized computations

prior to rendering.
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1.1.2 Flow Visualization With Integral Objects

Figure 10: Directional glyphs arranged end to end along evenly-spaced streamlines

In understanding flow it is often useful to determine the trajectories of a set of

particles placed into the flow field.  The approximated path of a particle is computed

using numerical integration.  Each point along the path is determined from the position of

the previous point and the direction and magnitude of the flow field local to the previous

point.  The points of a single trajectory or related sets of trajectories are visualized by a

curving line or a series of glyphs collectively called integral objects.

Many different methods have been developed for approximating integration using

discrete values.  The simplest method simply multiplies the vector value at the starting

point by the time step and sums it with the starting point to find the next location.   This

can be represented mathematically as,

p1 = p0 + v0*∆t

where p0 is the start point, v0 is the velocity vector at that point and ∆t is the time step.

However, this method, called Euler’s method, is inaccurate for larger time steps and is
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often superseded by alternative methods.  Commonly, the more accurate, but less

efficient second order Runge-Kutta technique is used.  This method performs the

Eulerian method twice: first, to calculate the position at one time step from the starting

position, and then again using the average of the vector at the start position and the vector

at the position calculated in the first step.  This may be represented mathematically as,

p1 = p0 + (v0+v1)*∆t/2

where v1 is the velocity vector at the position, calculated through Euler’s method, that is

one time step from p0 [Schroeder et al., 2004]. A series of points resulting from multiple

steps of integration are typically visualized by means of pathlines, streamlines,

streaklines, or timelines.  Each of these integral objects is defined in detail in the

following sections.

1.1.2.1 Pathlines

Figure 11: A pathline (black) with arrows indicating direction of travel and progression of time (from red
to blue)

Pathlines, also called particle traces, are an approximation of the trajectory of a

massless, frictionless particle through time and space from a given start position and

time.  The control points along the line are determined by repeatedly calculating the

position of the particle at the next time step from the position of the particle and the

one tide cycle
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vector at that position for the current time step.  Each point on the line represents the

particle’s location as a function of time.  Thus, the construction of a pathline requires

vectors that are arranged in multiple time steps.

Although pathlines are useful in many contexts, pathlines may intersect with

themselves or other pathlines creating difficulty in determining the behavior of the field,

particularly in areas of high turbulence.  Figure 11 demonstrates the spiral path common

in the Gulf of Maine that is created as the tides move in and out in cycles.

1.1.2.2 Streaklines

Figure 12: A streakline.  All particles along the line originate from the red dot and change in color from
red to blue as time increases from time of release.

A streakline is the line through a series of particles at the same instant in time that

all have passed through or originated from a common point.  The points along the line are

connected in the order that they passed through the common point i.e., in ascending order

of the time they have “aged” since passing through the common point.  For every point

on the streakline there is a pathline that passes through it and the point of origin.  In a

physical model streaklines could be compared to a continuous injection of a smoke

stream into a flow field at a constant position.   As with pathlines, streaklines require time

series data and may produce patterns that are visually complex in turbulent areas.
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1.1.2.3 Timelines

Figure 13: Timelines originating from red line and progressing over time to the blue line.  The points
enclosed in the circle occur on a common pathline.

A timeline joins the positions of particles released at the same instant in time from

an array of insertion points initially arranged in a line orthogonal to the flow direction.

For every point on a timeline there exists a point on each previous and subsequent

timeline that are a part of a common pathline.  For example, the points circled in Figure

13 exist on a common pathline.  Timelines advance like wave fronts as time increases

from the initial position.   Although timelines can produce very effective images

conveying flow patterns over large areas and over time, the position and orientation of

the initial line of seed points must be determined interactively and these factors largely

govern the overall effectiveness of the resulting image.

1.1.2.4 Streamlines

A streamline is an instantaneous path that is everywhere tangential to the vector

field. Unlike the previously mentioned objects, streamlines show only instantaneous

behavior, thus are independent of time.  So, in integration, the value previously described

as a time step is an arbitrary constant when used with streamlines.  In areas of steady flow
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i.e., areas the flow exhibits negligible change over time, pathlines and streamlines are

identical.

Streamlines may create loops or spirals, but do not cross over themselves or other

streamlines seeded at the same instance.  Because of this property, streamline seeding

algorithms have been developed to effectively display flow patterns by densely seeding

streamlines over the entire domain of a flow field.  Two of these seeding strategies are

discussed in later sections of this chapter.

Figure 14: A streamline (black) tangent to all vectors in one instant in time.

1.1.2.5 Stream Surfaces

Figure 15: A stream surface originating from red line.
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A stream surface is a curved surface that is everywhere tangential to the flow

field at a given instant that emanates from a line of seed points called a rake.  A stream

surface may alternatively be described as the surface created by an infinite number of

streamlines seeded along a common line. Stream surfaces are most often used for

interactively exploring dynamic behavior in three-dimensional space.

Hultquist presented a method for approximating and rendering a stream surface as

a triangular mesh constructed from points on adjacent streamlines.  This was

accomplished by expressing the stream surface as a two-dimensional parametric surface

embedded in a three-dimensional domain and using a greedy minimal-width tiling

strategy to create the mesh [Hultquist, 1992].

van Wijk presented an alternative method for constructing stream surfaces by

expressing them as implicit surfaces defined by constant values of a stream function [van

Wijk, 1993].  Once a stream function has been calculated, a stream surface may be

rendered at the appropriate isovalue using standard volume rendering techniques, such as

marching cubes [Lorensen & Cline, 1987].
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1.1.3 Dense, Integration-based Flow Visualization

Figure 16: An example of Line Integral Convolution

Dense, integration-based flow visualizations consist of images that have equally

dense representations over the entire flow field.  These images are typically produced

from densely seeded integral objects followed by a specialized rendering process.  Spot

noise, presented by van Wijk, was the first method to produce densely textured

representations of vector fields [van Wijk, 1991].  The spot noise method distributes a

series of spots at random locations about the flow domain and then distorts the spots in

relation to the underlying vector field.

Line integral convolution, initially introduced by Cabral and Leedom, is a popular

method for producing dense representations.  In this process, shown in Figure 16, a white

noise texture is smoothed along densely seeded streamlines to produce a highly detailed

image of the flow field [Cabral & Leedom, 1993].
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1.1.4 Flow Visualization Based on Derived Data

Figure 17: An example of a flow topology visualization

Flow visualizations based on derived data involve additional calculations to

acquire new data based on the input data before the rendering process.  The properties of

the derived data depend on the application.  A common application is to reveal flow

topology by calculating the location and type of critical points or singularities in the flow

field where the velocity reaches zero.  Figure 17 shows a representation of flow topology

visualization [Scheuermann et al., 1997].

1.2 Visualization Research Motivated by Illustrative Techniques

Illustrations have a long history in effectively communicating information, from

early cave paintings, to the anatomical studies and mechanical designs of Leonardo da

Vinci, to their modern use in educational texts.  Illustrators have developed a vast number

of specialized drawing techniques aimed at efficacious conveyance of concepts and

information.  These techniques range from use of colors, to individual stroke properties,

to the use of abstraction and exaggeration to draw attention to an area.
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Because scientific visualizations and illustrations serve a similar objective, i.e., to

convey information effectively, some visualization research has drawn from illustrative

techniques to improve the overall clarity and style of their images.  The following

subsections discuss some notable visualization research that was motivated by illustrative

techniques.

1.2.1 Computer Generated Pen-and-Ink Illustrations

Figure 18: An automatic illustration of the Frank Lloyd Wright “Robie House”

Winkenbach and Salesin introduced a method for simulating pen-and-ink

illustrations as used in architectural renderings by implementing a modified graphics

pipeline that depicts textures and tones through simulated pen strokes. Individual strokes

are controlled by a waviness function and a pressure function, which dictate the distortion

of the path and the thickness, respectively. Collections of strokes are organized into a

series of stroke textures that are prioritized in a manner that ensures the appropriate

density of strokes to properly display the tone, notwithstanding the resolution of the

image [Winkenbach & Salesin, 1994].
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1.2.2 Illustration-Based Lighting Model

Gooch, Gooch, Shirley and Cohen presented a shading algorithm based on the

techniques used in technical illustration.  This algorithm is designed to replace the

traditional photorealistic Phong lighting model in order to improve the communication of

geometric shape and material information.  This is accomplished through using

luminance and changes in hue from “cool-to-warm” colors to indicate the orientation of

the surface, black edge lines to highlight surface boundaries and silhouettes, and white

highlights from a single light source  [Gooch et al., 1998].

1.2.3 Volume Rendering Based on Stippling Illustrations

Lu, Morris, Ebert, Rheingans and Hansen presented a volume rendering technique

emulating the stippling illustration style.  This is accomplished by first generating stipple

points based on volume characteristics, such as gradients and resolution, and then

calculating points to enhance features at boundaries and silhouettes.  The authors note

Figure 19: Left – Phong model for a colored object.  Right – illustration based model
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that this method has proven effective in both medical education as well as preliminary

data exploration [Lu et al., 2002].

Figure 20: Head volume using automatic stippling illustration

1.3 Flow Visualization Research Related to Automatic Illustrations

Although we are not aware of any prior research that is directly concerned with

the problem of representing ocean current flows in a manner similar to hand-drawn arrow

diagrams, there have been several prior studies in flow visualization that have been

motivated by the work of artists and illustrators.

1.3.1 Visualizing Multi-valued Flow Data Using Concepts from Painting

Kirby, Marmanis and Laidlaw presented a method for representing multiple data

values simultaneously following techniques used by artists in oil on canvas paintings

[Kirby et al., 1999].  This was accomplished by assigning different variables various

graphic attributes, such as: color, opacity and brush-like textured strokes, and then

rendering the values in layers.  This follows how artists prime a canvas and then apply

paint in layers of textured strokes. The goal of this work was to show the values of

several distinguishable variables in a manner that exposes their relationship.
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Figure 21: A visualization of flow around a cylinder using concepts from painting.  Nine separate values
are represented.

The visualization produced by Kirby et al., shown in Figure 21, represents a set of

velocity vectors taken directly from the data and a set of values derived (through

calculations) from the data, such as vorticity, rate of strain, turbulent charge and turbulent

current. Visualizing the data in this manner allows one to explore the relationships that

are underlying the dynamics and kinematics of fluid flow.  Additionally, the authors note

that the level of detail perceived from the image can be altered with the perspective of the

viewer; i.e., the visualization may be viewed at different distances to observe the data at

different levels of abstraction.  Contrary to our research goals, these images have dense

representations throughout the flow field and do not expose major channels of flow.

1.3.2 Image Guided Streamline Placement

Turk and Banks introduced an algorithm for controlling the placement of

streamlines in two dimensions using a low-pass-filtered version of the image to guide the

process [Turk & Banks, 1996].  The motivation of this work was to automatically

produce streamline representations similar to hand-designed illustrations as shown in the

top image of Figure 22.
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Figure 22: Top – hand-drawn illustration of flow around a cylinder [Feynman, 1964] that motivated the
automatic illustrations of Turk and Banks shown on bottom.

This process uses an energy variance function to rate a blurred image of the

streamlines.  The length and placement of the streamlines are modified and rated in an

iterative process until the image converges to an ideal representation. The iterative

refinement approach is computationally expensive, because much time is spent

performing changes that are later rejected by the energy variance test.  Furthermore,

because this process is image-based there is no obvious approach to augmenting the

procedure for three-dimensional flow fields.
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1.3.3 Evenly-Spaced Streamlines of Arbitrary Density

Figure 23: Streamlines created using the seeding strategies of Turk and Banks (left) and Jobard and Lefer
(right).

Jobard and Lefer developed an alternative algorithm for producing the same

results as Turk and Banks in a much more efficient manner [Jobard & Lefer, 1997].   This

approach uses a user-defined minimal separating distance between streamline control

points to define the density of the field.  In order to control the distance between

streamlines, a Cartesian grid that has a cell width equal to the separating distance is

super-imposed over the domain, and streamlines are approximated by a set of equally

spaced sample points along the line.  Each grid cell contains a list of references to

streamline control points located inside the cell.  As each point along the streamline is

calculated, the point is compared to the points referred to by the cell it passes through and

the eight surrounding cells.  If the distance separating the points is less than the minimal

separation distance, then integration is stopped.
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Figure 24: Top: pseudo code for the Jobard and Lefer streamline seeding algorithm.  Bottom:  the
graphical results of one iteration; the dark line is the initial streamline.

Jobard and Lefer’s process for creating evenly spaced streamlines is initiated by

creating an initial streamline at a selected location and pushing the streamline on a queue.

Then, for each control point of each streamline in the queue, a search is performed for a

valid seed point.  Seed points are created at the separation distance apart from control

points orthogonal to the direction of the streamline at the control point.  If a valid seed

point is found, a streamline is created and inserted in the queue.  This process repeats

until no more valid seed points can be found.   As a result, streamlines are created

throughout the domain with a density that is determined by the separating distance.
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In addition to performance over the streamline placement of Turk and Banks,

Jobard and Lefer’s method can easily be extended to three dimensions.  In this case the

grid becomes a series of cubes as opposed to squares and the distance test used in

determining valid control points must test a maximum of twenty-seven cases as opposed

to nine.  Fuhrmann and Gröller confirmed the facility of such an implementation in their

presentation of three-dimensional dash tubes [Fuhrmann & Gröller, 1998].

1.3.4 Stream Arrows

Figure 25: Illustration from a dynamics text [Abraham & Shaw, 1992] (left) that motivated the automatic
illustrations of Löffelmann, Mroz and Gröller (right).

In [Löffelmann et al., 1997] Löffelmann, Mroz and Gröller introduced stream

arrows, an extension to stream surfaces, motivated by illustrations found in a dynamic

systems text (see Figure 25).  Their method produces a series of tessellated transparent

arrows that are texture mapped over a surface that is everywhere tangential to the flow

field. These images extend traditional stream surface representations by providing

directional cues and reducing occlusion as one may observe the behavior of overlapping

surfaces through arrow-shaped windows.  Stream arrows were constructed to be

relatively short and evenly spaced, unlike the illustrations we sought to emulate.
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1.4 Summary

In conclusion, all of the research listed above has successfully produced methods

for visualizing flow fields motivated by images produced through hand-designed

illustrations.  However, none of the methods produce images that resemble ocean current

illustrations we sought to emulate, shown in Figures 4, 5 and 6.
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CHAPTER 2

2 OCEAN MODEL DATA

The data used as a basis for the research of this thesis was output from the finite-

volume coastal ocean model (FVCOM) of the Gulf of Maine [Chen et al., 2002].  Two

sets of data produced from this model were used.  The data sets were modeled after the

historical climatological properties in the Gulf of Maine in February and July.

The FVCOM model is computed using a finite element irregular triangular mesh

on the horizontal x-y plane i.e., longitude and latitude, and using sigma-coordinates in

depth along the z-axis.  Sigma coordinates are valued between 0 at the surface and 1 at

the ocean floor, thus representing position along the z-axis as a percentage of depth.

In order to make path tracing simpler and more efficient, we converted the

irregular mesh of the model to a regular grid in universal transverse Mercator (UTM)

coordinates.  The UTM projection was calculated using the PROJ.4 Cartographic

Projections library [Evenden, 2000].

In the Gulf of Maine, water particles trace out a spiraling path with loops on each

tidal cycle.  The data was averaged over 10 full tidal cycles (just over 5 days) of the

model output in order to create a steady flow field that approximated the behavior of the

field over that time period.

In the model data, longitude and latitude vector components (u, v) are represented

in different units than the depth component (w): meters per second and sigma units per
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second, respectively.  In order to facilitate path tracing the vector components were

converted to a common unit of cell width per second, representing rate of travel through a

voxel.

In two-dimensional representations, only the top layer of the model was used to

illustrate surface currents.  In three-dimensional representations the full volume of the

model was used.

2.1 Horizontal Grid Conversion

Figure 26: Triangular mesh (black) with centroids (red) indicating data point locations on the horizontal
plane for the FVCOM model output of the Gulf of Maine.

The horizontal latitude and longitude domain of the model is subdivided into a set

of non-uniform, non-overlapping triangular cells.  Data values are stored at either the

vertices of the triangle or at the geometric centroid (center of mass) of the triangle. There

is one centroid per triangular cell and three vertices that are potentially shared with

adjacent triangular cells.  With this topology there are approximately twice as many
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vertices as there are centroids in the entire mesh.  Figure 26 depicts the triangular mesh

and centroids.

The following data values from the output of the model were used in the research

for this thesis:

• u, v, w – flow vector components,

• H  – mean water depth (bathymetry),

• ζ – free surface elevation (tide),

• θ – temperature,

• s – salinity.

The flow vector values are located at the triangle centroids and all other data values are

located at the triangle vertices. Figure 27 illustrates the location of data values within a

triangular cell.

Figure 27: Arrangement of data values in a triangular cell.  Adapted from [Chen et al., 2002]

The data values are interpolated such that the values are located at coordinates of

a regular Cartesian grid in the horizontal plane, as shown in Figure 28.  The data values

that occur on the triangle vertices are interpolated by the following process:

1. select a Cartesian grid coordinate,
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2. find the triangular cell in the mesh that encloses the coordinate, and

3. using the values at the triangle vertices and linear interpolation, calculate

the value at the grid coordinate.

Figure 28: The regular grid produced after conversion.

Figure 29: Delaunay triangulation of the centroids.
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The centroids, however, are not arranged in a triangular mesh.  However, a mesh

can be generated from the centroid positions using a Delaunay triangulation [Shewchuk,

1996]. The values at the centroids are interpolated in a similar manner to the vertex

values using the resulting mesh.  Consequently, the Delaunay triangulation of the

centroids creates triangular cells in areas where the original mesh does not.  Note in

Figure 29 where triangle cells from the centroid mesh intersect land areas, such as Cape

Cod, Long Island and Nova Scotia.  To avoid erroneous flow across land, vector

components are only translated to the Cartesian coordinate if the point lies within the

original mesh.

2.2 Sigma Coordinates

Figure 30: Sigma-coordinate grid (white) around George’s Bank.

Sigma-coordinate models divide the depth range into a fixed number of layers,

irrespective of the depth. Thus, each point on the horizontal grid has the same number of

depth samples associated with it but these will be close to each other in shallow water and

widely separated in deep water.  The sigma-coordinate is valued between 1 and 0 and is

defined by the following equation:
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σ = ( z + ζ ) / ( H + ζ ) 

where z is the physical distance of the coordinate from the mean surface.  Therefore, σ is

1 at the bottom and 0 at the surface.

2.3 Data Averaging

The model data output for flow, temperature, salinity and surface elevation are

arranged in a series of time steps one quarter of a tidal cycle apart (one complete tidal

cycle is approximately twelve hours and twenty-five minutes).  Figure 11, shown in

Chapter 1, depicts a characteristic path of advection for this data output, which traces a

looping path for every tidal cycle.

To approximate this behavior over time, the flow, temperature, salinity and

surface elevation data were averaged for the number of complete tidal cycles.  This

process 1) allows for more manageable memory sizes at larger resolutions of data and 2)

enables the use of streamlines to represent flow over a period of time.

In this averaging process it was found that the free surface elevation ( ζ ) values

become negligible for our purposes and may be eliminated all together.  Therefore, the

sigma-coordinate equation is simplified to:

σ =  z  /  H.

2.4 Homogenizing Vector Units

The vector components were converted to cell units per second simply by

dividing the u and v components by the width of the Cartesian grid cell and the w

components by the sigma value spacing between layers.
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CHAPTER 3

3 ALGORITHM DESCRIPTION

The goal of this research is to automatically create images that expose major

currents present in ocean model data in a manner that is similar to illustrative methods.

The desired end result consists of variable-width ribbons overlaid with arrows that

highlight areas of strong, coextending, parallel flows. This is accomplished through a

streamline approach by collecting sets of parallel flowing streamlines in areas where

there are strong continuous flows.  The outermost points in this set of streamlines are

used to calculate the vertices of a new object, which we refer to as a super-streamline.

The algorithm for creating super-streamlines was developed such that it may be applied

to two and three-dimensional data sets.  Super-streamlines are drawn either as variable

width ribbons or variable width tubes.  Secondary currents are detected and shown as thin

arrows.

3.1 Data Structures and Key Parameters

The primary data structures used in this algorithm are:

• Streamline – a list of equally spaced control points (defined below) that form

a line tangential to the flow field.

• Streamline queue – used in calculating streamline placement.

• Grid – a Cartesian grid super-imposed over the domain to facilitate distance

calculations between control points.  The grid is created to be either two-
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dimensional (in the x-y plane) or three-dimensional (x, y, z) following the

dimensionality of the data.  Each grid cell contains a list of streamline control

points that are located within the cell.

• Super-streamline – a list of planar circles (or discs) defined by a center point,

a normal (to the plane), and a radius.  The planar circles are cross-sections of a

variable-width tube.

• Super-streamline list – the final output of the algorithm.  Graphical

representations of super-streamlines depict currents.

Control points define the position and direction of streamlines in either two or

three-dimensional space. In two-dimensions, positions have only x and y coordinates,

representing longitude and latitude respectively, and vectors have only u  and v

components.  In three-dimensions, depth position is represented by a z coordinate and

vertical displacement is represented by a w component.  Control points also contain

values that identify the streamline and super-streamline the control point is a member of.

The fields of a control point are described below:

• Physical coordinates – used to calculate real distance (in meters) along a

streamline,

• Computational coordinates – used to control spacing (in grid cell units)

between control points,

• Interpolated vector – local direction (in grid cell units) of flow along the

streamline at the control point position,
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• Streamline ID – for access to the streamline the control point is on and its

properties, such as:  length, average speed, etc.,

• Super-streamline ID – used during the construction of super-streamlines to

determine membership of a control point to a specific set of streamlines.

The following parameters govern the construction of the data structures listed

above:

• Separation distance – defines the dimensions of grid cells and the distance

from existing control points that new streamlines are seeded.

•  Sample length – the distance between adjacent control points on the same

streamline.

• Minimum separation distance – the minimum distance between streamline

control points at which streamline integration is stopped.

• Maximum separation distance – the maximum radius of a super-streamline

cross-section.

• Minimum streamline length – the minimum length of a valid streamline.

3.2 The Basic Process

Initially, a principal streamline is determined by calculating the longest and

strongest streamline possible in the flow field using average speed and total distance

along a streamline as a heuristic.  A set of neighboring streamlines is generated around

the principal streamline using a seeding method extended from Jobard and Lefer’s evenly

spaced streamline seeding method [Jobard & Lefer, 1997].  A super-streamline is

constructed by calculating circular planes defined by the direction along the principal

streamline and the surrounding neighbor streamlines.  The circular planes define cross-
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sections of variable width tubes, which may also be drawn as variable width ribbons.  To

find additional super-streamlines, the entire process repeats with the stipulation that no

point along a newly calculated streamline may occur in an area covered by a previously

calculated super-streamline. The algorithm is summarized in pseudo-code below.

// Creates a set of super-streamlines
Repeat

For each cell in grid
{
generate streamline such that no point on
streamline is covered by a super-
streamline

}
select longest-strongest streamline generated
as principal streamline

neighbour streamlines := calculate list of
streamlines proximal and parallel to
principal streamline

new super-streamline := generate super-
streamline from principal streamline and
neighbor streamlines

Add new super-streamline to super-streamline
list

Until (no new principal streamline can be found)

Figure 31: Pseudo-code for creating a set of super-streamlines.

3.3 Generating the Principal Streamline

The objective of calculating the principal streamline is to find the streamline in

the domain that best represents the overall shape of the strongest current.  Ideally, the

principal streamline is found to run near the center of the current for the entire length of

the current.  After experimentation with many heuristics, it was found that the streamlines

that had the greatest calculated value of average speed multiplied by length best exhibited

these features and, therefore, is used as a basis for calculating a principal streamline.
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Because of this property, we also refer to the principal streamline as the longest-strongest

streamline.

Figure 32 shows the experimental results that motivated the use of average speed

multiplied by distance as a means for calculating principal streamlines.  In this figure, the

color-coding visually exposes channels of flow.  The greatest valued streamlines in a

channel appear near the channel center and follow the general contour of the channel.

Figure 32: Densely seeded streamlines color-coded in descending order of “longest-strongest” from red
to hot pink, to purple, to grey.

To find the so-called longest-strongest streamline in the domain, a streamline is

seeded at the center of every grid cell and integrated forward and backward until the

streamline leaves the flow field or until it is less than the minimum separation distance

from a control point in the grid.  After the principal streamline has been determined, it is

inserted to the empty streamline queue and its control points are entered into the grid.

The figure below shows the results of computing the initial principal streamline.
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Figure 33: The initial principal streamline (green).

3.4 Generating Neighboring Streamlines

The principal streamline serves as an initial streamline in a streamline seeding

process similar to the method described in [Jobard & Lefer, 1997].  This seeding method

was chosen because it can handle both two and three-dimensional representations.

3.4.1 Streamline Seeding

In this process, each newly computed streamline is appended to a queue starting

with the principal streamline.  For each streamline in the queue, candidate seed points are

generated at the separation distance apart from each control point.  The principal

streamline is used to initiate the seeding process.  All streamlines created from the

principal streamline (or successor streamlines) are appended to the queue.  When all

possible candidate seed points have been generated from the principal streamline, the

next streamline in the queue becomes the “current” streamline.  This process repeats until

all of the streamlines in the queue have been explored and no more streamlines can be

generated.
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Candidate seed points are positioned such that they exist on the plane that is

orthogonal to the direction at the control point on the current streamline.  Candidate seed

points are also positioned such that they are equally spaced in degrees of arc about the

control point on the current streamline.  In two-dimensional representations, two

candidate seed points are created 180º apart; in three-dimensions, they are created 45º

apart.  Figure 34 illustrates the candidate seed points generated around a control point of

the current streamline.

Figure 34: Candidate seed points (green) equally spaced around a control point of the current streamline
(red).  The circled seed points are those generated for two-dimensions.  The direction of the current
streamline points directly out of the page and the direction of the positive z-axis is shown on the left.

3.4.2 Streamline Integration

From each candidate seed point a neighboring streamline is generated.

Neighboring streamlines are created by integrating forward and backward until one of the

following conditions is met:

• the streamline has left the domain,

z
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• a control point q on the neighboring streamline is less than the minimum

separating distance from any other control point in the grid; i.e., any other

control point belonging to any other streamline regardless of super-streamline

membership,

•  a control point q on the neighboring streamline is greater than the maximum

separating distance, dmax, from the closest point p on the principal streamline,

• cos2 (θ ) < |q – p | / dmax;

where θ  is the angle between the flow vectors at p and q.  This has the effect of accepting

more diverging or converging streamlines close to the principal streamline and enforcing

more parallel flowing streamlines farther from the principal streamline.  That is, as points

on a neighboring streamline get further away from the principal streamline, they are

subject to a stricter interpretation of  “parallel”.  This equation was determined through

trial and error experimentation.

Furthermore, a neighboring streamline may be rejected after calculation if its

overall length is less than the defined minimum.  If a valid neighboring streamline is

produced, its control points are inserted into the grid.
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Figure 35: Neighboring streamlines (red) generated around the principal streamline (green).

3.5 Generating Super-Streamlines

The process of generating a super-streamline creates a list of planar circles (each

defined by a center, a radius and a normal vector) from a principal streamline and its

associated neighboring streamlines.  The planar circles define cross-sections of a

variable-width tube in three-dimensions or a ribbon in two-dimensions that encloses the

principal and neighboring streamlines and follows the generalized contour of the

streamlines’ paths.  In essence, generating a super-streamline captures the shape and

contour of a current into geometrical object.

3.5.1 Defining the Plane

Circular planes are calculated for every control point along the principal

streamline.  The direction and location of the current control point define the position

and orientation of the plane.  The equation for the plane may be expressed implicitly as:

( N • p ) + D = 0,
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where N is the direction of the streamline at the control point, p is its position, and D is

the calculated plane constant.  For two-dimensional representations the z-component of N

will always be valued at zero and the z-component of p is constant.

3.5.2 Calculating Center and Radius

The remaining problem is to calculate the co-planar center point and radius of a

circle that encloses the surrounding neighboring streamlines.  This is accomplished by

finding the points of intersection between the neighboring streamlines and the planar

circle, such that the initial radius of the circle is the maximum separation distance and the

initial center is the current control point.  In two-dimensions, the points of intersection

exist on a common line defined by the intersection of the x-y plane and the plane defined

by the current control point.

The new center and radius are determined by calculating the minimum area circle

that encloses all of the intersection points.  The method presented by Gärtner for

extremely fast and robust computing of the smallest enclosing sphere given a list of

points was used for this application [Gärtner, 1999].  If none of the neighboring

streamlines intersect the plane, the current control point defines the center and the

minimum separation distance is used as the radius.

3.5.2.1 Reducing Overlap

In areas where there are spirals and sharp bends in the principal streamline two or

more cross sections may capture the same area.  This effect causes overlapping sections

of the resulting ribbons or tubes. For example, a point further down the principal

streamline from the current point may intersect the plane at a distance less than the

maximum separating distance.  The resulting tube would overlap itself in this area.
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To overcome this problem, a simple distance test is performed on each of the

neighboring streamline – planar circle intersection points during the calculation of the

cross-section.  If the principal streamline intersects the plane (other than the point that

defines the plane) then those intersection point(s) are stored in a separate list.  As each

intersection produced from neighboring streamlines the distance to each principal

streamline intersection is calculated.  If any of these distances is less than the distance

from the neighboring streamline intersection to the center of the planar circle, the

intersection is rejected and, hence, not considered in the minimum enclosing circle

calculation.

Figure 36: Wire-frame of a super-streamline (black) constructed from underlying streamlines (green).

3.5.2.2 Reducing Folds

Large, instantaneous bends in the principal streamline may also create unsightly

folds in the super-streamline when successive planes intersect.  To avoid this problem, a

cross-section is rejected if it intersects the last cross-section inserted in the super-

streamline.
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3.5.2.3 Ensuring Convex Polygons

Super-streamlines may be rendered as a variable-width tubes or ribbons.  The

ribbons are defined as a strip of quadrilaterals, i.e., a list of left-right point pairs. A

quadrilateral on the strip containing an angle greater or equal to 180º i.e., the quadrilateral

is concave, will produce undesired effects when shading the ribbon.  To compensate for

this behavior, an additional cross-section is added to the super-streamline such that the

ill-formed quadrilateral is bisected at the greatest angle, thus creating two triangles.  Thus

every polygon that occurs on the super-streamline is convex.  Inserting a new cross-

section into the super-streamline creates the bisection.  Although the new cross-section

does intersect the previous and following cross-sections at their edges, the bisection is

performed after the test to reduce folds, thus these intersections are considered valid.

Figure 37 demonstrates how a quadrilateral is bisected.

Figure 37: On left – an undesirable convex quadrilateral created by two consecutive cross-sections
(shown as dark lines).  On right – the result of adding a cross-section to bisect at the greatest angle.

3.5.3 Summary

The algorithm for calculating a super-streamline is summarized in the pseudo-

code shown in Figure 38.
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// Creates a super-streamline given a principal streamline and a list
// of neighboring streamlines

For each control point p in the principal streamline
{

center := p.position
radius := Maximum separation distance
plane := createPlane(p.direction, center)

// Compensate for possible overlap
For each point i along the principal streamline that intersects
with plane

{
If ( |center – i| < radius*2 and i is not center) Then
Add i to principal intersection list

End If
}

// Calculate enclosing circle
For each point j on the neighboring streamlines that intersects
with plane

{
If ( |center – j| < distance between j and all points in

principal intersection list ) Then
Add j to neighboring intersection list

Endif
}

If (size of neighboring intersection list = 0 ) Then
radius := minimum separation distance

Else
circle := calculate smallest enclosing circle from neighboring
intersection list

radius := circle.radius
center := circle.center

Endif

clear intersection lists

If (circle does not intersect previous circle) Then
If (circle and previous circle create a concave quad) Then
Calculate new circle to bisect the quad and add new circle to

super-streamline
Endif
Add circle to super-streamline
previous circle := circle

Endif
}

Figure 38: Pseudo-code for computing a super-streamline.
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3.6 Smoothing

Figure 39: Left – wire-frame of a super-streamline before smoothing; Right – after smoothing

Once all of the vertices of a super-streamline have been computed, the structure

may be smoothed to create a more aesthetic and illustrative shape as demonstrated in

Figure 39.  This process has four primary components:

1) blend radius values,

2) recalculate the list of center points as a continuous curve,

3) recalculate the plane normals based on new center points, and

4) eliminate folds and concave polygons in newly generated cross-sections,

as described in the previous section.

The smoothing process may be repeated until the desired effect is obtained.

3.6.1 Blending Radius Values

Unsmoothed super-streamlines often exhibit areas where radius values vary

greatly between successive values.  When rendered in this form, either as ribbons or as

tubes, the edges of the super-streamline appear jagged.  To create smoother transitions

between successive values, each radius value is averaged with the values before and after
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it in the super-streamline list.  Thus, each new radius value is calculated using the

following equation:

ri’ = (ri-1 + ri + ri+1) / 3

where ri is the original radius value and ri-1 and ri+1 are the values that occur before and

after the original value, respectively.

3.6.2 Recalculating Center Points

Lines defined by successive center points of unsmoothed super-streamlines are

very irregular, i.e., they follow a jagged path.  Recalculating the positions of the center

points using cubic spline interpolation greatly improves the overall smoothness of the

resulting super-streamline. In this process, a subset of the center points is defined by sub-

sampling the center points at a regular interval, e.g., every third point along the super-

streamline.  Cubic spline interpolation is then used to generate a number of points that is

equal or greater than the number of points along the original unsmoothed super-

streamline.  Blended radius values may then be interpolated for each new center point

using the same process.  The algorithm used for cubic spline interpolation was adapted

from [Press et al., 1992].

3.6.3 Recalculating Plane Normals

The plane normals at the newly computed center points may be easily calculated

from the positions of the previous and next center points on the new, smoothed super-

streamline.  More precisely, the new plane normal at a specific center point is the

normalized vector created from the previous center point to the next center point.   This

may be expressed in the equation:

Ni  = (Ci+1 – Ci-1) / | Ci+1 – Ci-1|
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where Ci-1 and Ci+1 are the previous and next center points produced from the cubic spline

interpolation.

3.6.4 Eliminating Folds and Concave Polygons

The three previous processes create a new list of planar circles (or cross-sectional

disks).  The resulting disks, however, may be subject to the same pitfalls described in the

previous section regarding the creation of super-streamlines.  Thus, as in the creation

process, successive disks that intersect are rejected to eliminate folds and concave

quadrilaterals are bisected to ensure proper shading of ribbons.

3.7 Final Rendering

Super-streamlines are structured such that they may be easily rendered either as

variable-width ribbons or tubes.  The center point, plane normal, and radius are used to

calculate the vertices that define the outer boundaries of the ribbons and tubes.  In both

representations all points generated are located on the plane and are equidistant from the

center point as defined by the radius value.

At the rendering stage of both ribbons and tubes, an additional vertex is added to

each end of a super-streamline.  The new vertices occur one radius distance from the

initial end points and are positioned before and after the super-streamline according to the

direction of the flow.  The addition of these vertices serves two purposes:  1) to increase

the probability of super-streamlines intersecting where currents branch and merge, and 2)

to give a less abrupt appearance where currents start and end.

3.7.1 Ribbons

 When rendered as ribbons, two points are generated for each circular plane such

that the line between the two points is orthogonal to both the plane normal and the
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positive z-axis.  In two-dimensions, this simply means that all points exist on the same x-

y plane.  The resulting list of point pairs is rendered as a strip of quadrilaterals to produce

a variable-width ribbon. Ribbons are enhanced with illustrative details in a

straightforward manner by adding color-coding, edge lines, and arrow glyphs.

Figure 40: Automatic illustrations of 2D surface flow in the Gulf of Maine - ribbons overlaid with
arrows, minor currents shown by thin white arrows.

Figure 40 shows a two-dimensional super-streamline illustration using ribbons.

The ribbons are color-coded between yellow and white to represent salinity levels.  The

ribbons are overlaid with wide arrows color-coded between red and magenta to indicate

temperature values.  The width of the arrows is a function of the average width of the

underlying ribbon.   The length of the arrow correlates to the velocity of the flow.

Secondary currents are determined by a user-defined minimum average width and are

represented solely as thin arrows.
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Figure 41 shows the techniques described above applied to super-streamlines

produced from three-dimensional data.  Because of the limitations of representing a

three-dimensional image on a static two-dimensional medium and the tendency for super-

streamlines to occlude each other, only the first three super-streamlines generated are

shown.

Figure 41: Automatic illustrations of 3D currents in the Gulf of Maine limited to the first three “longest-
strongest” currents.

3.7.2 Tubes

Figure 42: Wire-frame of a super-streamline tube.
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When super-streamlines rendered as tubes, many points are generated for each

circular plane such that the points are equally spaced radially about the center point. A

greater number of points generated increases the resolution of the rendered tube.  The

points generated by two successive circular planes define a segment of a tube.  A tube

segment is rendered as a strip of quadrilaterals by traversing the perimeter of both circles

in unison.  Figure 42 shows the resulting structure in wire-frame.

Although the images produced by rendering super-streamlines as tubes do not

resemble the illustrations we sought to emulate, tubes are an effective method

representing three-dimensional current flow. Thinning the width of the tube reduces the

occlusion issues inherent in these images.  Thinning is accomplished by calculating the

vertices of the tube as a percentage of the radius from the center.  Figure 43 demonstrates

the results of thinning tubes.

Figure 43: Three-dimensional super-streamlines drawn as shaded variable width tubes:  Left – full width,
Right – 60% thinning
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3.8 Summary

This chapter has introduced a method for automatically generating images of

ocean currents either based on three-dimensional volumetric data or two-dimensional

surface data.  The process for creating the images consists of creating a list of geometrical

objects called super-streamlines, smoothing their shape, and rendering them as a series of

variable-width ribbons or tubes.

The algorithm for creating super-streamlines was developed such that it may be

applied to both two and three-dimensional data sets.  This was accomplished by treating

two-dimensional vector fields as a special case of three-dimensional vector fields, i.e., the

two-dimensional vector field exists on a horizontal plane within a three-dimensional

space.

For illustrative effect, ribbons are rendered with dark edge lines, color-coded to

temperature and salinity values, and overlaid with arrow glyphs.  To represent minor

currents, ribbons that have an average width less than a user-defined minimum are drawn

solely as thin arrows. Super-streamlines may alternatively be drawn as a series of

variable-width tubes when created from three-dimensional flows. To reduce occlusion,

tubes may be thinned as a percentage of their width.

Although efficiency was not a goal of this research, the time to execute the

algorithm on a 667 MHz G4 processor with 768 MB RAM was measured.  The time

execute the algorithm on a 2D data set with a 201 row by 255 column grid was

approximately 2.5 minutes.  The time to execute the algorithm on a 3D data set with a

201 row by 255 column by 30 layer grid was approximately 12.7 minutes.  As is
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discussed in the concluding chapter, improving the efficiency of the algorithm is a future

research objective.

A gallery of sample results is shown in the following section.  These illustrate

current patterns in the Gulf of Maine that are modeled from recorded climatological

conditions in February and July.  Illustrations of both surface currents and full volume

currents are shown at various zoom levels and view points.
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3.9 Sample Results

Figure 44: Automatically generated illustration of Gulf of Maine “February” data set surface layer

Figure 45: “February” surface layer – zoom on center



54

Figure 46: “February” surface layer – zoom on southwest corner

Figure 47: “February” surface layer – zoom on eastern corner
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Figure 48: Automatically generated illustration of Gulf of Maine “July” data set surface layer

Figure 49: “July” surface layer – zoom on center
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Figure 50: “July” surface layer – zoom on southwest corner

Figure 51: “July” surface layer – zoom on eastern corner
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Figure 52: Tubes 60% thin – “February” data set

Figure 53: Tubes 60% thin – “February” data set. Zoom on center and rotate.
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Figure 54: Tubes 60% thin – “July” data set

Figure 55: Tubes 60% thin – “July” data set. Zoom on center and rotate.
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CHAPTER 4

4 CONCLUSION

The goal of this research was to design an algorithm for automatically generating

images of ocean currents that 1) are created from ocean model data, and 2) have the

aesthetic and demonstrative qualities inherent to illustrations.  Ultimately, the images

created by the algorithm provide an abstract overview depicting the behavior of a flow

field over time by emphasizing areas where strong, coherent currents occur.  Illustrations

found on oceanographic websites, such as those shown in Figures 1, 4, 5 and 6, served as

a basis for the design of the images produced from the algorithm. In particular, we sought

to emulate the following features:

• smooth, broad strokes that indicate the paths of major currents

• width of the strokes are proportional to the area occupied by the current

• straightforward indications of direction and strength of flow

• color-coding according to ancillary attributes

• clear indications of branching and merging of currents

• thin arrows representing minor currents.

4.1 Research Overview

The solution presented in this thesis is to create a series of geometrical objects,

called super-streamlines, which capture the shapes and contours of currents based on

areas where strong, coextending, parallel flows exist.  A super-streamline is created by
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first finding the longest and strongest streamline in the domain, called the principal

streamline, and then seeding in the local area around the principal streamlines to find a

set of streamlines, called neighboring streamlines, that run along to the principal

streamline.  The vertices of a super-streamline are then defined by the outermost points

along the set of neighboring streamlines that exist orthogonal to the direction of flow

along the principal streamline.   A grid structure is employed to control intersections and

spacing between multiple super-streamlines.

The algorithm was applied to the output of a finite volume model of flow patterns

in the Gulf of Maine simulating climatological conditions in February and July. The

horizontal flow components along the surface layer of the model were used to create two-

dimensional illustrations.  Three-dimensional illustrations were created from the entire

volume represented by the model.

To create the desired illustrative features, a specialized rendering process was

applied to the super-streamlines created from the ocean model data. Rendering the shape

of the super-streamlines as a strip of consecutive quadrilaterals, or ribbons, emulates

smooth, broad strokes.  The width of the ribbon varies along its length as to indicate the

area occupied by the current.  Minor currents are defined by the mean width of a super-

streamline.  If the mean width is less than a user-defined minimum width value, the

super-streamline is rendered solely as a series of thin arrows.

To indicate the direction and strength of the flow, a series of arrow glyphs are

overlaid on the ribbons.  The width of the arrows is proportional to the mean width of the

ribbon and the length of the arrows is proportional to the strength of the current.  Color-
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coding of salinity and temperature values are applied to the ribbons and arrows,

respectively.

Ribbons are extended at both ends beyond the computed length of the super-

streamlines in order to increase the probability of intersection in areas of branching and

merging.  Although this approach does not directly represent branching and merging of

currents, the phenomena are implied by the intersection and direction of the ribbons.

The illustrative rendering process described above may be applied to super-

streamlines constructed from both two and three-dimensional flows.  However, the

ribbons constructed from three-dimensional flow suffer from perceptual issues, such as

occlusion and poor indication of displacement in depth.  To reduce these effects, three-

dimensional super-streamlines are alternatively rendered as a series of shaded variable-

width tubes. Thinning the tubes at a percentage of their original calculated width reduces

occlusion and shading improves the perception of vertical movement.  Although the

representation of super-streamlines as tubes do not directly resemble the illustrations we

sought to emulate, the images may be enhanced with color-coding and texture mapped

arrows to provide an equally effective abstract overview of the flow field.

4.2 Proposed Future Work

During the construction of these images, a large amount of the computation time

is spent on calculating the principal streamline.  Moreover, the time to compute the

principal streamline increases with the size and resolution of the grid.  Currently,

principal streamline candidates are generated for each grid cell, the ideal candidate is

stored and all other candidates are wastefully discarded.  The performance of this process

may be improved by employing an auxiliary grid and priority queue from which
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candidate principal streamlines are inserted and removed as needed throughout the course

of the algorithm.

Animation of super-streamline illustrations would be an effective method for

demonstrating the behavior of currents over a period of time.  For example, currents often

change as a product of seasonal conditions.  Animating currents over two seasons or the

period of one year could prove to be an effective way to demonstrate the relation of

seasonal climate change to patterns in current flow.  However, simply creating a series of

images from a time ordered sequence of flow fields might not produce desirable results

because currents might appear to flicker and jitter as the animation runs.  A correlation

between successive frames of the animation must be maintained to avoid these effects.

Jobard and Lefer presented a method for animating a time series of their evenly spaced

streamlines by maintaining a correlation between streamlines in successive frames

[Jobard & Lefer, 2000].  Perhaps the results of their work could be used as a basis for

correlating super-streamlines between successive frames.

Currently, the images produced show only relative differences in flow velocity,

temperature and salinity throughout the flow field.  For practical purposes, it would be

useful to quantify data values represented by the illustrations.   For example, arrows

could be labeled with the current velocity and a color key could be used to translate the

temperature and salinity values.  Because oceanographers are often concerned with the

transport of volumes of water, it might also be desirable to have a representation of

density values.

The least effective aspect of our illustrations according to our design goals is the

manner in which branching and merging of currents is represented.  Currently, ribbons
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and tubes are simply extended a small amount beyond their calculated lengths in hopes

that the objects will intersect in an aesthetically pleasing manner.  However, this does not

always produce the desired results.  In a more sophisticated approach, super-streamlines

could be stored in a graph or tree structure where a common node would be shared

among intersecting super-streamlines.  From this structure, a branch or merge may be

detected and handled in the rendering process to provide a more desirable representation

at intersections.

 When computing and rendering super-streamlines with three-dimensional flows,

the depth of the ocean was represented in highly exaggerated sigma-coordinates, i.e., the

distance between sigma layers is equal to the horizontal data grid cell size.  In reality, the

depth of the ocean varies and is a small fraction of the distance covered in the latitude

and longitude directions. This interpretation of the depth values was performed in order

to 1) create a manageable space for algorithm development, and 2) to provide a depiction

of depth in which vertical motion can be seen.   However, this representation can produce

misleading results.  For example, flows occurring near the bottom of shallow water may

appear as if they are at the same depth as flows occurring near the bottom of deep water,

when in reality the difference in depth may be hundreds of meters.

One possible solution to this problem would be to use elliptical cross sections that

are wide in the latitude-longitude plane and skinny in depth as a basis for calculating

super-streamlines in a more realistic coordinate system.  Another solution might be to

scale and translate the coordinates of the super-streamlines of the current representation

such that they conform to the contours of the ocean floor.
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4.3 Conclusion

A method for automatic illustrations of ocean currents was developed with the

intention that the images produced could be used in a variety of applications.  Surface

current illustrations could be a useful navigational guide for mariners or may serve as a

reference to fishermen.  The volume illustrations could be beneficial as a cross-reference

for marine biologists studying migratory patterns in ocean life or could demonstrate or

inspire an oceanographer’s theory.  Furthermore, the tube representations might serve as

a handy data exploration tool in a geographic information system that incorporates flow

data.

We have shown our results to a National Oceanic and Atmospheric

Administration (NOAA) meteorologist and thus far obtained a positive response.  NOAA

is currently producing a wide range of climate and ocean flow model output on a regular

basis and there is a need for ways of presenting the output of these models to various

constituencies of users, including fishermen and recreational boaters.   We have begun

discussions to explore the possibility that versions of these diagrams may be used as a

method for public dissemination of output from the Hybrid Coordinate Ocean Model

(HYCOM) Gulf of Maine model.
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Area.” German Federal agency for Nature Conservation. Courtesy of
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