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1 INTRODUCTION 

Synthetic aperture sonar (SAS) is rapidly becoming a standard tool for seafloor imaging and target 
detection.  An understanding of the physical processes affecting the acoustic scattering statistics of 
SAS images is a vital step toward fully utilizing the data produced by these systems for remote 
sensing or target detection applications. In regions with homogeneous geo-acoustic properties, the 
local texture seen in images from side-looking systems such as sidescan sonar or SAS are 
indicative of local, small-scale, seafloor slope variations. An Example SAS image taken in 2013 off 
the coast of Elba Island, Italy, by the Norwegian Defence Research Establishment (FFI), using the 
100 kHz HISAS1 mounted on a HUGIN AUV2 is shown in Fig. 1 and clearly shows increasing 
variation in intensity as the range from the sonar increases. These increasingly strong intensity 
fluctuations as a function of range are due to the larger variation in scattering strength versus angle 
that exists at lower mean grazing angles. These fluctuations in intensity will modulate the imaging 
speckle, strongly influencing the overall statistical characteristics of SAS images3. 

The continuous variation in scattering strength produced by a random slope field can be treated as 
an intensity scaling on the image speckle that is produced by the coherent SAS imaging process. 
Speckle can be described as multiplicative noise4 so that the overall statistics at any position in a 
SAS image can be expressed as the product of speckle noise and the scaling due to the underlying 
seafloor scattering cross section: 

Y(r, x) = a(r, x)Z(r, x).   (1) 

In Eq. (1), Z(r, x) represents the speckle field for each pixel location in an image and a(r, x) 
represents a modulating process which captures the effect of the random roughness induced 
intensity variation, and r and x, respectively, represent the down-range and cross-range (or along-
track) image dimensions. In (1), Y(r, x) is the matched-filtered and beam-formed intensity, so that 
speckle following a Rayleigh-distributed envelope would produce an exponentially distributed Z(r, 
x)5. As previously noted, the scaling function a(r, x) is the acoustic expression of scattering from
areas larger than the system’s spatial resolution and is a function of the seafloor slope field. This
scaling function is, effectively, a modulation of the scattering cross section, s(), caused by local
grazing angle changes due to variations of seafloor slope. The cross section term can be calculated
via empirical or approximate models of seafloor interface scattering, such as Lambert’s law,
perturbation theory or the small-slope approximation.

In the sections that follow, we present a perturbation-theory based model which has been 
developed to predict the effect of random, power-law, roughness on the overall SAS image 
statistics. Changes in image statistics caused by roughness are quantified in terms of the relative 
intensity variance, or scintillation index (SI). Factors influencing the SI include the slope variance, 
geo-acoustic properties of the seafloor such as the sound speed ratio, the probability density 
function describing the speckle and the signal-to-noise ratio. Example model-data comparisons will 
be shown for SAS images taken in 2010 off the coast of Tellaro, Italy, by the NATO Undersea 
Research Centre, La Spezia, Italy, (now the NATO Centre for Maritime Research and 
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Experimentation) using the 300 kHz MUSCLE SAS system6, and for data collected with the 
Norwegian Defence Research Establishment’s 100 kHz HISAS system off the coast of northwest 
coast of Elba Island, Italy, in 2013. Comparisons between parameter estimates obtained from high-
resolution SAS data collected in these experiments and historical ground truth will be used to 
illustrate the efficacy of the model and its possible use for estimating roughness parameters, such 
as root-mean-square slope or height. 
 
 

                
Figure 1: Synthetic aperture sonar image of a randomly rough sandy seafloor taken in 2013 off the 
northwest coast of Elba Island, Italy, using the Norwegian Defence Research Establishment’s 100 
kHz HISAS system. 
 
 
2 MODELING THE EFFECT OF RANDOM ROUGHNESS ON 

IMAGE STATISTICS 

For simplicity, we consider only the down-range dimension when relating the seafloor slope field to 
image statistics. The geometry for our problem is shown in Fig. 2, defining the true incident grazing 
angle interrogated by the sonar system, , the mean grazing angle, θ0, and the local slope angle, .  
The scattering strength will vary about its mean value as a function of range based on the relative 
(or local) grazing angle at a given range. The concept of larger-scale slopes modulating the 
scattering from smaller-scale roughness is similar conceptually to the composite roughness theory 
for seafloor backscatter7.  Additive noise, n, will also exist for any realistic sonar system. The 
scaling function, a(r), which modulates the speckle intensity is therefore simply the scattering cross 
section evaluated at the true grazing angle with respect to the seafloor,  = - 0, at range, r, plus a 
noise term (assumed constant with range) expressed as a scattering cross section: 
 

a(r) = s( - ) +n.                                        (2) 
 

The noise term is parameterized by n defined by s(n) = n, the angle at which the noise term and 
seafloor scattering cross section are equal. 
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Figure 2: Geometry for the intensity-scaling problem. The rugged curve denotes the seafloor height 
field and the flat horizontal line the mean seafloor height (assumed to be zero). The true grazing 
angle, , of the incident acoustic field, the mean grazing angle, 0, and the local slope angle, , are 
also denoted. 

 
 
We quantify the changes in image statistics versus range caused by random roughness in terms of 
the normalized intensity variance, or scintillation index (SI). Note that higher values of SI are 
indicative of heavier-tailed scattered amplitude distributions and a value of 1 signifies a Rayleigh 
distribution. The scintillation index, 
         
               ,           (3) 
 
 
representative of the image statistics at a given range, can be easily approximated in our case via 
knowledge of the intensity moments, m1 and m2, of Y(r). To facilitate analysis, local slope is treated 
as a continuous variable with range to yield the expected intensity moments, 
 
 

      ,       (4) 
 
 
 
where f() is the slope distribution, assumed to be Gaussian with variance g

2: 
 

                                                   
.                 (5) 

 
 
The underlying speckle statistics are assumed to follow a K-distribution 
 
 

 
               ,                (6) 
 
 
 

with shape parameter  and mean power  (which we normalize to 1 in our analysis). In (6), K(z) is 
the Basset function (i.e., a modified Bessel function of the third kind) and  is the gamma function. 
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This framework for modeling intensity statistics is similar in spirit to the procedure outlined in 
Hellequin, et al.8 who looked at the effects of random seafloor slope on the angular response of 
multibeam sonar backscatter statistics. We differ from that study, however, in that we perform a 
numerical integration of Eq. (3) and use perturbation theory9 instead of making an assumption that 
scattering strength versus grazing angle follows the empirical Lambert’s law10. The effects of using 
the more realistic scattering theory will be examined in the next section.   
              

From the previous equations, it is seen that if a(r) is not constant then the image-level statistics will 
have a scintillation index greater than that expected for the underlying speckle statistics, i.e., have a 
heavier tailed distribution. The scintillation index also asymptotically approaches that of the 
underlying speckle (which itself may be very non-Rayleigh for small values of the K-distribution 
shape parameter) as the intensity scaling approaches a constant value (i.e., no slope-induced 
variability in the scattered power). At low grazing angles, the noise floor reduces the SI compared to 
the noise-free case. It should also be noted that when comparing these results to real data, system 
calibration is not necessary because any system dependent parameters such as vertical beam 
pattern would appear in both the numerator and denominator of Eq. (3) for a given range.  
 
 
3 APPLICATION TO REAL SAS IMAGES 

Having established the theoretical framework within which to interpret the effects of roughness-
induced intensity scaling of the underlying speckle on the statistics of SAS images, we next 
investigate the applicability of these results by comparison to real data. Both the 100 kHz HISAS 
data taken off of Elba Island, Italy, in 2013 and the MUSCLE SAS data collected off of Tellaro, Italy, 
in 2010 will be compared to scintillation index predictions based on the scaled-speckle model. The 
MUSCLE SAS transmitted 60 kHz bandwidth signals at a center frequency of 300 kHz and the 
HISAS system transmitted 30 kHz bandwidth signals at a center frequency of 100 kHz. Images 
formed from the collected MUSCLE data had a resolution of approximately 1.5 cm in range x 2.5 cm 
along-track (cross-range) and images formed with HISAS data had a resolution of approximately 
3.5 cm x 3.5 cm. The data from both the sites analyzed as part of this study were obtained on 
uniform and homogeneous seafloor areas of fine sands with varying degrees of topographic 
roughness, with the Elba experiment conducted in approximately 42 m water depth and the Tellaro 
experiment in 17 m water depth.  
 
Fig. 3 shows experimental estimates of scintillation index versus range for the same HISAS data set 
that was used to form the example image shown in Fig 1. The experimental SI estimates have had 
outliers removed and have been smoothed with a 21-point averaging window. The scintillation index 
is seen to increase dramatically as a function of range (i.e., increase as the mean grazing angle 
decreases from approximately 26O at 40 m range to approximately 8O at 150 m range).  It should be 
noted that it is not the underlying speckle statistics that are causing the overall increase in the 
scintillation index versus range, but the increasing slope of the scattering cross section versus 
grazing angle at further ranges (or smaller grazing angles). The scaled-speckle model developed in 
the previous section was used to predict the scintillation index using the rms seafloor slope as a 
free parameter and was fit to the experimental estimates of SI using known system geometries. 
Geo-acoustic input parameters for the perturbation theory-based model were found in Lyons et al.11 
for the same general vicinity as the Elba Island HISAS data collection site. A K-distribution shape 
parameter value of 3.0 was used in the model. This value was obtained using a method-of-
moments estimator on data taken closest to the sonar in the image (i.e., with the largest mean 
grazing angles) where scattering strength is close to constant as a function of angle so that SI is 
driven solely by the speckle statistics. n was set to 2O, but had little effect as this angle was quite 
far from the lowest angles in the image. An rms slope value of 5.2O was found to provide the best fit 
to the experimental data displayed in Fig. 3.  
 
To illustrate the effect of the choice of scattering model, scintillation index was also calculated with 
the empirical Lambertian scattering model. The model results displayed in Fig. 3 show that SI 
increases much more quickly as range increases (as grazing angle decreases) for predictions 

154



Proceedings of the Institute of Acoustics 
 
 

 
Vol. 38. Pt. 3. 2016 

 

based on perturbation theory than for the Lambertian model. The intensity variability seen in an 
image at a specific range is directly related to the shape of the scattering strength curve, i.e., the 
rate of change of scattering strength as a function of angle. The approximately sin4 dependence of 
scattering strength versus grazing angle at low angles for perturbation theory yields a larger SI for 
smaller grazing angles than the Lambertian case (with the same rms slope) while the relatively 
constant scattering strength versus angle near the critical angle of 27O yields a flatter curve of lower 
SI equal to that of the underlying speckle.  
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Scintillation index estimated from the HISAS data collected at Elba Island (rugged line) 
compared with a prediction made using the perturbation theory model for the scattering cross 
section in the scaled-speckle model.  The Prediction made using the Lambertian model with the 
same rms slope as for perturbation theory model is also plotted.  
 
 
Other statistical properties of the seafloor roughness can be obtained if a model of seafloor 
roughness is assumed. If a seafloor exhibits power-law roughness spectra, W(k) = k-, as has been 
frequently found9, rms height can be related to rms slope as outlined in Jackson et al.7. The rms 
seafloor height for the Elba data set, assuming power-law roughness, was found to be to 8.9 cm. 
For self-affine surfaces, such as those described by a power law, surface measures such as rms 
roughness, h, will depend on largest observation length, l, and obey a scaling relationships of the 
form12  
          
                     (7) 
 
 

Jackson and Richardson9 presented stereo-photogrammetry-based measurements of rms 
roughness of 0.2 to 1.0 cm for fine sands measured over scales on the order 100 cm.  Using Eq. (7) 
with a spectral exponent of 3, these historical value of h would yield rms roughness values over the 
much larger 150 m scale of the Elba SAS measurements of 3-12 cm, values which bracket the 8.9 
cm rms roughness predicted by the scaled-speckle model. 
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A second data set used to explore the effects of random roughness on SAS image statistics 
consisted of data taken in 2010 off the coast of Tellaro, Italy, by the NATO Undersea Research 
Centre, La Spezia, Italy, (now the NATO Centre for Maritime Research and Experimentation) using 
a 300 kHz SAS mounted on the MUSCLE AUV. Example images are shown in Fig. 4. The top 
image in Fig. 4 clearly displays a larger variation in intensity than the bottom image which is caused 
in this case by larger undulations in seafloor slope. Fig. 5 shows estimates of scintillation index 
versus range estimated with the same the two MUSCLE data sets that were used to form the 
images shown in Fig 4. As for the Elba Island HISAS data, the scintillation index is seen to increase 
as a function of range away from the sonar (i.e., SI increases as the mean grazing angle decreases 
from approximately 23O at 40 m range to approximately 7O at 150 m range). The large fluctuations 
in the scintillation index for the rough seafloor case (top curve) are due to shadowing from large 
seafloor structures visible in the top part of the image from approximately 90 m range, onward. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Synthetic aperture images of randomly rough silty-sand seafloors taken in 2010 off the 
coast of Tellaro, Italy, by the NATO Undersea Research Centre (now the NATO Centre for Maritime 
Research and Experimentation) with the 300 kHz MUSCLE SAS.  
 
 
Geo-acoustic parameter inputs to the scattering model used for SI predictions for the Tellaro 
MUSCLE SAS data are from Pouliquen and Lyons13 which were obtained in the same water depth 
as and close to the location off of Tellaro, Italy, as the images shown in Fig. 1. A shape parameter 
of 2.75 was used in modeling SI, estimated in the same fashion as for the HISAS data discussed 
previously. Results shown on Fig. 5 are model predictions for rms slopes of 3.6O and 7.1O for the 
relatively smooth and relatively rough seafloor areas respectively. The model matches the shape of 
the data well and shows the sensitivity of the results to the rms slope. The rms seafloor height, 
assuming power-law roughness, were found to be to 2.9 cm and 5.8 cm for the smooth and rough 
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cases respectively. Data collected and presented in Pouliquen and Lyons13 from the same 
experimental area off of Tellaro used a stereo-photogrammetry system to measure rms roughness 
of 0.87 cm over a length scale of approximately 30cm. Using Eq. (7), this value of h would yield an 
rms roughness over the much larger 50 m scale of the Tellaro SAS measurements of 6.4 cm very 
close to those predicted by the scaled-speckle model for the image of the “rough” area.  A noise 
parameter, n, of 5 was used for the MUSCLE system. As this value was close to the grazing angles 
interrogated at the furthest ranges in the images, the effects are more apparent as a more 
pronounced downward bending (i.e., reduction) of the SI when compared to the HISAS example.   
 
 

                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Scintillation index as a function of range for SAS images obtained from the Tellaro 
MUSCLE SAS field experiment (rugged line) and predictions from the scaled-speckle model. The 
experiment-derived curves used the same data that was used to form the images in Figure 4. 
 
 
4 CONCLUSIONS 

In this paper, we have presented a model to predict the impact of intensity scaling caused by 
random seafloor roughness on SAS image speckle statistics. This was accomplished by treating the 
continuous variation in scattering strength produced by roughness-induced changes in seafloor 
slope as a scaling of the SAS image speckle. The changes in image statistics were quantified in 
terms of the scintillation index.  For the three experimental sites examined, roughness caused a 
dramatic effect on statistics of the images, with increasingly larger scintillation index (i.e., heavier-
tailed distributions) as range away from the sonar increased. Scintillation index estimates from SAS 
data showed very good agreement with model predictions and were shown to be very sensitive to 
rms slope. This sensitivity could allow seafloor roughness parameters to be easily inverted from 
SAS image data as in Chen et al.14. 
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