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Global and local magnitude and spatial pattern of uncertainty from 
geographically adaptive empirical and machine learning satellite-derived 
bathymetry models
Kim Lowell and Yuri Rzhanov

Center for Coastal and Ocean Mapping, University of New Hampshire, 24 Colovos Rd, Durham, NH, USA

ABSTRACT
The spatial structure of local uncertainty of shallow-water satellite-derived bathymetry (SDB) 
relative to model type, imagery, and geographical adaptability was examined for an area near 
Key West, Florida (United States). The model types examined were a commonly used quasi- 
empirical linear regression model and a decision tree-based Categorical Boosting (CatBoost) 
machine learning (ML) model. Image types examined were (four) cloud-free Sentinel-2 images 
and a maximum blue band (Band 2) value image composite of the four Sentinel-2 images. Initial 
models fitted were based on band reflectances alone. Geographical adaptivity was added by 
including UTM coordinates and refitting the models. Major findings were: 1) The ML/CatBoost 
models provided substantially better depth estimates than the quasi-empirical models. 2) The 
geographically adaptive models outperformed the non-geographically adaptive models. 3) The 
ML/CatBoost models that included non-visible spectral bands including infra-red improved SDB 
accuracy compared to ML/CatBoost and quasi-empirical models based only on visible spectral 
bands. 4) Accuracies from ML/CatBoost models were comparable across all individual images and 
the composite suggesting that CatBoost models eliminate or at least minimize the need to find 
“the best” cloud-free image nor is it necessary to create a composite image. 5) Localized SDB 
inaccuracy was spatially random. 6) Significant spatial hotspots where SDB accuracy was consis
tently higher or lower across all images and models were present. Results suggest that image 
selection is less important for global and local SDB accuracy than using ML models that detect 
hidden interactions and non-linear relationships among pixel reflectance and geographic location. 
The spatially random local deviation from global accuracy suggests a weak ability to infer local 
accuracy from neighboring accuracies. This lack of spatial autocorrelation among errors is poten
tially problematic for the use of SDB maps for navigation since error at any location is generally 
inferred from known uncertainties at neighboring locations. Rigorous and robust uncertainty 
analysis is necessary in any effort to improve SDB, and the uncertainty analysis techniques 
employed that characterize SDB uncertainty in both statistical and geographical space could be 
an important part of quality assurance and continuous improvement.
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Introduction

To map shallow-water, broadly defined “satellite- 
derived bathymetry” (SDB) techniques are receiving 
considerable attention (e.g., Casal et al. 2019; Li et al.  
2023; Lyons et al. 2020). SDB techniques hold the pro
mise of providing geographically complete bathy
metric maps for areas over which in situ bathymetric 
data are incomplete, unavailable, or too costly to 
acquire. SDB techniques thus have the potential to 
decrease the cost and increase the efficiency of map
ping shallow water bathymetry. This ability would be 
especially beneficial for remote regions where the col
lection of in situ data is especially difficult and costly.

SDB techniques establish a statistical relationship 
between whatever in situ data are available and 
a “whole-of-area” source of digital imagery. The relation
ship developed is then applied to the imagery employed 
to produce a “complete coverage” bathymetric map. 
Various aspects of this general procedure have been 
explored and documented. Among them are:

● Examination of various digital imagery sources: 
These generally involve optical satellite imagery 
and have included Sentinel (e.g., Li et al. 2023; 
Traganos et al. 2018), Landsat (e.g., Cahalane 
et al. 2019; Pacheco et al. 2015), and others 
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(e.g., Li et al. 2019; Van An et al. 2023). Some 
work has also examined the use of radar data for 
mapping shallow water bathymetry (e.g., Mishra 
et al. 2013; Pereira et al. 2019).

● Digital imagery selection and processing: This 
includes evaluation of how to select the optimal 
multispectral image from a suite of candidate 
images (e.g., Poursanidis et al. 2019), developing 
a single “composite” from a suite of candidate 
images (e.g., Caballero and Stumpf 2020a; Xu 
et al. 2021), and filtering methods to reduce or 
eliminate aberrant pixels (e.g., Chu et al. 2019; 
Poursanidis et al. 2019).

● Model forms and fitting techniques: These have 
included physics-based (e.g., Brando et al. 2009; 
Casal et al. 2020), quasi-empirical (e.g., Lyzenga 
et al. 2006; Stumpf, Holderied, and Sinclair 2003), 
and empirical models including machine learn
ing (ML) approaches (e.g., Misra et al. 2018; 
Sagawa et al. 2019).

To date SDB studies and applications have 
embraced the fitting and use of a single model 
for an entire area. Inherent in this procedure is 
the use of global metrics such as correlation coef
ficients/r-squared and root mean square errors 
(RMSEs) to identify the best model and/or satellite 
image and to provide an accuracy statement to 
users of the resultant SDB map.

Implicit in this approach is the assumption that 
a single SDB model is appropriate for an entire area 
despite the presence of a range of depths, geomor
phology, and water conditions. Similarly, SDB map 
users must assume that the RMSE for the associated 

SDB model is equally applicable at all locations across 
the entire area of interest. The application of a single 
average error across an entire area is undoubtedly 
suitable for some SDB map uses. However, for uses 
of SDB maps for navigation, for example, knowledge 
of local depth error is necessary. Related to this is the 
potential accuracy improvement if a model is locally 
adaptive such that effectively different models are 
developed and applied to varying image, water, and 
ocean bottom conditions.

This article addresses these issues with a goal of 
producing better SDB maps and providing SDB map 
users with more information about the statistical and 
spatial uncertainty structure associated with SDB 
maps. In addition to the topics mentioned, the use 
of different suites of spectral bands available with the 
satellite imagery employed is examined, and the com
parative performance of individual images including 
a composite image produced from the individual 
images is evaluated.

To facilitate reader comprehension, Figure 1 pro
vides a schematic research workflow of the following 
two sections – Study Area and Data, and Methods.

Study area and data

LiDAR bathymetric data

The study area for this work is a 5 km-by-5.5 km area 
(Figure 2) located to the immediate north of Key West, 
Florida (United States). The area covers a range of 
depths, water turbidity, and geomorphology. It also 
includes areas of land – something that is typical of 
areas to which SDB techniques are applied to map 

Figure 1. Schematic of the study’s workflow.
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shallow-water bathymetry. Available for the area was 
a 2019 green laser (532 nm) airborne LiDAR survey 
commissioned by the United States National Oceanic 
and Atmospheric Administration (NOAA). The survey 
was registered to the UTM projection/coordinate sys
tem (Zone 17) as were the Sentinel images employed 
(as described below.) Data were acquired January 4 
and 13, and March 2 in boustrophedonic swaths gen
erally oriented north-south using three circular scan
ning systems: Riegl™ VQ-880-GII, Riegl™ VQ-880-GH, 
and Riegl™ VQ-880-G+. The nominal altitude (400 m 
above mean sea level (MSL)), scan angle (20°) and 
pulse frequency provided an average spatial density 
of 10 soundings sq m−1 although this varied across the 
area; it was notably higher where swaths overlapped. 
The data were post-processed using NOAA standard 
operating procedures (SOPS) that entail a combination 
of automated and manual/human procedures.

This produced a set of 500-m-by-500 m data tiles 
registered to the Universal Transverse Mercator (UTM) 
projection. The easting and northing for the northwest 
corner of each tile was used as a tile identifier. The 
study area comprises a rectangle of 110 tiles − 11 tiles 
east-west by 10 tiles north-south. NOAA SOPs classified 
each LiDAR sounding as bathymetry (“Bathy”), land/ 
ground, noise, or uncertain. For the purposes of this 
study, soundings classified by NOAA’s SOPs as Bathy 
were used as bathymetric/depth reference data – i.e. 
“truth.” These were tide-corrected to MSL.

Satellite imagery and pixel depth

For satellite imagery, Sentinel-2 (ESA (European Space 
Agency) 2023) data were employed due to their high 
spatial and spectral resolution and the relatively high 
revisit rate of the two Sentinel-2 satellites (2 to 3 days 
at mid-latitudes). Only four of the 13 available spectral 
bands – the three visible (Bands 2, 3, 4: blue, green, 
red) bands and one near infra-red band (Band 8) – are 
collected at the highest spatial resolution of 10 m. The 
remaining nine bands are collected in pixels varying 
from 20 to 60 m. The images were provided by the 
European Space Agency having been re-sampled to 
10 m resolution using a bilinear interpolation 
method.1 Four Sentinel-2 images that were cloud- 
free for the study area and collected as close as pos
sible to January–March 2019 were identified and 
obtained; the four images were dated (yyyy/mm/dd) 
2021/04/13, 2021/05/08, 2021/07/07, and 2022/09/30. 
These were atmospherically corrected using ACOLITE 
(RBINS 2023).

An additional image termed herein the “Composite” 
was produced from the four images. For each 10 m 
pixel, as has been done in other studies (e.g., Thomas 
et al. 2021), the image having the highest reflectance 
value for Band 2 (blue/490 nm) was determined under 
the assumption that the highest value for a given band 
and pixel across all images is indicative of the strongest 
signal/best data acquisition conditions. For each pixel, 

Figure 2. The study area showing the locations (red) of 500m-by-500m tile centers (Google Earth™ imagery).
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the reflectance values for all bands for the image iden
tified as having the highest Band 2 reflectance were 
assigned to the pixel in the Composite image. Figure 3 
shows the date associated with each pixel value and 
the legend shows the percent of pixels from each 
image present in the Composite. Notably, the 2021/ 
04/13 image contributed the fewest pixels (2%) to the 
Composite image. Moreover, these 2021/04/13 pixels 
were primarily on land areas that were eliminated from 
subsequent SDB analysis meaning that the 2021/04/13 
made virtually no contribution to SDB models that 
were subsequently developed from the Composite 
image. Images from the four dates and the composite 
are shown in Figure 4.

For all images, to decrease the influence of aber
rant pixels, a 3-by-3 median filter was applied.

The reference/”true” depth of each pixel was deter
mined as the median depth (corrected to MSL) of 
a pixel’s LiDAR soundings identified as Bathy by 
NOAA SOPs. Pixels whose median was calculated 
from 10 or fewer soundings were eliminated from 
subsequent SDB analysis.

Data splitting

To evaluate overfitting subsequently, tiles were split 
randomly into two groups: train (80%/88 tiles/182,970 

pixels) and test (20%/22 tiles/42389 pixels). This split 
was done on entire tiles rather than individual pixels 
because a tile-based split is more representative of 
in situ data availability where SDB techniques are 
likely to be employed. Specifically, SDB techniques 
are employed to fill in spatial gaps where in situ refer
ence/ground-“truth” data are completely lacking, 
rather than in areas where in situ data are available 
but sparse as would be represented by randomly 
sampling individual pixels.

Methods

One goal of this work was to evaluate the compara
tive accuracy of quasi-empirical SDB models with that 
of ML models including the ability of both types to 
produce geographically adaptive models. For exam
ple, Figure 2 suggests the potential need for three 
models due to image characteristics, geomorphology, 
or some other unknown cause(s): one for the northern 
(and southeastern) area (green in Figure 2), one for 
the southwestern area (blue), and one for the remain
ing area (orange). Yet fitting separate models for 
these areas would ignore the intra-area intermixing 
of pixels from different images and also runs the risk 
of creating seams of large depth differences where 
different models would be applied. Hence the 

Figure 3. Contribution of individual images to the composite image.
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potential for geographically adaptable models was 
accommodated simply by making available to the 
model fitting procedure the UTM easting and north
ing of each pixel.

Quasi-empirical models

A widely used (e.g., Evagorou et al. 2022; Hsu et al.  
2021) quasi-empirical SDB model employed was first 
described by Stumpf et al. (2003): 

Depth ¼
m1 � ln k � Bð Þ

ln k � Gð Þ
þm0 (1) 

where m0 and m1 are regression coefficients, k is 
a constant usually set to 1000 as was the case here 
to ensure that both logarithms are always positive 
and that a residual non-linearity is removed 
(Caballero and Stumpf 2020b) and B and G are 
the reflectances in the blue and green satellite 
bands, respectively – Bands 2 and 3 for Sentinel- 
2. Because this is a linear model that has a closed- 
form solution, making it geographically adaptive 
requires the inclusion of UTM eastings and north
ings as well as explicit definition of interactions. 
Hence, this SDB model was fitted as presented in 
Equation (1) , and also with the inclusion of UTM 
eastings and northings and all multiplicative 2-way 

interactions and the single possible 3-way interac
tion [easting*northing*ln(k*Blue)/ln(k*Green)]. To 
be able to compare the contributions of variables 
to the Equation (1) model in a way that was con
sistent with “variable importance” inherent in the 
ML method selected (see next paragraph), the 
Student’s t-distribution values associated with the 
coefficients of each variable (a standard output of 
linear regression) were normalized to sum to 100 
over all variables. The t values for interaction vari
ables – e.g., easting*northing – were split equally 
between individual component variables before 
normalization.

Machine learning (ML) models

For the ML model, it is noted that the goal of this work 
was not to identify the best ML method from 
a number of ML methods. Instead, one goal of this 
work was to evaluate a representative empirical 
method that provides for the inclusion of a large 
number of Sentinel bands and UTM coordinates, and 
whose relationship(s) to depth and each other is 
unknown. It was also desired to be able to readily 
evaluate the contribution of each variable to model 
accuracy. The empirical modeling methodology 
selected was Categorical Boosting (“CatBoost;” 

Figure 4. The images from each date and the composite image. Images are displayed as near real color (i.e. Sentinel bands 4, 3, 2 
displayed in red, green, and blue, respectively). An image-specific percent clip stretch has been applied to each image.
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Prokhorenkova et al. 2018) – a ML decision tree-based 
approach. Decision trees progressively split data in 
two based on a variable and its value that will have 
the greatest impact on model accuracy at a given 
split. The number of splits performed is user- 
controlled or determined by an analytical criterion 
such as statistical significance or numeric optimality. 
The CatBoost method has been shown to perform 
somewhat better than often-employed extreme gra
dient boosting (XGB; Chen and Guestrin 2016) and 
LightGBM (Ke et al. 2018). Originally formulated to 
better accommodate categorical data (something 
that is not a consideration in this work), CatBoost 
also introduces “ordered boosting” that builds on 
existing models/trees to develop subsequent trees. 
As with other decision-tree methods, it produces 
a single final decision-tree model by combining the 
shallow decision trees developed. It implicitly accom
modates unknown interactions, as well as non-linear 
relationships. A variable’s importance is determined 
by the number of trees in which it appears with 
importance values being normalized across all vari
ables so that the total importance is 100.

Hence, six models were fitted for each image 
(Table 1). The inclusion of Bands 1, 5, and 11 in 
Models 5 and 6 resulted from exploratory model fitting 
that suggested these bands had the potential to 
improve CatBoost SDB models substantially despite, 
for example, an a priori expectation that infrared 
bands (5 and 11) would provide no water penetration 
and therefore not be indicative of bathymetric depth. It 
is acknowledged that others have suggested that Band 
1 is superfluous to Band 2 because of high collinearity 
between the two (Casal et al. 2019). However, the 
finding of the a priori variable exploration conducted 
was consistent with Thomas et al. (2021) who deter
mined that the inclusion of Band 1 improved the accu
racy of a multiple linear regression SDB model.

Model fitting and evaluation

All six models were fitted for each of the five images 
using the pixel data from the 88 training tiles (182,970 
pixels) – i.e. 30 models total were produced. 
R-squared values and the root mean square error 
(RMSE in m) were used to evaluate differences 
among images and models including the impact of 
UTM eastings and northings. Models developed for 
a particular image were then applied to all pixels in 
that image including those on the 22 test tiles (42,389 
pixels) to produce an SDB depth estimate for each 
pixel on that image. For each model-image-test/train 
combination, a linear regression was fitted between 
the reference/ground-“truth” data as the independent 
x variable and the SDB depth estimate as the depen
dent y variable for individual pixels. These are subse
quently referred to as “uncertainty regressions.” For 
a tile with unbiased low uncertainty/high predictive 
accuracy, the intercept and slope of its uncertainty 
regression will be 0.0 and 1.0, respectively, and the 
r-squared will be “high” and the RMSE “low.” 
Moreover, if the SDB model that generated the 
depth estimate is not overfitted, values for these 
four metrics will be similar for the train and test data 
sets. This was examined globally for each image.

The importance of variables was examined. Of par
ticular interest was the relative importance of UTM 
eastings and northings in the models that included 
them – i.e., the geographically adaptive models. Also 
of considerable interest was the relative importance 
of non-visible spectral bands (1, 5, and 11) in the two 
models in which they appeared.

To examine error structure spatially, the uncer
tainty regressions were fitted for each of the 110 
tiles. The local spatial structure of uncertainty was 
examined by calculating the spatial autocorrelation 
metric Moran’s I globally (Odland 1988) and locally 

Table 1. Models explored.

Model Method Description
Geographically 

Adaptive Bands/Variables

1 Linear Regression Quasi-empirical (Equation (1)) No Band ratio BRð Þ :
ln 1000 � Blueð Þ

ln 1000 �Greenð Þ

2 Yes BR, Easting, Northing, BR*Easting, BR*Northing, Easting*Northing, 
BR*Easting*Northing

3 CatBoost Visible Sentinel-2 bands No 2 (Blue), 3 (Green), 4 (Red)
4 Yes 2, 3, 4, Easting, Northing
5 Visible bands plus other 

selected bands1
No 2, 3, 4, 1 (“ultra blue”), 5 (visible and near infrared), Band 11 (short-wave 

infrared)
6 Yes 2, 3, 4, 1 (“ultra blue”), 5 (visible and near infrared), Band 11 (short-wave 

infrared), Easting, Northing
1“Other” bands were selected based on a priori exploratory model fitting.
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(Anselin 1995) for the r-squared values and RMSE 
values for the uncertainty regressions for each tile.

Globally and locally I varies from −1.0 to 1.0 
with negative values indicating a tendency for 
interspersion of high and low (r-squared or RMSE) 
values (like a chess board), and positive values 
indicating an unusual spatial clustering of high or 
low values; an I value near zero suggests 
a spatially random distribution of values. 
A statistically significant value for global 
I indicates a significant deviation from a random 
spatial pattern over an entire area – unusual inter
spersion (negative I) or clustering (positive I). For 
local application, an I value is calculated for each 
spatial unit (tile) based on a unit’s “neighbours” as 
defined by distance or adjacency; adjacency was 
used in this study. Monte-Carlo simulation is used 
to develop frequency distributions that provide for 
significance testing. The result is that statistically 
significant local “hotspots” can be identified. 
Importantly, however, a statistically significant 
positive local I (hotspot) indicates significant clus
tering, but it does not indicate if the clustering is 
among high or low (depth) values. Similarly, 
a significant negative local I value indicates unu
sually high localized variation of (depth) values. To 
determine if a hotspot indicates clustering of high 
or low (r-squared or RMSE) values, the local 
I scatterplot and associated quadrant analysis 
(Anselin 1996) can be undertaken for all significant 
(95% confidence) hotspots having positive I values. 
This was done in this study.

Results

Statistical model evaluation

Figure 5 indicates clearly that the empirical CatBoost 
models outperformed the quasi-empirical linear 
regression model (Equation (1)): for all image dates 
r-squared values were considerably lower, and RMSE 
values considerably higher for the Stumpf model/ 
Equation (1) than for any of the CatBoost ML models 
for the pixels on the training tiles. Also apparent is that 
providing the capacity for models to be geographically 
adaptive by including UTM eastings and northings 
improved all models. For model pairs (i.e., Models 1 
and 2, Models 3 and 4, Models 5 and 6), “with-UTM” 
models produced higher r-squared values and lower 

RMSE values than their related “without-UTM” model 
for the pixels on the training tiles. The CatBoost models 
that included non-visible spectral bands − 1 (ultra-blue) 
, 5 (near infrared) and 11(short wave infrared) – out
performed the CatBoost models containing only the 
visible bands − 2, (blue), 3 (green), and 4 (red). 
Interestingly, the CatBoost model with visible bands 
alone plus UTM coordinates (Model 42) (purple bars in 
Figure 5) performed slightly better than the CatBoost 
model containing the non-visible bands plus the UTM 
coordinates (pink bars in Figure 5) for all images except 
2021/05/08. However, the CatBoost model containing 
visible and non-visible bands plus UTM coordinates 
(Model 6) clearly performed best indicating that 1) 
the non-visible Sentinel bands employed make an 
important contribution to model accuracy and 2) the 
inclusion of UTM coordinates is a relatively simple way 
of improving model accuracy by making models geo
graphically adaptive.

To assess the models for different images, because 
the quasi-empirical models (Models 1 and 2) per
formed clearly worst, only the CatBoost models that 
included visible and non-visible bands and UTM coor
dinates (Model 6) are considered. Interestingly, this 
indicates that the two images that contributed the 
least to the composite image (Figure 3: 2022/04/13 
and 2022/09/30) produced the best SDB models for 
the training data; r-squared values are highest and 
RMSE values the lowest for these images. It is noted, 
however, that the r-squared and RMSE values for all 
images are comparable. This indicates that when 
using CatBoost to fit a purely empirical model using 
Sentinel-2 data, image selection and/or compositing 
multiple images is relatively unimportant provided 
a geographically adaptive model that employs 
Bands 1, 2, 3, 4, 5, and 11 is fitted. By extension, it is 
likely that the same would be true of other tree-based 
ML model fitting approaches. Finally, it is speculated 
that the CatBoost models (Models 3 to 6) far outper
formed the quasi-empirical models (Models 1 and 2) 
because of their ability to identify and employ “hid
den” interactions and local tendencies. This is sup
ported by the differences in quasi-empirical model 
performance for different images. This further sug
gests that whereas image selection or compositing 
is of minor concern when using CatBoost modeling 
(or presumably other machine learning methods), 
these may be quite important when using linear mod
eling techniques such as regression.
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Variable importance

Figure 6 shows the relative importance of variables in 
the SDB models; the top row shows results for the SDB 
models that did not include UTM coordinates (Models 
1, 3, and 5) and the bottom row shows results for the 
SDB models that did include the UTM coordinates 
(Models 2, 4, and 6). In the models that did include 
the UTM coordinates (bottom row), the UTM northing 
was consistently more important than the UTM easting. 
Moreover, the UTM northing was one of the two most 
important variables. This is undoubtedly related to the 
shallow area of seagrass that exists across the northern 
portion of the area (Figure 1) which was also reflected 
in the contribution of each image to the composite 
image (Figure 2). The UTM easting also appeared to 

make a useful contribution to the SDB CatBoost mod
els; this is probably related to the area having deeper 
channels in the southwest (also reflected in a dominant 
contribution from the image dated 2022/09/30 to the 
Composite image; Figure 2). Also of interest is that in 
the CatBoost models that included visible and non- 
visible bands, it was the near-infrared Band 5 that was 
most important, with the non-visible short-wave infra
red Band 11 being similarly important. This is some
what surprising given that bands in the infrared 
portion of the spectrum have little or no water pene
tration capability. Moreover, that Bands 5 and 11 were 
captured at 20 m and re-sampled to 10 m does not 
appear to have had an impact on their importance. 
The most important visible band was Band 2 (blue).

Figure 5. (a) Average r-squared and (b) root mean square error (m) by model type (see Table 1) and image date for training data.
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Overfitting assessment

Figure 7 presents information that can be used to 
evaluate potential overfitting for the model most 
likely to be overfitted by virtue of having the most 
variables – the geographically adaptive CatBoost 
model that employs visible and non-visible spectral 
bands (Model 6). It does not appear that this SDB 
model is overfitted. Adjusted r-squared values and 
RMSE values for uncertainty regressions fitted on 
training data are only slightly better (higher r-squared 
and lower RMSE values) than those fitted on test data. 
Similarly, the slopes and intercepts of the uncertainty 
regression lines are similar for the training and test 
data. Comparable results were observed for all images 
and models. Recall, however, that an ideal model fit 
for the uncertainty regression lines would have 
a slope of 1.0 and intercept of 0.0 – i.e. reference/ 
”true” depth would be equal to the SDB model pre
diction. A slope less than 1.0 and negative intercept 
indicates that for both training and test data, shallow 
depths are overestimated (i.e. estimated depths are 

“too deep”) and larger depths are underestimated (i.e. 
estimated depths are “too shallow”). This occurred for 
all images for all SDB models. One possible reason is 
that even the flexibility to model non-linear relation
ships that CatBoost provides is not sufficient for the 
area examined and the data employed. It is conceiva
ble, for example, that the visible-near infrared Band 5 
had its unexpected high importance because there is 
some penetration in very shallow areas, but the pene
tration decreased relatively rapidly, and in a non- 
linear manner as depth increased.

Spatial model evaluation

It was expected that a clustered spatial structure for 
model uncertainty would be present with uncertainty 
being related to a positively spatially autocorrelated 
characteristic such as substrate, or water depth or 
clarity. In fact, however, for none of the 30 model/ 
image combinations did Moran’s I manifest 
a statistically significant value (α = 0.05; p ranged 

Figure 6. Relative importance of variables over all images. See Table 1 for model definitions. Top row models are not geographically 
adaptive; bottom row is geographically adaptive equivalent of the model above it.
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from 0.10 to 0.97 for r-squared and from 0.09 to 0.99 
for RMSE). Figure 8 shows an example surface for both 
r-squared and RMSE for the best model and image 
combination (Model 6: geographically adaptable 
model for CatBoost with visible and non-visible 
bands for the image dated 2022/09/30).

Present on Figure 8 are dots indicating areas of 
significant (α = 0.05) clustering of values; areas with 
significant interspersion of high/low values are not 
displayed and were ignored. On Figure 8, pink dots 
indicate areas of desirable model performance and 
olive dots indicate areas of undesirable model 

Figure 7. Evaluation of model overfitting for each image for the CatBoost model based on bands 1, 2, 3, 4, 5, and 11 and UTM northing 
and easting.

Figure 8. Example surfaces showing r-squared values (a.) and RMSE values (b.) for the CatBoost model fitted using and bands 1, 2, 3, 4, 
5, and 11 and UTM northing and easting for the 2022/09/30 image. (For r-squared (a.), Moran’s I/p is 0.07/0.10, and −0.02/0.89 for 
RMSE (b.). Tiles with gray “haloes” comprise the test data set. Dots indicate a statistically significant (α = 0.05) cluster of values with 
pink indicating (a.)high r-squared)/(b.)low RMSE values (i.e. desirable model performance) and olive indicating (a.)low r-squared/(b.) 
high RMSE values (i.e. undesirable model performance).
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performance. (Also indicated by gray “haloes” around 
tiles are the tiles whose pixels comprised the test data 
set.) Across all 30 model-image combinations, the 
number of pink (desirable) hotspots for r-squared ran
ged from 0 to 9 and for RMSE from 0 to 7; the range of 
olive (undesirable) hotspots ranged from 0 to 7 for R2 

and from 2 to 8 for RMSE. Readers are reminded that 
with α = 0.05 and 110 tiles present, it is expected that 
5.5 hotspots (i.e., approximately three hotspots indicat
ing significant clustering of high or low values and 
three indicating significant dispersion) will manifest as 
statistically significant by chance. Hence, to better 
understand if there are areas where high or low values 
“truly” cluster, the number of pink (desirable model 
accuracy) and olive (undesirable model accuracy) hot
spots were accumulated across all five images 
(Figure 9).

Recall that there are a total of (5 images × 6 
models = 30 image-model combinations). There 
are relatively few tiles out of the 110 on the 
study area for which models were consistently 
accurate or inaccurate; these are the tiles having 

“hotter” colors in Figure 9. It was expected a priori 
that accuracy for certain tiles across all image- 
model combinations would be consistently desir
able/undesirable reflecting, for example, optimal 
geomorphology (desirable) or consistently turbid 
water (undesirable). And there are, in fact, 
a number of the 110 tiles whose accuracy was 
consistently desirable or undesirable – i.e., those 
with the “hotter” colors in Figure 9. However, it 
was also expected that tiles with desirable/undesir
able image-model combinations would tend to 
cluster spatially. Instead, tiles for which image- 
model combinations were most consistently desir
able or undesirable hotspots tended to be spatially 
dispersed. Somewhat complicating this observation 
is that r-squared values that showed good model 
performance tended to not be those whose RMSE 
also showed good model performance. The same 
was true of tiles indicating poor model perfor
mance. Arguably, the area in the northeast of the 
study area showed the most consistent result over 
all image-model combinations – no tiles identified 

Figure 9. The number of image-model combinations on which each tile was a significant (α = 0.05) hotspot indicating desirable model 
performance (a. and c.) or undesirable model performance (b. And d.). Gray tiles are those that were never hotspots. Tiles with gray 
“haloes” comprise the test data set.
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as consistently desirable/undesirable hotspots were 
present with the exception of a few tiles for RMSE 
for good image-model performance. This suggests 
that errors associated with bathymetric maps will 
be spatially random at a spatial resolution of 500  
km. Further work would be necessary to discern 
causes/general tendencies in image-model 
combinations.

The data on which Figure 9 is based provide 
a means of assessing relative performance/accuracy 
of image-model combinations on the training and 
test data sets. The number of 95% desirable and 
undesirable hotspots for the r-squared and RMSE 
metrics for the training and test data sets were 
summed over all image-model combinations and 
converted to a percentage of total hotspots. If the 
model-image combinations are generally the same 
for training and test data sets, it is expected that the 
training/test split of hotspots would be 80%/20% 
since these are the percentages of tiles in the training 
and test data sets, respectively. Table 2 suggests 
a mixed result. For example, 99% of the desirable 
hotspots for r-squared were present on training tiles 
(far more than the 80% expected), but 62% of the 
desirable hotspots for RMSE were on test tiles (far 
more than the 20% expected). This does not appear 
to be a result of model overfitting. Figure 7 suggests 
that the amount of model overfitting (on the training 
data) was minimal for the most complex model across 
all images. And visual examination of graphics sug
gested that the level of overfitting was comparable 
for the other less complex models.

Discussion and conclusions

A relatively common strategy in developing bathy
metric depth maps using SDB techniques is to develop 
a composite image from multiple cloud-free maps. In 
the work presented, such a composite did not produce 
the best SDB models and accuracy metrics compared 
to the (four) individual images used to create the com
posite. Moreover, only 9% of the composite image 
comprised pixels from the individual image that pro
duced the best SDB bathymetric map (2022/09/30). It is 
thus clear that under some conditions, image compo
siting is not the optimal strategy for developing an 
image that is used for SDB. A better alternative strategy 
may be to produce SDB using each “candidate image” 
potentially including a composite image and select the 
optimal image/SDB model a posteriori.

The pixels comprising the composite image gener
ally appeared in large cohesive areas (Figure 2) that 
reflected areas that were recognizably different 
(Figure 3). That the composite image on which these 
different areas are recognizable did not produce the 
best SDB bathymetric maps is indicative that composit
ing is not necessarily the optimal strategy for capturing 
these differences. However, the inclusion of geo
graphic coordinates – UTM eastings and northings – 
and the use of a tree-based ML approach produced 
geographically adaptive SDB models from individual 
images that performed better than models that were 
not geographically adaptive. Moreover, the geographi
cally adaptive ML models performed better than 
a widely used quasi-empirical linear regression model 

Table 2. Percentage of desirable and undesirable hotspots for the training and 
test data sets over all images. Green cells indicate a higher percentage than 
expected based on the 80/20 train/test data split; red cells indicate a lower 
percentage.

Metric Values
Total Hot 

spots

% (number) 

in Train !les

% (number) 

on Test !les

R-squared

High 

(desirable)
144 99(142) 1 (2)

Low 

(undesirable)
97 51(49) 49(48)

RMSE

Low 

(desirable)
73 38(28) 62(45)

High 

(undesirable)
149 89(132) 11(17)
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that was made geographically adaptive. It is thus con
cluded that tree-based ML methods have the capacity 
and flexibility to accommodate unknown and poten
tially non-linear relationships and interactions among 
geographic tendencies, spectral reflectance, and water 
depth in the production of SDB maps.

Much SDB work that employs Sentinel-2 imagery 
confines itself to the visible bands − 2 (blue), 3 
(green), and 4 (red) (e.g., Pahlevan et al. 2017). This 
is reasonable as these bands are captured at a 10 m 
spatial resolution and these visible bands have 
a physically definable relationship with shallow- 
water depth. However, the work described clearly 
demonstrated that models that included non-visible 
(including infrared) bands captured at coarser spatial 
resolutions and re-sampled to 10 m using bilinear 
interpolation produced better SDB models and maps 
than those that confined themselves to the use of 
high spatial resolution visible bands only. Perhaps 
most notable was Band 1 (ultra blue) that is captured 
at a 60 m resolution. Its importance after being re- 
sampled to 10 m was low (Figure 4, Models 5 and 6), 
but not as low as Band 3 (green) that was captured 
(not re-sampled) at a 10 m resolution. This suggests 
that the Band 1 wavelength can be useful for depth 
estimation, even if the bilinear interpolation process 
degrades the signal or adds noise. Given the “black 
boxy” nature of the CatBoost modeling technique, 
however, it is not possible to characterize the nature 
of the relationship meaning that its successful use in 
such work may be reliant on a machine learning 
modeling methodology.

This result highlights both a strength and 
a weakness of machine learning decision trees as 
a modeling methodology. As surmised in the Results 
section, it is possible that Band 5 visible/near-infrared 
has a not-previously-known non-linear relationship 
with depth in shallow areas that can only be detected 
by a highly flexible machine learning modeling tech
nique. However, such a relationship may be local only 
thereby limiting the applicability of the model and its 
extension to other data and areas. Hence, the unex
pected high importance of Band 5 considerably 
improved the modeling of SDB for the study area 
and data employed in this study, but the result may 
not be generalizable to other areas and data.

Spatial analysis of the SDB model/map (in)accuracy 
indicates that local accuracy will vary widely for SDB 

maps. For example, Figure 8 shows that for the best 
image and model, RMSE can vary by as much as 1.4 m 
across an area. Moreover, the global spatial autocor
relation coefficient Moran’s I indicates that the pat
tern of (in)accuracy is spatially random. Nonetheless, 
Figure 9 demonstrates that accuracy is consistently 
poor for certain areas regardless of model type or 
image employed. These results show a clear need 
for more research to better characterize inaccuracy 
associated with SDB models/techniques. It is acknowl
edged that such findings may be of limited interest/ 
concern for uses of SDB maps focused on areas larger 
than 500 m tiles. However, for uses such as navigation 
in which local accuracy is critical, the results pre
sented suggest a clear need for caution in the use of 
SDB products based on global statements of accuracy.

This research has demonstrated a number of impor
tant points about uncertainty associated with SDB 
models – e.g., its magnitude, its globally and locally 
random spatial pattern – as well as the nature of model 
fitting using machine learning techniques. An over
arching final point of interest is the broader applicabil
ity of the techniques and findings. While the model 
fitting and evaluation techniques are undoubtedly 
extensible to other data sets and areas, it is not clear 
that the results would be comparable. In fact, it was 
somewhat surprising to the authors that global uncer
tainty did not manifest a clustered pattern – i.e., sig
nificant positive global spatial autocorrelation – given 
that relatively shallow seagrass is clustered in the 
northwest portion of the study area (see Figure 2). 
Other areas with comparable clustered phenomena – 
e.g., turbid water where a river empties into a bay – 
may show a nonrandom pattern of uncertainty. 
Similarly, the magnitude of uncertainty may vary in 
such areas with a high relation to the satellite imagery 
used, the ocean substrate, water clarity, and other 
factors. Such observations reinforce the need for 
a statistically and spatially robust analysis of model 
uncertainty when SDB techniques are used to estimate 
water depth.

Notes

1. https://sentinels.copernicus.eu/web/sentinel/technical- 
guides/sentinel-2-msi/level-1c/algorithm-overview 
Current as of November 2023.

2. See Methods section for definition of models.
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