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ABSTRACT 

POTENTIAL VORTICITY DYNAMICS DRIVING VARIABILITY IN MEAN TIDAL 

CURRENTS FLOWING THROUGH BOUNDED ESTUARINE CHANNELS 

by 

Katherine A. Kirk 

University of New Hampshire, December, 2023 

 

Tidally induced pressure gradients in sea level drive mean estuarine tidal currents that can have 

horizontal spatial variability across a bounded channel or inlet. Strong cross-channel gradients in 

along-channel mean velocity set up extremums in the background potential vorticity that can 

support instabilities of tidal currents flowing through narrow, bounded estuarine channels and tidal 

inlets.  In addition, conservation of potential vorticity including frictional terms, results in 

intensification of along-channel tidal currents over shallow lateral shelves.  In the first part of this 

dissertation (Chapter 2), the dispersion equation of barotropic instabilities of tidal currents is 

analytically solved for simple bathymetry defined by idealized and variable channel geometries 

that include lateral shelves.  The solution is third-order and the cross-channel velocity structure, 

bathymetry, and geometry can be altered to approximate typical natural inlet geometries allowing 

for a range of scenarios to be examined. The resulting fastest growing unstable modes have 

wavelengths of O(102 m), periods of O(102 - 103 s), and growth rates of O(10-3 - 10-2 s-1) with 

phase speeds approximately one third of the maximum velocity, consistent with instabilities of 

longshore currents studied in the nearshore (Bowen and Holman, 1989; Dodd and Thornton, 1990).  

In the second part of this dissertation (Chapter 3), the presence of instabilities of tidal currents is 
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observed from a spatially lagged along-channel array consisting of seven current meters and 

pressure sensors deployed in the Hampton-Seabrook Inlet, NH for one week encompassing the 

spring tides in May 2021. Using iterative maximum likelihood estimators, wavenumber-frequency 

spectra are estimated during 3-4 hour time periods with approximately steady currents on both the 

flood and ebb tides.  Dominant wavenumbers (± 0.002 - 0.02 m-1) of the low frequency motions 

(0.0006 - 0.01 s-1) with corresponding wavelengths (± 314.2 – 3141.6 m) and periods (628.3 – 

10472 s) are resolved and consistent with motions estimated in Chapter 2. The lack of breaking 

wave group modulations within the inlet and the presence of the seaward (shoreward) propagating 

instabilities on the ebb (flood) flow indicate that the presence of the instabilities can be attributed 

to the shear of the tidal current. In the third part of the dissertation (Chapter 4), a numerical 

hydrodynamic model (ROMS) is used to better understand the forcing mechanisms driving 

intensification of velocity over the shallow lateral shelf in the Piscataqua River observed from 

ADCP transects obtained in 2015 during both the flood and ebb of the spring tide. Results show 

that the along-channel flow is intensified (convergence of streamlines) over the lateral shelf under 

high Reynolds number conditions, where the inertial forces dominate over the frictional and 

viscous forces, during both quasi-steady flooding and ebbing currents.  Given the cross-channel 

structure of the velocity, the water circulates up onto the shelf by the conservation of potential 

vorticity.   Due to the shallower depth over the shelf, the velocities increase due to conservation of 

volume, which leads to even stronger horizontal shear in the mean along-channel tidal currents. 

The spatial and temporal variability in mean tidal currents (consistent with instabilities of the flow) 

results from the background potential vorticity that mixes momentum horizontally across the 

channel and smooths the cross-channel velocity structure; thus, the potential vorticity balance leads 

to both velocity intensification over the shelf and unstable motions.  Changes to the mean flow 
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structure and mixing by instabilities have implications for estuarine dynamics such as the fate and 

transport of organic and inorganic matter, navigational safety, and tidal energy resource 

assessment. 



 
 

CHAPTER I 

1 INTRODUCTION 

Astronomical tidal forcing leads to pressure gradients in sea level that drive mean tidal currents 

throughout estuaries, where outgoing fresh, buoyant, riverine discharge is exchanged and mixed 

with incoming dense, saline ocean water leading to horizontal and vertical mixing, tidal exchange, 

and estuarine circulation. Herein, the mean tidal current refers to the time averaged flow over at 

least one hour and up to four hours during either an ebb or flood current.  The tidal currents 

transport organic and inorganic substances, including sediment, pollutants, nutrients, and larvae. 

Sediment transport, in particular, leads to areas of deposition and erosion significantly altering bed 

geometry and bed form migration. The local bathymetry and topography impacts the tidal currents 

as the frictional stresses dampen the velocity.  Understanding the tidal currents and having accurate 

tidal current predications is critical for emergency managers to quickly respond to oil spills and 

other natural disasters that involve the transport of harmful substances. Policy makers also need to 

make informed decisions regarding restoration efforts that may depend on the transport of larvae 

into or out of various habitats and ecosystems. Additionally, mariners rely on tidal current 

information to safely navigate increasingly larger ships through harbors and restricted channels 

with limited maneuverability. Accurate estimates of the tidal currents is also important for tidal 

energy resource assessments that depend on the velocity to the third power, but these assessments 

typically don’t take into account the temporal variability about the mean current. 

Variations in the mean tidal current are caused by both changes in tidal phases (e.g. spring 

and neap, perigee and apogee, lunar nodal cycle) and non-tidal effects (e.g. wind, storms, waves, 

nonlinearities, unstable motions).  Relative to the dominant tidal current frequency (i.e. one cycle 

every 12.42 hour for semidiurnal tides), these variations can be characterized as high frequency 
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variability (e.g. unstable turbulent motions) or low frequency variability (e.g. the 18.6 year lunar 

nodal cycle) about the mean current. It is important to characterize and quantify the spatial and 

temporal variability in the mean tidal current on time scales ranging a few minutes to several hours 

to fully understand the fluid dynamics throughout an estuary and the consequential implications 

on other processes. 

Areas with a large tidal range, such as the Gulf of Maine, can have fast tidal current 

velocities, especially in narrow channels bounded by land or jetties leading to reversing, rectilinear 

currents.  Two study site locations within the Gulf of Maine are considered in this thesis: the 

Hampton-Seabrook Inlet (HSI) and the lower Piscataqua River in the Great Bay Estuary. Both 

sites are known for experiencing strong tidal currents (> 2 m/s), especially on the spring tides, and 

are further described in Sections 3.3 and 4.3, respectively. 

Tidal currents flowing through a narrow inlet or channel bounded by land or manufactured 

structures (e.g. jetties) can have strong horizontal, cross-channel gradients in the along-channel 

flow.  A small disturbance in the velocity gradient can cause the mean flow to become unstable 

leading to a meandering of the mean along-channel current and potentially the spinoff of large 

eddies of O(101 – 102 m). This instability and the resulting high-frequency variability of the 

currents and vorticities may affect small vessel navigation, the transport of organic and inorganic 

matter, and cause lateral mixing of momentum across the inlet. In Chapter 2, the dispersion of the 

linear instabilities of tidal current are solved analytically for a given range of wavenumbers. The 

frequencies associated with unstable motions were determined under various idealized channel 

geometries and bathymetry that includes lateral shelves. The restoring force for the unstable 

motions is the background potential vorticity, which here is dominated by the relative vorticity 
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while the planetary vorticity is ignored. The instabilities lead to horizontal mixing that smooths 

the cross-channel velocity structure (and can have consequential impacts on ecosystem transport).  

In Chapter 3, instabilities of the mean current are observed in HSI using a seven-element 

array of current meters and pressure sensors.  The dominant wavelengths and periods are estimated 

from iterative maximum likelihood estimators and compared with theoretical linear stability 

predictions discussed in Chapter 2.  The instabilities are observed on both the ebb and flood tide, 

and propagate in the direction of the mean flow. The forcing is from the strong gradient in velocity 

and is not tied to breaking incident gravity wave groups that are absent in the inlet, indicating that 

the restoring force is due to the conservation of potential vorticity.  

In Chapter 4, an intensification of velocity over a shallow lateral shelf on the northern side 

of the Piscataqua River off Henderson Point south of Seavey Island is investigated. Observations 

show fast currents over the shallow area as opposed to occurring in the adjacent deeper channel 

during both the flood and ebb tidal current stages. In deeper water where bottom friction has a 

smaller influence on the depth-averaged currents, it is often expected that the topography would 

result in the strongest currents in the deeper channel. A numerical hydrodynamic model is used to 

solve the 3-dimensional momentum equations to simulate the flow and better understand the 

forcing mechanisms driving the intensification of current magnitude over the shelf. The 

conservation of volume and potential vorticity are used to better understand the flow dynamics. 

The consequential mixing of momentum across the channel is also studied and expected to lead to 

smoothing of the cross-channel current structure. This study will help the research community 

better understand the physical forcing causing mean tidal current spatial variability, which can 

have implications for tidal energy resource assessments, navigation, and the fate and transport of 

matter.  
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The theme of this dissertation is the analysis of the spatial and temporal variability of the 

tidal currents about the mean and the role of the potential vorticity balance in driving the flow 

circulation and unstable nature. Chapter 2 is comprised of an analytical linear instability analysis 

that results in a general solution for the dispersion of unstable infragravity motions flowing through 

bounded estuarine channels or inlets. Chapter 3 is an analysis of unstable infragravity motions 

based on observations collected in an array deployed in the HSI in 2021. Chapter 4 utilizes a 

numerical hydrodynamic model to solve the 3-dimensional momentum equations to determine the 

forcing mechanisms driving an intensification of velocity over a lateral shelf in the Piscataqua 

River as observed in data collected in 2015.  It is worth noting the coordinate system varies 

between Chapter 2 where the along- and cross-channel flow are in the y- and x-directions, 

respectively, following much of the nearshore literature orientation, while in Chapter 4 the along- 

and cross-channel flow are in the x- and y-directions, respectively, following the ROMS 

convention.  Finally, general introduction (Chapter 1) and unified conclusion (Chapter 5) sections 

are included. 

 

  



5 
 

CHAPTER II 

2 ANALYTICAL LINEAR INSTABILITY ANALYSIS OF LATERALLY 

BOUNDED, HORIZONTALLY SHEARED TIDAL CURRENTS 

2.1 Abstract 

Tidal currents flowing through narrow inlets and channels can have horizontal cross-channel 

velocity gradients that produce a background potential vorticity field that supports instabilities in 

the mean flow. This results in a meandering of the tidal currents along the channel that can lead to 

lateral mixing of momentum and transport and potentially the spinoff of large (nonlinear) eddies. 

Analytical solutions for linear barotropic instabilities were found for idealized cross-channel 

structure in along channel tidally driven flow in bounded inlets with variable inlet geometry. 

Analytic solutions are general and shown to converge to previous solutions for surf zone 

alongshore currents and are consistent with solutions for shelf currents at the continental slope. 

The generalized dispersion equation is third-order and depends on the wavenumber, maximum 

current magnitude, horizontal shear of the current, cross-inlet geometry and bathymetry, and a 

linear friction coefficient. The cross-channel velocity, bathymetry, and geometry can be altered to 

approximate typical natural inlet geometries allowing for a range of scenarios to be examined. For 

bounded tidal currents with inviscid flow, the characteristic wavelengths are order of magnitude, 

O(102 m), periods are O(102 - 103 s), and growth rates of the fastest growing unstable modes are 

O(10-3 - 10-2 s-1) with phase speeds approximately one third of the maximum velocity, similar to 

prior nearshore findings where the scales of the flow and bathymetry are of the same order as 

found in inlets. Bottom friction suppresses the unstable motions leading to slower initial growth 

rates and a reduced range of unstable wavenumbers. Faster growing modes with a larger range of 
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unstable wavenumbers and stronger horizontal mixing (represented by the cross-channel Reynolds 

shear stress) occur under stronger shear conditions and cross-channel bathymetry with wide, deep 

shelves. The Reynolds stress is inversely proportional to the strength of the background potential 

vorticity field dependent on the cross-channel shear of the along channel flows.  At the location of 

maximum flow, horizontal mixing acts to smooth the initial velocity cross-channel structure. 

Stronger mixing by the instabilities occurs in the areas of higher lateral current shear. Results 

suggest that tidal currents in inlets will produce unstable modes that can mix momentum laterally, 

impacting transport of particulate and dissolved organic and inorganic matter through the inlet.  

2.2 Introduction 

Coastal and estuarine tidal currents vary both temporally and spatially as a function of tidal forcing, 

bottom friction, surface stress (e.g. wind and atmospheric effects), bathymetric variation across 

the inlet, and nonlinear interactions with nontidal forcing such as river discharge or storm surge 

(Parker, 2007).  Tidal currents and their variability have long been known to be important to mixing 

and transport between inland bays and freshwater systems and the coastal ocean (Bowden, 1965; 

Simpson et al., 1990; Geyer and MacCready, 2014), navigation routes and safety (Chen et al., 

2013), and marine hydrokinetic energy resources (Lalander et al., 2013).  Yet, little attention has 

been given to the details of the cross-inlet structure of the inlet flow.  

Tidal currents flowing through narrow inlets and channels can have horizontal velocity 

gradients that produce a background potential vorticity field that supports instabilities in the mean 

flow. This could result in a meandering of the tidal current along the channel and potentially the 

spinoff of large (nonlinear) eddies (Figure 2.1).  Both the linear instabilities and consequential 

nonlinear vortices provide a mechanism for horizontal mixing of momentum that may significantly 

impact the circulation, modify the cross-shore or cross-channel mean velocity profile and affect 
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dispersion and transport of organic and inorganic matter, including pollutants similar to nearshore 

surf zone alongshore currents (Dodd et al., 2000).  Dodd and Thornton (1990) found that when 

instabilities of the surf zone longshore current are present and Reynolds stresses of the shear 

instabilities are nonzero, energy is transferred from the background flow to the perturbed flow 

leading to a mixing of momentum and modification to the mean current.  Consequences of mixing 

include impacts not only on transport of matter, but also on renewable energy initiatives since 

hydrokinetic energy is dependent on the velocities to the third power (Lalander et al., 2013) and 

likely to be strongly impacted by the presence of strong instabilities.  

 

Figure 2.1. Simple schematic of the depth averaged along-channel mean stable flow (left), 
unstable linear flow (middle), and unstable non-linear flow with the spin-off of vorticities (right) 
through a bounded channel. 

 

Linear instability analysis has previously been applied to alongshore currents on the 

continental shelf, nearshore and estuarine environments. Niiler and Mysak (1971) first examined 

barotropic non-divergent oscillations along the continental shelf in the western North Atlantic 

Ocean driven by the potential vorticity structure. Bowen and Holman (1989) modified Niiler and 

Mysak's (1971) dispersion equation for the instability motions by ignoring the Coriolis force and 

rescaling the flow to be representative of wave-driven alongshore currents in the surf zone. The 
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resulting instabilities were characterized as highly coherent, alongshore propagating, horizontal 

wave-like motions that are dependent on the longshore current strength, shear, and direction 

(Bowen and Holman, 1989; Dodd et al., 2000; Baquerizo et al., 2001).  Characteristic frequencies 

are of order of magnitude, O, (10-3 – 10-2 Hz), with alongshore wavelengths of O(102 m), and were 

first observed in the nearshore by Oltman-Shay et al. (1989).  These low frequency motions are 

distinguished from alongshore progressive, low frequency surface gravity waves (i.e. edge and 

leaky waves) in that the wavenumbers are much larger than the lowest mode edge waves, and the 

instability surface elevations are negligible (Oltman-Shay et al., 1989; Bowen and Holman, 1989; 

Dodd and Thornton, 1990; Dodd et al., 1992).  Linear instabilities are non-dispersive as the phase 

speed, cp, does not depend on the frequency, but instead varies linearly as a fraction of the 

magnitude of the maximum current, Vmax, varying between 0.25 < cp/Vmax < 0.9 based on 

theoretical, observational, and numerical studies (Oltman-Shay et al., 1989; Bowen and Holman, 

1989; Dodd et al., 1992, 2000; Falqués and Iranzo, 1994). Similar scales of motion are expected 

in the tidal inlet as that in the nearshore while the forcing of the mean flow is not wave-driven and 

instead primarily forced by the tidal-induced pressure gradient at the inlet mouth. 

Work in riverine environments has extensively looked at instabilities that lead to bed forms 

(Callander, 1969; Nelson, 1990; Seminara, 2010), channel meandering or channel braiding 

(Blondeaux and Seminara, 1985; Parker and Andrews, 1986; Lanzoni and Seminara, 2006; 

Seminara, 2010), as well as instabilities that develop as a result of flow around headlands (Signell 

and Geyer, 1991).  Analysis of both the vorticity balance along with the transfer of kinetic energy 

between the mean flow and turbulence gave insight into the dynamics of cross-stream circulation 

cells and resulting streamwise vortical motions that arise in curved channel flows (Blanckaert and 

De Vriend, 2004).  In our theoretical work, the straight channel is assumed alongshore uniform 
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with non-erodible banks and bed boundaries, and the motions are progressive; therefore, this 

analysis focuses on the mean flow and not on the sediment transport and subsequent channel and 

bedform migration resulting from instabilities. Here, we solve the linear stability analysis for 

unstable (complex) frequencies and real-valued wavenumbers, greatly simplifying the 

mathematics (similar to nearshore applications with steady, uniform alongshore currents and 

straight and parallel bathymetric contours; Dodd and Falqués, 1996). 

Estuarine work has focused on baroclinic shear instabilities in the flow produced from 

stratified density layers leading to vertical mixing and reduction in vertical variations in shear and 

stratification (Geyer and Smith, 1987; Seim and Gregg, 1994; Bourgault et al., 2001; Geyer et al., 

2010).  However, Mied et al. (2006) examined the horizontal stability of quasi-barotropic, inviscid, 

tidally driven flow through a straight channel. They found the analytical stability solutions aligned 

with remote observations of instabilities that had O(1 km) wavelengths and growth time scales on 

the order of 10% of the half period of the dominant M2 tidal constituent and the vortices remained 

present for more than half of the M2 tidal cycle leading to mixing of the flow across the river for 

several hours. It is expected that the analytical solutions solved in the bounded tidal inlet herein 

will result in similar growth time scales relative to the M2 period. 

In this work, the temporal variability of tidal currents in narrow inlets and channels with 

lateral shear in the mean along-channel tidal current is examined.  The mean tidal current is defined 

herein as the average observed flow over a quasi-steady state during a flooding or ebbing tide.  The 

cross-channel shear leads to unstable currents that may strongly modulate the flows at time scales 

much less than used to compute the mean consistent with similar situations on the continental shelf 

and surf zone (Niiler and Mysak, 1971; Bowen and Holman, 1989; and many others).  We 
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analytically examine the expected behavior of linear barotropic instabilities for idealized cross-

channel geometries that lead to a generalized solution for typical inlets in shallow water. 

2.3 Methods 

Following Bowen and Holman (1989), an analytical linear instability analysis was conducted that 

depends on the cross-shore gradient of the background potential vorticity in order to determine the 

expected wavenumbers, k, and frequencies, σ, of the fastest growing shear instability modes.  

Starting with the equations for shallow water (depth integrated) two-dimensional (x and y-

direction) horizontal momentum equations, the following assumptions are applied: (1) simple 

linearized bottom friction, (2) horizontal eddy viscosity is neglected, (3) the Coriolis force is 

neglected since a characteristic shear instability frequency, σ,  is much greater than Coriolis, 𝑓, at 

mid-latitude (i.e. 𝜎
𝑓
 ≈

10−2

10−4 = 102 m), (4) the flow is non-divergent (rigid-lid) since horizontal fluxes 

are assumed to be larger than the temporal rate of change in sea surface elevation, (5) the 

perturbation velocities are small compared to the mean tidal current (here, the mean is calculated 

over a quasi-steady state of a flooding or ebbing tide), (6) second order nonlinear terms are omitted, 

and (7) the along-channel length is infinitely long.   

The rigid lid approximation based on non-divergent flow is considered to be a good 

assumption since the relative magnitude of the non-rigid lid terms are small for typical scales of 

inlet depths and current magnitudes.  The numerical analysis by Falqués and Iranzo (1994) found 

that the surface oscillations due to the instabilities are small and more specifically, the rigid lid 

assumption is valid for small local Froude numbers, << 1, which corresponds to gravity waves 

having shorter periods than the instability motions. Here, the Froude number is small, F  ≈ 1

10
<<

1 based on characteristic scales of inlet depths and current velocity. 
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In this analytical approach, the horizontal eddy mixing terms are neglected and dissipation 

is through the linear bottom friction term.  It is expected that bottom friction will suppress the 

instabilities by reducing the initial growth rate of all of the unstable modes and reduce the range 

of unstable wavenumbers (Dodd et al., 1992; Falqués and Iranzo, 1994; Özkan-Haller and Kirby, 

1999; Baquerizo et al., 2001).  Although Falqués and Iranzo (1994) found the dampening effects 

of eddy viscosity on the frequencies and phase speeds of the instabilities to be greater than bottom 

friction for both planar and barred beaches, in shallow estuaries bottom friction is believed to be 

the dominate dissipation force of tidal flow (Scarlatos, 1993; Geyer et al., 2000). Furthermore, 

Özkan-Haller and Kirby (1999) found the mixing caused by the instabilities to be stronger than 

the mixing induced by the eddy viscosity terms. Based on results found by Falqués and Iranzo 

(1994) and Özkan-Haller and Kirby (1999), it is expected that the inclusion of eddy mixing would 

dampen the growth rates causing less energetic, longer along-channel motions due to a decrease 

in the high-wavenumber oscillations, and slightly slower phase speeds. 

Under our assumptions, the depth-integrated horizontal momentum equations including 

bottom shear stress are given by 

 𝑢′𝑡 +  𝒖 ∙  ∇𝑢′ =  −𝑔𝜂𝑥 − 𝜏𝑥
𝑏 

(2.1) 
 𝑣′𝑡 +  𝒖 ∙  ∇𝑣′ =  −𝑔𝜂𝑦 − 𝜏𝑦

𝑏 

where x and y are the cross-channel and along-channel directions, respectively, the total flow, 𝒖, 

is a combination of the steady along-channel tidal current, V(x), and a small perturbation of the 

flow, 𝑢′(𝑥, 𝑦, 𝑡) and 𝑣′(𝑥, 𝑦, 𝑡), where 𝑢′, 𝑣′<< V, the sea surface elevation is 𝜂(x,y,t), and g is 

gravity. The bottom shear stress, 𝜏𝑥
𝑏 , 𝜏𝑦

𝑏, are parametrized similarly to Özkan-Haller and Kirby 

(1999) 
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𝜏𝑥

𝑏 ≡ 
𝜆

ℎ
𝑢′ 𝜏𝑦

𝑏 ≡ 
𝜆

ℎ
𝑣′ (2.2) 

with the bottom friction, λ =  𝐶𝑓|𝑉𝑚|, defined by a linear bottom drag coefficient, 𝐶𝑓, and the 

maximum current, 𝑉𝑚.  For this analysis, the maximum velocity is set to 1 m/s, so λ =  𝐶𝑓 and 

ranges from 0 (i.e. inviscid flow) to 0.01, consistent with the range of estimates of bed shear stress 

coefficients in the nearshore environment (0.001 – 0.009; Thornton and Guza, 1986; Whitford and 

Thornton, 1996; Özkan-Haller and Kirby, 1999), as well as in tidal estuaries (0.001 – 0.01; 

Ludwick, 1975; Winterwerp and Wang, 2013), with similar Vm and water depth.  

Since the flow is considered to be non-divergent and incompressible, the continuity 

equation is reduced to 

 ∇ ∙ (ℎ𝒖) = 0 (2.3) 

and the velocity can be represented in terms of a stream function  

 (ℎ𝑢′) =  −𝜓𝑦 

(2.4) 
 (ℎ𝑣′) = 𝜓𝑥 

where ∇ ×  𝜓 = (ℎ𝒖).   

Cross-differentiating and subtracting the momentum equations (2.1) cancels the sea surface 

elevation, , and substituting in the stream function leads to 

 
(
𝜕

𝜕𝑡
+ 𝑉

𝜕

𝜕𝑦
+ 

𝜆

ℎ
) (

𝜓𝑦𝑦

ℎ
+ (

𝜓𝑥

ℎ
)

𝑥
) =  𝜓𝑦 (

𝑉𝑥

ℎ
)
𝑥
− 

𝜓𝑥

ℎ
(
𝜆

ℎ
)
𝑥
 (2.5) 

This equation can be shown to be the linearized version of the conservation of potential vorticity  
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 𝐷

𝐷𝑡
(s) =  (

𝜕

𝜕𝑡
+ 𝒖 ∙  ∇) (

 + Vx

ℎ
) =  −

𝜆

ℎ



ℎ
 − 𝑣′ (

𝜆

ℎ
)

𝑥
  (2.6) 

Where s ≡ 
 +Vx

ℎ
  and  = (𝑣′

𝑥 − 𝑢′
𝑦). When the flow is inviscid and thus λ = 0, 𝐷

𝐷𝑡
(s) =  0.  

The potential vorticity, s, is comprised of the relative potential vorticity, 
ℎ
, and the background 

potential vorticity, 𝑉𝑥

ℎ
, which here is dependent on the shear of the current, 𝑉𝑥 (Bowen and Holman, 

1989; Dodd and Thornton, 1990; Baquerizo et al., 2001).  The right hand side of (2.6) shows the 

dependence of the growing instabilities on the relationship between the perturbation velocities and 

potential vorticity modified by the friction force (Dodd et al., 2000).  

The solution is assumed to be wave-like  

 𝜓 = 𝑅𝑒{𝜓(𝑥)𝑒𝑖(𝑘𝑦−𝜎𝑡)} (2.7) 

where Re indicates the real components.  The phase speed, c,  

 𝑐 =  
σ

𝑘
 (2.8) 

is made up of a complex radian frequency, σ, and a real wavenumber, k, since growth of the 

motions in time is assumed. It is acknowledged that spatially growing modes (vs. temporal) may 

be more representative of the physical motions; however, Dodd and Falqués (1996) have shown 

that the temporal modes are simpler to solve mathematically, yet are still good predictors of the 

spatially fastest growing modes. Furthermore, they showed that the spatial growth rates can be 

estimated from the temporal growth rates using relationships developed by Gaster (1962) given 

small growth rates and no singularities in the complex wavenumber – frequency domain. 

When σ has a positive imaginary solution, an instability may develop with exponentially 

growing amplitude (Niiler and Mysak, 1971; Bowen and Holman, 1989; Oltman-Shay et al., 
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1989).  The necessary criteria for unstable solutions is the presence of an extremum in the 

background potential vorticity (Niiler and Mysak, 1971; Bowen and Holman, 1989; Dodd et al., 

1992; Baquerizo et al., 2001; Vallis, 2017).  Substitution of the assumed wave-like solution (2.7) 

into the conservation of potential vorticity (2.5) yields 

 
(𝑉 − 

𝑖

𝑘

𝜆

ℎ
−  𝑐) (𝜓𝑥𝑥 − 𝑘2𝜓 − 𝜓𝑥

ℎ𝑥

ℎ
) = ℎ𝜓 (

𝑉𝑥

ℎ
)
𝑥
−

𝑖

𝑘

𝜆

ℎ

ℎ𝑥

ℎ
𝜓𝑥 (2.9) 

also given in Dodd et al. (1992). Analytic solutions to (2.9) for arbitrary bathymetry and spatial 

current structure must be solved numerically for natural situations (as in Dodd et al., 1992).  

However, the general behavior of the linear instabilities can be solved analytically for simple flat 

bottom profiles with linear alongshore current shear within each cross-inlet region (as in Niiler 

and Mysak, 1971; Bowen and Holman, 1989; Baquerizo et al., 2001).   

In our work, we discretize the cross-inlet profile into four regions, each defined by a flat 

bottom profile with given depth and width, and current structure confined to the center two regions 

with variable maximum location (Figure 2.2).  The simple inlet configuration can be altered to 

approximate many natural inlet geometries through the various variables; modifying region widths 

(𝑥0, 𝛾1, 𝛾2) and depths (h, 𝛼0, 𝛼1, 𝛼2, 𝛼3) allows for the presence (or absence) of lateral 

topographic shelves, the maximum current velocity magnitude, Vm, can be changed and the 

fractional location of Vm across the inlet, δ, which can be placed on the shelf, at the shelf break, or 

in the main channel.  Figure 2.2 shows the parameters defining the geometry and the associated 

background potential vorticity field.  Note that in the presence of regions on either side of the 

channel where the mean along-channel current goes to zero, there are two extremums in 

background potential vorticity (Figure 2.2, lower panel) due to shear on either side of the maximum 

current leading to the possibility of instabilities on either side of the maximum current.  
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Figure 2.2. The top panel shows the along-channel depth integrated tidal current velocity (V, 
orange) variation across a bounded channel in the x-direction, which is broken down into four 
regions (labeled and separated by black dotted lines at x1, x2, and x3, which are defined in Table 
A-1 in Appendix A). The width of the tidal current is set to x0. The maximum tidal current is set 
to Vm and occurs at 𝒙𝟐= 𝒙𝟎(𝜸𝟏 +  𝜹) allowing for variability in shear through δ. The depth (h) is 
flat within each region, but can vary from region to region as a function of alpha (α). The bottom 
panel shows the background potential vorticity (𝑽𝒙

𝒉
) across the channel in the x-direction. 

 

 In each of the four regions, (2.9) reduces to the Rayleigh equation 

 𝛹𝑥𝑥 − 𝑘2𝛹 = 0 (2.10) 

with solutions given for each region as 

Region 0: 𝜓0 = 𝐴0 sinh(𝑘𝑥)   
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Region 1: 𝜓1 = 𝐴1 sinh(𝑘𝑥) + 𝐵1 cosh(𝑘𝑥)   

Region 2: 𝜓2 = 𝐴2 sinh(𝑘𝑥) + 𝐵2 cosh(𝑘𝑥)  (2.11) 

Region 3: 𝜓3 = 𝐴3[sinh(𝑘𝑥) − tanh(𝑘𝑥𝑚𝑎𝑥) cosh(𝑘𝑥)]   

where xmax is the total cross-inlet distance. 

Coefficients, A0, A1, B1, A2, B2, A3, are found by matching conditions at the region 

boundaries and assuming that the stream function and the sea surface elevation are continuous 

(following Bowen and Holman, 1989; Baquerizo et al., 2001), resulting in an additional boundary 

condition given by the following, where the subscript i denotes the region. 

 
𝜂𝑖 =  −  

1

𝑔𝛼𝑖ℎ
[(𝑉 −  

𝑖

𝑘

𝜆

𝛼𝑖ℎ
−

𝜎

𝑘
)  𝜓𝑖𝑥 − 𝑉𝑥𝜓𝑖] (2.12) 

Boundary conditions at region borders are given in Appendix A: Boundary Conditions.  

Solutions for the coefficients were found and are given in Appendix B: Coefficient 

Equations.  Solutions for the complex radian frequency give a third-order dispersion equation of 

the form 𝑎𝜎3 + 𝑏𝜎2 + 𝑐𝜎 + 𝑑 = 0 (Appendix C: Cubic Solution) that depends on wavenumber, 

maximum current magnitude, horizontal shear of the current, cross-inlet geometry, and linear 

friction coefficient, i.e. σ = f(k, Vm, δ, 𝑥0, λ, h, 𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛾1, 𝛾2).  The three roots to the cubic 

polynomial can be comprised of either three real roots and zero imaginary roots, or one real root 

and two imaginary roots that are complex conjugates.  In order for an exponentially growing 

instability to develop, there must be a positive imaginary root to the cubic dispersion equation.  

The wavenumber and frequency combinations that lead to unstable solutions for various shear, 

inlet geometries, depth profiles, and friction coefficients are discussed in the results section below. 
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 For the fastest growing modes and initial growth rates, the stream function and resulting 

velocities are calculated using (2.7) and (2.4), respectively.  Following Bowen and Holman (1989), 

the phase of the velocities are also calculated using the following 

 
𝜃𝑢′ = tan−1 (

𝜓𝑟𝑒

𝜓𝑖𝑚

) 𝜃𝑣′ = tan−1 (
−𝜓𝑥𝑖𝑚

𝜓𝑥𝑟𝑒

) 
(2.13) 

 𝜃𝑢𝑣 = 𝜃𝑣′ − 𝜃𝑢′ (2.14) 

 The time averaged (indicated by the overbar) Reynolds shear stress of the perturbation 

velocities (2.4) is calculated by 

 
𝑆𝑦𝑥𝑗

= ∫ 𝑢′ 𝑣′ 𝑑𝑥
𝑥

0

 (2.15) 

and shows the relative magnitude of mixing of along-channel (y-direction) momentum across the 

channel (x-direction) resulting from the shear instabilities and subsequent transferring of energy 

from the mean flow to the perturbed flow.  The Reynolds shear stress is solved within each region, 

where the depth, h, is constant, and the region boundaries are 𝑥𝑗 = [0, 𝑥1, 𝑥2, 𝑥3, 𝑥𝑚𝑎𝑥]. 

 
𝑆𝑦𝑥 = 

𝑘

2ℎ2
∫ 𝜓𝑖𝑚(𝜓𝑟𝑒)𝑥 − 𝜓𝑟𝑒(𝜓𝑖𝑚)𝑥 𝑑𝑥

𝑥𝑗+1

𝑥𝑗

 (2.16) 

The wavenumber, k, is chosen to be the wavenumber associated with the fastest growing mode of 

the initial growth rates.  In order to analytically account for the time average and simulate 

averaging over a wave period, the Reynolds stress was averaged over one wavelength associated 

with the fastest growing mode, Lmax = 2𝜋

𝑘𝑚𝑎𝑥
, in the along channel, y, direction similar to methods 

used by Dodd and Thornton (1990) and Church et al. (1992). 
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2.4 Results 

The unstable modes occur when one of the three roots of the tertiary dispersion equation has a 

positive imaginary component.  The solution (Appendix C: Cubic Solution) yields a range of 

positive imaginary frequencies associated with a range of wavenumbers that make up a continuum 

of unstable modes. The individual mode within this domain with the maximum imaginary 

frequency is referred to as the fastest growing mode (FGM) and has an associated wavenumber, 

kFGM.  Changes in the variables (shear, inlet geometry, bathymetry, and friction) affect the range 

of wavenumbers associated with positive imaginary radian frequencies as well as the fastest 

growing mode as discussed in more detail below.   

2.4.1 Comparison to Prior Work 

In order to check the dispersion relation solution (Appendix C: Cubic Solution), the cubic equation 

of the form 𝑎𝜎3 + 𝑏𝜎2 + 𝑐𝜎 + 𝑑 = 0 was reduced to the quadratic solution (𝑎𝜎2 + 𝑏𝜎 + 𝑐 = 0) 

that Bowen and Holman (1989) solved in the nearshore over a flat bottom with no friction (λ = 0; 

Appendix D: Reducing the Cubic Equation to Quadratic). This is done by setting Region 0 width 

to zero and Region 3 width to infinity, i.e. 𝛾1 = 0, 𝛾2 = ∞, respectively.  Numerically, if Region 

3 is set to a width of π or greater, the result is the equivalent to setting the width to infinity since 

tanh(π) ≈ 1.  To set a flat bottom across the channel in all regions, the fraction of depth, αih, in 

every region is set to one, 𝛼0 = 𝛼1 = 𝛼2 = 𝛼3 = 1. The resulting quadratic equation matches 

Bowen and Holman (1989) along with the complex radian frequency solutions for a range of real 

wavenumbers.   

 Baquerizo et al. (2001) extended Bowen and Holman’s analysis by adding a fourth region 

and thereby having an additional extremum in the background potential vorticity and found the 
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dispersion equation to be cubic, as we did here. The Baquerizo et al. (2001) solutions can be 

replicated numerically using the cubic dispersion equation solved here for the tidal inlet problem 

by varying Region 0 width, allowing for a seaward boundary extending to infinity, setting the 

bathymetry to be flat and ignoring friction.  It is also found that with very narrow Region 0 widths, 

two unstable curves emerge in the positive imaginary radian frequencies, which Baquerizo et al. 

(2001) attributed to the additional extremum in the background vorticity allowing for instabilities 

to be generated from both the frontshear (i.e. shear on the shoreward side of the maximum current) 

and backshear (i.e. shear on the seaward side of the maximum current), respectively. For larger 

Region 0 widths, there is one unstable curve allowing for a larger range of unstable wavenumbers 

similar to the tidal inlet solutions.  

 In Niiler and Mysak's (1971) continental shelf problem, four regions were defined leading 

to two extremums in background potential vorticity.  They varied the bathymetry allowing for the 

first two regions in the west to be shallower mimicking a shelf and the last two regions in the east 

to be deeper. The maximum current occurred on the edge of the shelf.  This can be simulated 

numerically in the tidal inlet problem by setting the depth in Regions 0 and 1 to half of the total 

depth (i.e. 𝛼0 = 𝛼1 = 0.5) in Regions 2 and 3 (i.e. 𝛼2 = 𝛼3 = 1.0) and having equal shear in 

Regions 1 and 2 (i.e. δ = 0.5), putting the maximum current speed on the edge of the shelf.  Region 

0, 1, and 2 widths are all equal and Region 3 width extends to infinity as a seaward boundary (i.e. 

𝛾1 = 0.5, 𝑥0 = 100, 𝛾2 = ∞).  Simulating the continental shelf problem using the tidal inlet 

solution would serve as another check on the cubic frictionless solution; however in order to 

exactly replicate Niiler and Mysak's (1971) instability motions, the Coriolis force would need to 

be included in the potential vorticity and the scales of motion would be need to be rescaled, 

considerably complicating the analysis (and not pursued herein). 
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Compared to the nearshore problem, the bounded tidal inlet over a flat bottom has a wider 

range of wavenumbers that have unstable roots, specifically at low wavenumbers (Figure 2.3). For 

shear profiles δ = 0.1 – 0.5 over a flat bottom, the initial growth rate is faster in the bounded tidal 

inlet than the FGM in the nearshore (Figure 2.3).  However, shear profiles δ = 0.6 – 0.9 show the 

opposite where the nearshore growth rate exceeds the tidal inlet growth rate (Figure 2.3).  Both the 

bounded inlet and nearshore have the FGM under strong shear conditions, which aligns with prior 

results (Bowen and Holman, 1989; Baquerizo et al., 2001). The bounded inlet shows symmetry in 

the frequency solutions when changing the shear profile, δ, from one side of the inlet to the other, 

e.g. δ = 0.1 = 0.9, δ = 0.2 = 0.8, and so on.  This is attributed to having the flow bounded on either 

side versus in the nearshore where there is an exponentially infinite seaward boundary.  When the 

nearshore is broken into three regions, the seaward shear is found to be more important than the 

shoreward shear (Dodd and Thornton, 1990).  However, Baquerizo et al. (2001) added a fourth 

region to the nearshore and found both the seaward and shoreward shear can both be important to 

the growth of instabilities, similar to results in the bounded tidal inlet.  
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Figure 2.3. The growth rates (y-axis), inverse wavelengths (top x-axis) and corresponding 
wavelengths (bottom x-axis) of unstable modes in the bounded tidal inlet (left plot) and nearshore 
(right plot) for a variety of shear profiles (δ). The maximum velocity (Vm) was set to 1 m/s, current 
width was set to 100 m, the bathymetry is flat, and the flow is inviscid for each. The shelf widths 
for Region 0 and 3 were set to 0.2 for the bounded tidal inlet. Note, the frequency solutions are 
symmetric in the tidal inlet, e.g. δ=0.1=0.9 (blue line), δ=0.2=0.8 (orange line), and so on. 

 

2.4.2 Bounded Tidal Flow Solution 

The FGM of instabilities of bounded tidal currents are solved over a range of wavelengths (100 – 

3000 m) while setting typical values for the maximum current speed, Vm, to 1 m/s, and width of 

tidal current, x0, to 100 m.  Several runs were completed allowing changes in one variable at a 

time, i.e. shear (δ = 0.1 – 0.9), shelf widths (𝛾1 = 𝛾2 = 0.1 − 1.0), shelf depths (𝛼0 = 𝛼3 = 0.1 −

1.0, while 𝛼1 = 𝛼2 =  1),  and friction (λ = 0 – 0.01). While manipulating one variable, the default 

case for the remaining variables is chosen to be a symmetric shear profile (i.e. δ = 0.5), shelf widths 

to be 20% of the current width (𝛾1 = 𝛾2 = 0.2), flat bathymetry (𝛼0 = 𝛼1 = 𝛼2 = 𝛼3 = 1.0), and 

no friction (λ = 0).   
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For bounded tidal currents with inviscid flow, the characteristic FGM wavelengths are 

O(102 m), periods are O(102 - 103 s), and growth rates are O(10-3 - 10-2 s-1), with phase speeds 

approximately one third of the maximum velocity.  In the presence of friction, the growth rates are 

slower and the range of unstable wavenumbers is reduced (Figure 2.4).  The FGM occur when the 

shear is strongest (i.e. δ = 0.1 or 0.9) regardless of what side of the channel it is on (i.e. in Region 

1 where δ < 0.5 or Region 2 where δ > 0.5), the shelf widths are large (i.e. 𝛾1 = 𝛾2 > 0.5), the 

bathymetry is flat across the inlet (i.e. 𝛼0 = 𝛼1 = 𝛼2 = 𝛼3 = 1.0), and there is no bottom friction 

(λ = 0; Figure 2.5). Faster growth rates are typically associated with larger wavenumbers (smaller 

wavelengths; Figure 2.5). For the case of increasing friction, the wavenumber associated with the 

fastest growing mode (which reduces with increasing friction) remains the same and the range of 

wavenumbers with unstable modes decreases (Figure 2.4 - Figure 2.6).  Friction acts to suppress 

the current magnitude, current shear, and the resulting instabilities uniformly across all unstable 

modes (as in Dodd et al., 1992) leading to a smaller range of unstable wavenumber modes and a 

slower growth rate (Figure 2.4 and Figure 2.6). For any given shear and shelf width, the growth 

rates are slowed and the wavelengths are not modified in the presence of increasing friction (Figure 

2.6).  
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Figure 2.4. The positive imaginary roots to the tertiary dispersion equation with increasing friction 
(λ) for three different shear (δ) cases (strong, top panel; medium, middle panel; symmetric current 
and low, bottom panel). Note the change in scale of σim in each panel. 
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Figure 2.5. The fastest growing mode positive imaginary radian frequency (right y-axis; blue) 
and associated wavenumber (left y-axis; black) under changes in shear (top panel), shelf widths 
(second panel), shelf depths (third panel), and friction (bottom panel) given all other variables 
are set to the default case. 

 

When the bathymetry tends towards a flat bottom, the growth rates are fastest and the 

wavelengths become smaller (Figure 2.7). In other words, as the shelf depths on either side of the 

main channel shoal, the growth rates of the shear instabilities are slower and wavelengths 

associated with the fastest growing mode are longer (Figure 2.5 and Figure 2.7).   For a symmetric 

shear profile, δ = 0.5, when Region 0 depth is set to be shallower than Region 3 depth (e.g. 𝛾1 =
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0.3, 𝛾2 = 0.7) with the deeper channel in Region 1 and 2, the results are equivalent to a shallower 

shelf in Region 3 and slightly deeper shelf in Region 0 (i.e. 𝛾1 = 0.7, 𝛾2 = 0.3). This aligns with 

the frequency results being symmetric with changes in shear structure over a flat bottom. For a 

stair-step bathymetry, i.e. Region 0 is the shallowest moving down to Region 3 being the deepest, 

the fastest growing mode is slower than the flat bottom case and faster than having shallow shelves 

(𝛾1 = 𝛾2 ≤ 0.7) on either side of the channel.   

 

 

Figure 2.6. The growth rates (left column) and wavelengths (right column) of the fastest 
growing modes under varying friction (y-axis) with shear (top row) and shelf width (bottom 
row).  
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Figure 2.7. The growth rates (left column) and wavelengths (right column) of the fastest growing 
modes under varying shelf depth with shear (top row), shelf width with shear (middle row) and 
shelf width with shelf depth (bottom row). All cases are run with no friction (i.e. λ = 0). 

 

For a given cross-inlet current profile, bathymetry, and shelf width, the stream function 

and resulting total velocity pattern of the fastest growing shear wave mode is found (Figure 2.8).  

The stream function shows the progressive nature of the shear instability moving along the channel 

and the velocity vectors show the meandering of the mean tidal current due to the instabilities. 
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Figure 2.8. The real component of the stream function (left) and the total velocity (right) along 
the bounded tidal inlet normalized by the maximum velocity (Vm). The shear is set to be 
symmetrical (δ = 0.5), the shelf widths in Regions 0 and 3 are set to 20% of the width of the tidal 
current (100 m), topographic shelves (50% total depth) are in regions 0 and 3, and the flow is 
inviscid (λ = 0). 

 

Following Bowen and Holman (1989), the velocity phase differences, 𝜃𝑢𝑣, are plotted as a 

function of the cross-inlet distance indicating possible horizontal mixing in regions that have a 

phase change (Figure 2.9). When the velocity components are in quadrature (i.e. 90° apart), no 

mixing occurs (as in Regions 0 and 3) and when the phase gets closer to zero (Regions 1 and 2), 

stronger mixing is expected. This is supported with the calculation of the mixing magnitude 

through the cross-channel Reynolds shear stress, 𝑆𝑦𝑥, (Figure 2.10). The mixing magnitude 

increases in areas of strong shear, which aligns with the velocity phase differences nearing zero 

(Figure 2.10). The mixing, 𝑆𝑦𝑥, is always zero in Regions 0 and 3 where the perturbation velocities 
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are in quadrature (Figure 2.10). Stronger shear, wider shelf widths, and deeper shelves (nearing a 

flat bottom) lead to the strongest mixing while weak to no mixing occurs in regions with shallow, 

narrow shelves and weak shear. The mixing magnitude was calculated using the initial perturbation 

velocities. When the cross-channel velocity structure is asymmetrical (δ < 5 or δ > 5), the mixing 

magnitude is stronger in the region with higher shear.  The Reynolds shear stress is the same 

magnitude whether the asymmetry occurs on one side of the channel or the other (e.g. δ = 8 or δ = 

2), however the sign of the stress is opposite due to the sign of the gradient in the mean velocity 

profile between Region 1 and Region 2.  

 

 

Figure 2.9. The cross-phase of the velocities, u and v, for various shear cases (first row), shelf 
widths (second row), shelf depths (third row), and friction (bottom row) with all other variables 
set to the default case. 
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Figure 2.10. The Reynolds shear stress (Syx) for various shear cases (first row), shelf widths 
(second row), shelf depths (third row) and friction (bottom row) with all other variables set to the 
default case inlet normalized by the maximum velocity (Vm). Note, the y-axis scaling is different 
in the first row, first column (δ = 0.2) and in the first row, last column (δ = 0.8) due to the large 
magnitudes.  

 

2.5 Discussion 

This theoretical analysis of unstable tidal currents flowing through a bounded channel is general, 

and under different parameter choices will reproduce the results for instabilities of longshore 

currents in the surf zone (such as Bowen and Holman, 1989; Baquerizo et al., 2001). The analytical 

instability analysis differs here from prior work in the boundary conditions and that forcing of the 

currents is from tidal pressure gradients and not incident gravity waves.  Specifically, this 

analytical work deviates from  Niiler and Mysak (1971), Bowen and Holman (1989), Baquerizo et 

al. (2001), and Mied et al. (2006) in that: (1) the flow here is bounded by land on either side of the 

channel versus having an infinitely extending seaward boundary, (2) the depth is variable across 
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all regions, (3) the widths of the cross-channel regions are variable, and (4) linear bottom friction 

is included.  Similar to Niiler and Mysak (1971) and Baquerizo et al. (2001), an additional region 

in the cross-channel direction (Region 0, Figure 2.2) here leads to two extremums in the 

background potential vorticity, which is a necessary condition for unstable flow.  This additional 

extremum allows shear instabilities to occur on either side of the maximum current unlike the 

analysis by Bowen and Holman (1989), which only allows for instabilities supported by the 

seaward shear of the current.   

The characteristic wavelengths O(102 m), periods O(102 - 103 s), growth rates O(10-3 - 10-

2 s-1), and phase speeds (~Vm/3) of instabilities of bounded tidal currents are of the same order of 

magnitude as the analytical solutions found in the nearshore (Bowen and Holman, 1989; Dodd and 

Thornton, 1990; Dodd et al., 1992; Özkan-Haller and Kirby, 1999; Dodd et al., 2000; Baquerizo 

et al., 2001).  These motions are non-dispersive as seen by the nearly linear dispersion relationship 

between the real radian frequency and the wavenumber.  The analytical unstable e-folding time 

scale,1 𝜎𝑖𝑚
⁄ , associated with the growth rates of the fastest growing modes is approx. 2 – 5 min, 

which defines the time scale at which the exponentially growing motions increase by a factor of e 

(~2.7).  This e-folding time scale is less than 1% of the half period of the dominant M2 tidal 

constituent (6.21 hour) supporting the assumption of steady flow as discussed and found by Mied 

et al. (2006).  Consistent with prior nearshore findings (Bowen and Holman, 1989; Dodd et al., 

1992; Putrevu and Svendsen, 1992; Özkan-Haller and Kirby, 1999), areas of strong lateral shear 

lead to faster growth rates of instabilities of bounded tidal currents and a larger range of unstable 

wavenumber modes. Overall, shear is the dominant factor affecting the fastest growing mode 

followed by friction, bathymetry, and finally shelf width as seen by the changes in radian frequency 

magnitude in Figure 2.5 - Figure 2.7. 
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Consistent with prior findings (Dodd et al., 1992; Özkan-Haller and Kirby, 1999), friction 

acts directly to linearly damp the imaginary frequency of the fastest growing mode and limit the 

range of unstable wavenumbers (Figure 2.4 and Figure 2.5). The influence of friction on the radian 

frequency is seen mathematically by rearranging the first term in Equation 2.9, (𝑉 + 
1

𝑘
(𝜎 − 

𝑖𝜆

ℎ
)). 

Thus, for growth of the instability, σim > 𝑖𝜆
ℎ

.  

Once the shelf width reaches approximately half of the mean current (γ1 = γ2 ≈ 0.5), the 

change in growth rates and wavenumbers plateau indicating any additional increases in shelf 

widths will no longer have a significant impact on the instability growth rates and associated 

wavenumbers (Figure 2.5).  If the shelf widths continue to extend beyond γ1 = γ2 ≥ π, it is 

essentially mimicking an open seaward boundary on either side of the channel due to the 

hyperbolic tangent converging to one.  As a consequence, instabilities of flow through wide 

estuaries are not strongly impacted by the lateral boundaries and act similarly to unbounded 

solutions. 

The spin up time to reach finite amplitude is characterized by the growth rate of the FGM 

and given by 1/𝜎𝑖𝑚.  Dodd et al. (1992) found this to be approximately 300 – 400 s or in other 

words 1 – 2.5 wavelengths distance, consistent with the characteristic e-folding scales of 300 s or 

roughly half the wave period found by Bowen and Holman (1989). The spin up time for bounded 

tidal currents varies depending on the inlet geometry and friction, however for the symmetric case 

(i.e. inviscid flow, flat bottom, symmetric shear (δ = 0.5), narrow shelf widths (γ1 = γ2 = 0.2) the 

spin up is roughly 280 s or roughly a quarter of the period and approximately one wavelength 

distance, similar to the nearshore results.  Both Dodd et al. (1992) and Bowen and Holman (1989) 

mention how this significant spin up time relative to the period indicates that the small amplitude 

assumption that supports linearity will likely be quickly violated. Thus, numerical models are 
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needed to simulate and analyze the instability motions as they reach finite amplitude in order to 

account for the nonlinearities.  

For an instability to grow in time, the perturbed flow must gain energy in time, which 

requires a transfer of energy from the mean flow to the perturbed flow through the Reynolds 

stresses (Dodd and Thornton, 1990). Therefore, another condition for the presence of instabilities 

to develop is for the Reynolds stress to be negatively correlated with the current shear leading to a 

nonzero cross-shore gradient in the horizontal Reynolds stress (Dodd and Thornton, 1990; Dodd 

et al., 2000).  For the bounded tidal inlet problem, this occurs over the region covered by the mean 

flow (i.e. in Regions 1 and 2) indicating horizontal mixing and a transfer of energy across the 

channel, resulting in a modified cross-channel structure of the mean velocity profile and 

implications on fate and transport of organic and inorganic substances. In the exterior Regions (0 

and 3), the Reynolds stress is always zero since the cross-phase of the perturbation velocities are 

always in quadrature. This is consistent with results from Dodd and Thornton (1990) and Özkan-

Haller and Kirby (1999) who attributed the Reynolds stress equaling zero to the periodicity in the 

longshore direction. 

Instabilities of the mean flow have long been thought to provide an efficient mechanism 

for mixing momentum across the shore or channel (Bowen and Holman, 1989), and several 

nearshore studies found that mixing magnitudes are indeed large in the presence of instabilities 

(Dodd and Thornton, 1990; Church et al., 1992; Putrevu and Svendsen, 1992), consistent with the 

analytical results shown here. Furthermore, studies have found that mixing due to instabilities can 

be even stronger than other mechanisms of mixing such as turbulence or mixing due to eddy 

viscosity terms (Özkan-Haller and Kirby, 1999).  Interestingly, Özkan-Haller and Kirby (1999) 

noted that the cross-shore location of the maximum velocity did not change as a result of the 
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presence of instabilities and the resulting momentum mixing.  This suggests that the mixing of 

momentum across the channel in opposite directions in Regions 1 and 2 leads to a smoothed 

velocity profile; the mixing is balanced either by a restoring force or is equally opposite in Regions 

1 and 2 in order for the location of the peak velocity to remain the same.  When the shear is 

symmetric (δ = 0.5) the mixing in Regions 1 and 2 is of equal magnitude and working in opposite 

direction balancing the forcing and smoothing the velocity profile.  However, when the shear is 

not symmetric (e.g. δ = 0.2), the mixing magnitude is stronger on one side of the maximum velocity 

(Vm) and moving the peak velocity location towards the boundary with higher current shear. Strong 

mixing in the region with strong shear (i.e. Region 1) would need to be balanced by the potential 

vorticity, 𝑉𝑥

ℎ
, restoring force.  As the location of the peak velocity is forced towards the shoal due 

to mixing and leads to stronger shear, potential vorticity acts to force the peak velocity back 

counteracting the mixing.  The potential vorticity profile is inversely proportional to the Reynolds 

shear stress and the two forces balance one another to conserve potential vorticity.   

This analytical analysis does not include an eddy viscosity term in the momentum 

equations (1), however Özkan-Haller and Kirby (1999) found the eddy viscosity term to be much 

smaller than mixing caused by the Reynolds shear stress. Based on Özkan-Haller and Kirby 

(1999), it is expected that the inclusion of eddy viscosity would dampen high-frequency 

oscillations as well as the growth rate of the FGM leading to less energetic motions further 

smoothing the initial cross-channel velocity structure. In nonlinear numerical models that include 

eddy viscosity, it is found that the width of the current increases in the presence of instabilities 

(Dodd et al., 2000). This suggests that the inclusion of eddy viscosity and nonlinearities would 

further modify the cross-inlet velocity structure, potentially allowing for mixing up onto the 

shelves in the lateral Regions. 
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2.6 Conclusions 

A tertiary solution was analytically found for the frequencies and wavenumbers of linear shear 

instabilities of a steady tidal current flowing through a bounded channel that includes the presence 

or absence of lateral shelves with variable widths and depths.  The radian frequencies and 

wavenumbers associated with the fastest growing modes are a function of the maximum velocity, 

cross-inlet velocity structure, inlet geometry including the shelf width and depth, and friction: σ = 

f(k, Vm, δ , 𝑥0, λ, h, 𝛼0, 𝛼1, 𝛼2,  𝛼3, 𝛾1, 𝛾2).  The solution is general in that the various parameters 

can be modified to simulate prior analytical work over simplified nearshore bathymetry.  The 

fastest growing shear instability modes have characteristic wavenumbers O(102 m), periods O(102 

- 103 s), growth rates O(10-3 - 10-2 s-1), and phase speeds (~Vm/3), consistent with prior findings in 

the nearshore environment (Bowen and Holman, 1989; Dodd et al., 1992; Özkan-Haller and Kirby, 

1999), perhaps not surprising considering the size of flow and current shear are very similar.  The 

instabilities are progressive and non-dispersive as seen by the nearly linear relationship between 

the real radian frequencies and wavenumbers. The fastest growth rates and largest range of 

unstable wavenumbers occur when the shear is strong, bathymetry is flat, shelves are wide, and 

flow is inviscid.  Strong shear is the dominant forcing for the instabilities, while friction acts to 

suppress the growth rates and limit the range of unstable wavenumber modes. As the growth rate 

increases as a result of varying the inlet geometry and/or the shear magnitude, the wavenumber 

associated with the fastest growing mode also increases (i.e. shorter wavelengths).  

The strongest mixing represented by the cross-channel Reynolds shear stress occurs under 

the same conditions that support the fastest growth rates and largest range of unstable 

wavenumbers (i.e. strong shear, flat bathymetry, wide shelves, inviscid flow).  The mixing of 

momentum across the channel under non-zero Reynolds stress due to shear instabilities modifies 
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the cross-inlet velocity profile, supports a transfer of energy from the mean flow to the perturbed 

flow, and likely significantly impacts estuarine dynamics, including the fate and transport of 

organic and inorganic matter.  
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CHAPTER III 

3 OBSERVATIONS OF INSTABILITIES OF TIDAL CURRENTS IN THE 

HAMPTON-SEABROOK INLET 

3.1 Abstract 

Strong cross-channel shear of tidal currents flowing through a bounded inlet can lead to 

instabilities in the flow, causing a meandering of the mean along-channel current and potentially 

the spinoff of large eddies. The resulting variability of the currents and vorticity may affect 

navigation, the transport of dissolved and particulate organic and inorganic matter, tidal energy 

resource assessments, and cause lateral mixing of momentum across the inlet. To estimate the 

wavenumbers of shear instabilities within the Hampton/Seabrook Inlet, NH, a spatially-lagged 

array spanning 389 m consisting of seven sensors measuring tri-directional currents and pressure 

were deployed along the ~3 m (NAVD88) depth contour for one week during the spring tide in 

May 2021. Using iterative maximum likelihood estimators, wavenumber-frequency spectra are 

estimated during 3-4 hour periods with approximately steady currents on both the flood and ebb 

tides. Dominant wavenumbers (± 0.002 - 0.02 m-1) of the low frequency motions (0.0006 - 0.01 s-

1) with corresponding wavelengths (± 314.2 – 3141.6 m) and periods (628.3 – 10472 s) are 

resolved and consistent with motions determined from a barotropic linear stability analysis. The 

instabilities are directed into the inlet on flood tides and out of the inlet on the ebbs, consistent 

with the expected propagation of unstable modes. The normalized velocity-to-pressure variance 

ratio at each station shows that the infragravity band is dominated by rigid-lid-like motions (R>>1) 

during both the flood and ebb tide. The lack of breaking wave group modulations within the inlet 
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and the presence of the seaward propagating instabilities on the ebb flow indicate that the presence 

of the instabilities can be attributed to the shear of the tidal current.  

3.2 Introduction 

Simple barotropic linear stability analysis suggests that strong cross-channel shear of tidal currents 

flowing through a bounded inlet can lead to instabilities in the flow causing a horizontal 

meandering of the mean along-channel current and potentially the spinoff of large eddies (Chapter 

II).  Unstable currents may be strong enough to affect small boat safety and navigation, and the 

transport of dissolved and particulate organic and inorganic matter, and cause lateral mixing of 

momentum across the inlet similar to other shallow environments such as the surf zone of natural 

beaches (Özkan-Haller and Kirby, 1999; Dodd et al., 2000). The presence of instabilities that result 

in strong variations in the mean flow over time scales of O(0.5 to 5 min) will affect tidal energy 

assessment initiatives as hydrokinetic energy depends on the velocities to the third power 

(Lalander et al., 2013; Gunawan et al., 2014, 2017). 

 The scales of motion in tidal inlets are similar to those observed in the nearshore with the 

mean velocity of order of magnitude, O, (1 m/s), width of the mean current of O(100 - 300 m), and 

a similar cross-channel horizontal velocity shear structure. The depths of O(0 – 10 m) are similar, 

however the bathymetric profiles differ in that the nearshore typically has a planar or barred profile 

while inlets typically have a centralized deep channel with shoals on either side of the flow. The 

forcing and boundary conditions differ between the tidal flow and the nearshore. The tidal current 

is bounded on either side of the channel with a pressure gradient driving the flow. The nearshore 

has an open seaward extending boundary with incident gravity waves driving a longshore current 

and wave breaking occurring in the surf zone.  Given similar scales of motion with slightly varying 
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inlet geometry and boundary conditions, it is expected for the temporal and spatial scales of the 

unstable motions in the nearshore and inlet environments to be of the same order of magnitude. 

The presence of shear instabilities in the nearshore was first observed by Oltman-Shay et 

al. (1989) in the 1986 SUPERDUCK field experiment conducted on a barred beach profile at Duck, 

NC. These low frequency (infragravity band, 0.001 < f < 0.01 Hz) unstable motions had 

wavelengths too short to be low mode gravity waves (leaky and edge waves) and with negligible 

surface elevations consistent with the theoretical linear stability analysis of Bowen and Holman 

(1989).  Nearshore shear instabilities are characterized by having alongshore wavelengths of O(102 

m), periods of O(102 s), and phase speeds dependent on the magnitude of the mean current and of 

O(0.5 m/s) (Oltman-Shay et al., 1989). Oltman-Shay et al. (1989) observed the instabilities to be 

non-dispersive and progressive, propagating in the same direction as the mean longshore current.  

The shear instabilities are supported by the background potential vorticity field provided by the 

cross-shore shear of the longshore current (Bowen and Holman, 1989; Oltman-Shay et al., 1989; 

Özkan-Haller and Kirby, 1999). 

Lagged arrays of current meters were used during SUPERDUCK to observe the 

wavenumber-frequency spectra using Iterative Maximum Likelihood Estimators (IMLEs).  

Similar methods were used previously (e.g., Huntley et al., 1981; Oltman-Shay and Guza, 1987; 

Howd et al., 1992; Noyes et al., 2002; and others) to investigate low frequency edge waves on both 

near-planar and barred beach profiles.  IMLEs are necessary to estimate wavenumbers of low 

frequency waves since the total length of the array is less than the typical wavelengths of the long 

infragravity band wave motions (Huntley et al., 1981; Oltman-Shay and Guza, 1987; Oltman-Shay 

et al., 1989).   
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Strong tidal current shear of similar magnitude to surf zone longshore currents have been 

observed locally in Hampton/Seabrook Inlet using University of New Hampshire’s (UNH) vessel 

mounted acoustic Doppler current profilers (ADCPs) along repeated cross-inlet transects 

(McKenna, 2013).  The normalized total infragravity velocity to pressure variance ratio, R, 

(Lippmann et al., 1999) obtained with a fixed bottom-mounted ADCP by McKenna (2013) shows 

that the infragravity band is dominated by rigid-lid like motions (R >> 1) consistent with linear 

theory.  Analytical linear stability analysis described in Chapter II predicts instability modes 

should occur given the cross-inlet structure of the mean along-inlet current and inlet geometry as 

in the Hampton-Seabrook Inlet.  

In this paper, field observations obtained from a lagged seven-element along-inlet coherent 

array of tri-directional current meters and pressure sensors are used to estimate infragravity and 

wavenumber-frequency spectra on both flood and ebb tidal stages. If instabilities of the mean tidal 

flow are produced, it is expected that a linear dispersion of energy will be present in the 

wavenumber-frequency spectra and the direction of instability propagation will follow the mean 

current direction, consistent with linear stability theory.  The results are compared to the predicted 

unstable wavenumbers and initial growth rates of the fastest growing modes produced in a 

theoretical linear instability analysis discussed in Chapter II. 

3.3 Field Site and Environmental Conditions 

The Hampton/Seabrook Inlet (HSI) is a shallow tidally dominated sandy inlet along the southern 

New Hampshire coastline within the Gulf of Maine. The inlet is oriented approximately WSW to 

ESE and is bounded by jetties to both the north and south with overtopping occurring on high tide 

over the southern jetty (Figure 3.1). There is little tidal dissipation along the relatively shallow (< 

10 m), short (~1 km long), and narrow (~350 m between jetties) channel that connects the ocean 
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to Hampton Harbor and the surrounding salt marshes (Cook and Lippmann, 2017; Lippmann et 

al., 2021). 

 

Figure 3.1. (Left) The Hampton/Seabrook Inlet (HSI) bathymetry data collected prior to the ADCP 
deployment and the depths relative to several datums are marked with the various white lines. The 
current meter array deployment stations (black dots with station labels 1-7) and ADCP tow 
transects (red lines with labels 1 – 4) are also shown. (Right) A Google Earth image of the inlet 
during low tide with the ADCP stations shown as white dots. The jetties on the north and south 
side of the inlet, the bridge, and rock between stations 5 and 6 are visible. 

 

The semidiurnal tides have a mean tidal range of 2.6 m with monthly variation between 2 

– 4 m that provides the main hydrodynamic forcing driving circulation throughout the estuary. 

There is very little freshwater flow from the Blackwater and Hampton Rivers, and the estuary is 

considered well-mixed with little stratification (Jones, 2000; Lippmann et al., 2021).  Tidal 

currents are primarily ebb-dominated, except during neap tides (Lippmann et al., 2021; Figure 

3.11).  Although strong winds can alter the circulation, the residual subtidal flow is weak (Jones, 

2000; Lippmann et al., 2013).  Incident surface gravity waves attenuate near the mouth of HSI due 

to refraction and breaking, especially along the southern side of the inlet (Lippmann et al., 2021).     

During the duration of the array deployment (05/25/2021 – 06/01/2021), tidal elevation 

data were obtained from the Northeastern Regional Association of Coastal Ocean Observing 
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Systems (NERACOOS) tide gauge located within Hampton Harbor 

(https://mariners.neracoos.org/platform/Hampton%20Harbor) and tide predictions from NOAA’s 

Center for Operational Oceanographic Products and Services (CO-OPS) in Hampton Harbor 

(Station ID 8429489) (Figure 3.2 and Figure 3.3).  Hourly wind data were obtained from the 

NWS/NDBC Coastal-Marine Automated (C-MAN) Station located at the Isle of Shoals 

Lighthouse, NH (NDBC Station ID IOSN3) (Figure 3.2 and Figure 3.3). The data were recorded 

by wind measuring equipment located at a height of 19.2 m above site station. The station is 

approximately 17 km NE of the inlet (Figure 3.2). Offshore incident waves were observed with a 

Datawell Directional Waverider buoy located on Jeffrey’s Ledge (NDBC station ID: 44098) 

located roughly 53 km offshore (Figure 3.2). The deployment occurred over the spring tide (4 m 

tidal range, Figure 3.3) in order to capture the maximum current magnitudes (and have the largest 

cross-inlet shear). Winds were initially variable and then became strong (i.e. gusts reaching nearly 

20 m/s) and sustained for two days out of the northeast before becoming light and variable again 

(Figure 3.3). The Nor‘easter led to large offshore significant wave heights reaching nearly 4 m 

with periods 7 – 10 s propagating from approximately 90°T N (nearly aligned with the inlet 

orientation) as observed at the offshore Jeffrey’s Ledge buoy (Figure 3.3). However, the incident 

gravity waves were strongly attenuated due to refraction and breaking near the inlet mouth and 

were significantly reduced along the array deployed within HSI. Specifically, station 2 in the inlet 

observed a maximum significant wave height of 0.54 m, roughly two orders of magnitude smaller 

compared to the offshore conditions reaching a maximum of 3.57 m (Figure 3.3). The smaller 

gravity waves measured along the array were tidally modulated with the larger (smaller) waves 

occurring on high (low) tide, respectively, and did not break along the array except at the two most 

seaward sensors at low tide.  
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Figure 3.2. Station locations, including the ancillary data stations such as NDBC Jeffrey’s Ledge 
Wave Buoy and the Isle of Shoals meteorological station. (Top right insert) The red box indicates 
the study location relative to the northeast U.S. coast and Gulf of Maine. (Bottom right insert) A 
zoomed in view of Hampton/Seabrook Inlet showing the NERACOOS tide gauge, CO-OPS tide 
prediction station, and general array location represented by station 4. 

 

Sediment transport within the inlet and Hampton harbor has previously been found to be 

dominated by migrating sand waves within the inlet (McKenna, 2013). Interannual changes to the 

bathymetry can be large, but do not occur rapidly (von Krusenstiern, 2021). A bathymetric survey 

prior to the array deployment compared with a second survey after the recovery of sensors showed 

minimal change to the bathymetry along the contour where the current meters were deployed.  
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Figure 3.3. Ancillary data including (top) NOAA CO-OPS tide predictions and NERACOOS 
water level from the Hampton tide gauge, (second) Isle of Shoals wind magnitude, (third) Isle of 
Shoals wind direction, (fourth) NDBC Jeffrey’s Ledge buoy significant wave height and 
significant wave height calculated from the array pressure sensors at station 6 and 2, (bottom) and 
NDBC Jeffrey’s Ledge buoy dominant wave period and direction. The yellow bars indicate when 
the ADCP array was deployed. 

 

3.4 Methods 

3.4.1 Bathymetric Surveys 

A multibeam bathymetric survey was completed on May 13 – 14, 2021, one week prior to the array 

deployment. A subaerial topographic survey was conducted during low tide on May 13 using a 

push-cart equipped with a differential GPS referenced to a stationary, local base station established 

adjacent to the inlet.  During high tide on May 14, the multibeam survey was conducted using the 
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UNH Zego boat survey system, a maneuverable catamaran equipped with a 240 kHz multibeam 

echosounder (Imagenex Delta T) and a GPS aided Inertial Measurement Unit (Applanix POS MV 

320) for highly accurate positions.  The bathymetric data from the high tide survey and the 

topographic data from the low tide survey were merged and referenced to the NAVD88 datum 

(Figure 3.1). The bathymetric surveys were used to determine the exact placement of the current 

meter array alongside the channel. Following the recovery of the ADCP array, a second 

bathymetric survey was conducted on June 2, 2021 using the same systems and compared with the 

bathymetry data collected prior to the deployment to determine the (small) net change to the 

topography over the course of the experiment.  

3.4.2 Cross-Inlet Current Surveys 

Cross-inlet current surveys were conducted using the UNH Zego boat equipped with a downward-

looking ADCP (Teledyne RDI Workhorse) with bottom tracking. The ADCP was calibrated prior 

to collecting velocity data, which was quality controlled to remove any erroneous spikes and depth 

averaged to further reduce the noise.  Data was collected along four cross-inlet transect lines on 

May 28, 2021 to better understand the vertical variability and cross-channel velocity structure and 

shear during the array deployment (Figure 3.4 - Figure 3.6).  
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Figure 3.4. Current magnitude (top) and direction (bottom) observed across the third transect line 
(labeled in Figure 1) during a flooding tidal stage on May 28, 2021. 

 

 

Figure 3.5. Current magnitude (top) and direction (bottom) observed across the first transect line 
(left) and third transect line (right) during an ebb tidal stage on May 28, 2021. 
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Figure 3.6. Depth averaged currents collected along three transect lines on May 28, 2021 using 
the UNH Zego Boat equipped with a bottom tracking ADCP. The red dots indicate the current 
meter array stations. Flood currents collected between 11:55 to 12:55 (left) and ebb currents 
collected between 16:10 to 16:49 (right). 

 

3.4.3 Current Meter Array Deployment 

In HSI, the currents are driven almost entirely by the mixed semidiurnal tides. Daily changes to 

the flow characteristics are small and we expect the behavior of the instabilities to occur on 

spring/neap tidal cycles. Therefore, in order to optimize the likelihood of observing strong 

instabilities, the currents were measured continuously over the spring tides when the tidal currents 

are strongest and the cross-inlet shear is maximum. The sensors were initially deployed on May 

25, 2021, were briefly recovered on May 26 to check the configurations and data, and then re-

deployed on May 27 before finally being recovered on June 1, 2021.   

The unequally spaced lagged array of sensors were deployed on pipes jetted into the seabed 

on the south side of the inlet approximately along the 3 m depth contour as far into the channel as 

allowed to avoid interference with the navigational channel (Figure 3.1).  The array was comprised 

of seven current meters, including acoustic Doppler current profilers (ADCPs), acoustic Doppler 
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velocimeters (ADVs), and modular acoustic velocity sensors (MAVS), that vary in frequency and 

vertical profiling range (Table 3.1); each was equipped with a pressure sensor.   

Table 3.1. Sensors deployed in the array, station locations and sampling parameters. The sensor 
types include acoustic Doppler velocimeters (ADVs) and acoustic Doppler current profilers 
(ADCPs). The Nortek Aquapro at station 5 was configured to be in high-resolution (HR) mode. 
The station depth is relative to NAVD88. 

Station Sensor 
Type 

Sensor 
Make/Model 

Sensor 
Location 

Station 
Depth 

(m) 

Sampling 
Frequency 

(Hz) 

Blanking 
Distance 

(m) 

Bin 
Size 
(m) 

Profiling 
Range 

(m) 

1 ADV Nortek Vector 42.89478, -
70.81610 -2.805 1    

2 ADCP Nortek Signature 
1000 kHz (A) 

42.89466, -
70.81527 -2.917 1 0.2 0.25 7.5 

3 ADCP Nortek Signature 
1000 kHz (B) 

42.89457, -
70.81490 -3.192 1 0.2 0.25 7.5 

4 ADV Sontek Argonaut 42.89440, -
70.81432 -3.113 10    

5 ADCP 
(HR) 

Nortek Aquapro 
2000 kHz 

42.89437, -
70.81410 -3.060 1 0.096 0.03 0.84 

6 ADV Nobska MAVS-4 42.89428, -
70.81257 -2.944 1    

7 ADV Nobska MAVS-3 42.89412, -
70.81144 -2.449 1    

 

The total length of the array (389.3 m) was chosen in an attempt to optimize the length of 

the array with minimum lag spacing of ~20 m and to fit within the inlet.  The unequally spaced 

lagged array allows for more unique lags between sensors (or the sum of the sensor separations 

between all stations) leading to a higher resolution of the cross-spectra as a function of lag space 

(Davis and Regier, 1977).  In comparison, having redundant lags in an equally spaced array leads 

to lower resolution spectra, however it also lowers the noise and uncertainty in the estimates due 

to multiple estimates for a given lag that can be averaged (Davis and Regier, 1977). The minimum 

lag spacing (dx) was 18.5 m, limiting the Nyquist wavenumber to k = 0.027 m-1.  These methods 

align with guidance from prior field studies of low frequency motions in the nearshore (Oltman-

Shay et al., 1989). 
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The current meters are referred to by station number, 1 – 7, with the sensor furthest seaward 

to the east being station 7 (Figure 3.1; Table 3.1). The sensors were sampled at 1 Hz with the 

exception of the Sontek ADV (station 4), which pinged rapidly can only could be configured to 

record an average of samples once every 10 seconds. The Nortek Aquadopp Profiler (or AquaPro; 

station 5) was set to high-resolution mode with small bin sizes (0.03 m) profiling 0.84 m range 

with blanking distance of 0.096 m and the velocities were corrected for phase ambiguities.  Both 

Nortek Signature ADCPs (stations 2 and 3) profiled 7.5 m range with 0.25 m size bins and blanking 

distance of 0.2 m. The sensors were placed in such a way as to measure the flow at a similar depth 

above the bottom. The profiling instruments were deployed near the seabed and the ADVs and 

MAVS as far down in the water column as possible. 

Several sensor issues occurred. The MAVS-3 (station 7) did not record data prior to May 

26, 2021.  The battery in the Nortek Vector ADV (station 1) died the evening of May 28 and 

recorded only four (out of seven) days of data. Finally, in order to prevent the sensors from being 

buried in the sand, the Signature (station 2) and AquaPro (station 5) were slightly raised vertically 

on May 28 and 29th, respectively, with elevation changes noted.  The MAVS-4 and MAVS-3 

(station 6 and 7, respectively) were not included during the storm between May 26 17:00 and 29th 

10:00 due to high frequency noise in the velocity data resulting from breaking waves causing 

vibrations of the sensors. 

3.4.4 Data Analysis 

Two assumptions of the flow are made: stationarity during the sampling period and homogeneity 

along the array (Huntley et al., 1981).  Here, a “run” is defined as an analysis period that typically 

spans 3 – 4 hours during the flood or ebb tide when the mean flow magnitude is quasi-steady.   
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For each analysis run, data from all sensors included in the array were quality controlled 

in the same manner.  This involves accounting for side-lobe interference from ADCP surface return 

signals (stations 2, 3, and 5) by discarding the top 6% of the vertical profile below the water level, 

which is determined from the angle of the beam relative to vertical. The pressure signal was 

adjusted to account for the sensor height above the seafloor, the ADCPs (stations 2, 3, and 5) were 

depth averaged to reduce the noise and align the bins with similar sampling depths of the ADVs 

and MAVS, and the 1 s data was averaged to 10 s to reduce the noise. Time series velocity data 

were then detrended by regressing against a quadratic to remove low frequency changes to the 

mean current due to the rising or falling tide similar to methods for analysis of surf zone 

instabilities (Oltman-Shay et al., 1989).  Spurious data points greater than ± 3 standard deviations 

from the mean were removed. Magnetic declination was accounted for in all sensors to place the 

flows in geographical coordinates.   

Due to various sensor issues (described in Section 3.4.3) and/or coherency concerns with 

the stations located closer to sea (stations 6 and 7), several analysis runs neglect stations 1, 6, 

and/or 7 limiting the total length of the array to as small as 100 m. Despite the shortening of the 

array, appropriate wavenumber analysis was adequately performed.  

When calculating spectra, velocity data were windowed using a Hanning taper, which has 

smooth edges and good slide lobe suppression, and ensemble averaged using 8 ensembles with no 

overlap resulting in 16 degrees of freedom (DOF). The normalized total velocity to pressure 

variance ratio, R = 
〈𝑢2〉+ 〈𝑣2〉

〈𝑝2〉
𝑔

ℎ

⁄ , defined by Lippmann et al. (1999) was then calculated for each run 

and over the full array deployment time period. R can be used to estimate the fraction of gravity 

waves versus velocity instabilities that make up the infragravity frequency band; when R >> 1, the 
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infragravity band is dominant with velocity fluctuations consistent with rigid-lid motions and when 

R ≤ 1, gravity waves are present and dominate in the infragravity band.   The fraction of instability 

variance, 𝛼 =  1 − 
1

𝑅
, as defined Lippmann et al. (1999) was also calculated for the entire 

deployment period using the mean R. 

For a spatially lagged, linear array that is short relative to the wavelengths of interest, the 

iterative maximum likelihood estimator (IMLE) developed by Pawka (1982, 1983) can be used to 

estimate the wavenumber-frequency spectrum of the long wavelength, low frequency motions 

(Pawka, 1983; Oltman-Shay and Guza, 1984, 1987; Oltman-Shay et al., 1989; Howd et al., 1992). 

The IMLE depends on sensor lag spacing, wavenumbers, the inverse of the cross-spectral matrix, 

and tuning parameters that dictate the rate of convergence of the estimated to the true cross-spectral 

matrix (Pawka, 1983; Oltman-Shay and Guza, 1984). Following Oltman-Shay and Guza (1984), a 

Kaiser-Bessel cosine-taper data window with 50% overlap was applied prior to calculating the 

cross-spectral matrix and the IMLE beta and gamma parameters were set to 1 and 20, respectively.  

The sum of square error of the estimated cross-spectral matrix was not significantly minimized 

when increasing the number of iterations above 20. Since computational power was not a concern, 

50 iterations were used (as in Oltman-Shay and Guza, 1984).  For all calculations, the IMLE 

wavenumber bin width was set to 0.001 m-1.   

3.4.5 Comparison to Linear Instability Theory 

Estimated wavenumber-frequency spectra are compared with the linear analytical solutions for the 

fastest growing unstable modes using the dispersion relationship found in Chapter II. The 

analytical cross-inlet geometry and velocity profile parameters were set to similar magnitudes 

observed in HSI.  The inlet is split into four regions across the channel allowing for varying cross-

inlet bathymetry, velocity, and shear structure (Figure 3.7). 
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Figure 3.7. (Top left) Cross-inlet velocity structure and bathymetry broken down into four regions 
(denoted by black dotted lines) that depict HSI. (Bottom left) The background potential vorticity 
across the inlet. (Top right). The real frequencies and wavenumbers solved in the linear analytical 
cubic dispersion equation. (Bottom right). The positive imaginary frequencies and wavenumbers 
solved in the linear analytical cubic dispersion equation. 

 

HSI geometry and velocity parameters are estimated based on the bathymetric and cross-

inlet ADCP surveys (Figure 3.4 - Figure 3.6). The width of the non-zero current is 275 m and 

lateral shelves are 55 m wide (Figure 3.7). The total depth is 6 m in the channel in the interior 

regions and the lateral shelf depth is ~2 m representing the mid-tide range. The maximum current, 

Vm, is 1.5 m/s and occurs closer to the southern boundary allowing for an asymmetric shear 

structure (Figure 3.7). Although the friction coefficient was set to zero for simplicity, friction is 

expected to suppress the growth rates and reduce the range of wavelengths with unstable modes 

Chapter II.  For a range of wavelengths (100 – 3000 m), the corresponding real and imaginary 

frequencies of the initial growth rates are solved using the cubic dispersion equation (Chapter II; 

Appendix C: Cubic Solution). 
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3.5 Results 

Results from two runs each spanning 3 - 4 hours during the max ebb (Run 20) and max flood (Run 

30) when the currents are considered quasi-steady are discussed here. Run 20 spans May 28, 2021 

14:50 – 17:55 and includes stations 1 – 5 limiting the array length to 170.8 m with a minimum lag 

spacing of 18.5 m. Run 30 spans May 29, 2021 23:00 – May 30, 2021 02:45 and includes stations 

2 – 5 limiting the total array length to 101 m with a minimum lag spacing of 18.5 m.  The offshore 

incident gravity waves were small during Run 20 and large during Run 30 (Figure 3.3); however, 

wave breaking was confined to the outermost southern shore of the inlet and significantly 

attenuates prior to reaching the array.  

3.5.1 Current Velocity 

The UNH Zego boat cross-inlet ADCP transects were used to observe the vertical and horizontal 

spatial variability in the currents on May 28, 2021 flood and ebb tides. HSI is well mixed but there 

is a substantial mean flow bottom boundary layer owing to the rough bottom caused by mega-

ripples and sand waves within the inlet (McKenna, 2013) and apparent in the cross-inlet mean 

flood current profile shown in Figure 3.4. On the ebb flows, the bridge piles interfere with the flow 

and create high frequency downstream eddies from vortex shedding. The disruption of the flow is 

strong near the bridge (Figure 3.5, left panels), but rapidly decays and by transect 3 (Figure 3.1) 

was not evident in the cross-inlet current profiles (Figure 3.5, right panels), consistent with similar 

observing by McKenna (2013). The direction of the flow throughout the array was nearly uniform 

over depth, and so the currents were depth integrated to observe the cross-inlet horizontal 

variability (Figure 3.6).  On both the flood and ebb tidal stages, there is strong horizontal shear in 

the mean tidal currents (Figure 3.4 - Figure 3.6).  The shear is strongest near the edges of the 
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channel where the bathymetry shoals along both the northern and southern boundaries of the inlet.  

The array was intentionally deployed in this area of strong shear on the southern side of the 

navigational channel approximately along the 3 m depth (relative to NAVD88) contour.  The 

fastest velocities occur in the center of the channel where the depth is greatest (approx. 6 m relative 

to NAVD88).  There is some recirculation of the flow along the northern side of the inlet, evident 

in Figure 3.4 and Figure 3.6, but not expected to influence the instabilities produced by the sheared 

tidal currents.  

 The quality controlled, quadratically detrended pressure and velocity from station 3 are 

shown for Run 20 on an ebb tidal stage in Figure 3.8 and for Run 30 on a flood tidal stage in Figure 

3.9. The mean current magnitude across stations 1 – 5 in Run 20 is 0.767 m/s with a maximum 

current magnitude of 1.2 m/s and the mean across stations 2 – 5 in Run 30 is 0.226 m/s with the 

max speed reaching 0.7 m/s.  The maximum current is ~1.5 m/s and occurs near the channel away 

from the array (Figure 3.4 - Figure 3.6).  Oscillations on the order of several minutes in the velocity 

(u, v) are seen in both runs (Figure 3.8 and Figure 3.9), suggestive of the presence of current 

instabilities.  It is worth noting that the runs occur at the maximum flood and ebb currents, which 

occur on the rising and lowering tide since HSI has a standing tidal wave pattern, leading to a 

change in the volume of water over the course of the run within the inlet.  
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Figure 3.8. Station 3 (Signature-B ADCP) Run 20 quadratically detrended pressure (top row), u 
velocity (middle row), and v velocity (bottom row). Run 20 occurred during an ebb tide. 
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Figure 3.9. Station 3 (Signature-B ADCP) Run 30 quadratically detrended pressure (top row), u 
velocity (middle row), and v velocity (bottom row). Run 30 occurred during a flood tide. 

 

3.5.2 Spectra, Velocity to Pressure Variance Ratios, and Instability Variance 

The pressure and velocity (u, v) spectra along with the normalized velocity to pressure variance 

ratio, R, (Lippmann et al., 1999) for both Run 20 and 30 observed at station 3 are shown in Figure 

3.10.  There is high energy evident in velocity spectra over the infragravity frequency band (10-3 

– 10-2 Hz) and the energy decreases at higher frequencies. The pressure spectra is elevated during 

Run 30, likely associated with the larger offshore incident gravity waves during the storm that may 

generate low frequency gravity waves. R values are high (>>1) throughout the infragravity 

frequency band during both Run 20 and Run 30 (Figure 3.10) indicating the flow is dominated by 

rigid-lid-like motions consistent with instabilities.  
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Figure 3.10. Station 3 (Signature-B ADCP) Run 20 (left) and Run 30 (right) spectrum of (upper 
plots) pressure (blue straight line), u velocity (orange dashed line), v velocity (purple dotted line), 
and (lower plots) velocity to pressure variance ratio, R (burgundy dashed-dot line) with the R 
threshold (black solid line). The 95% confidence interval is shown on the upper plots. 

 

Time series of 30 min-averaged water levels and current speed from station 3 for the entire 

sampling period are shown in Figure 3.11. Also shown in Figure 3.11 are the 30-minute estimated 

R values averaged over the infragravity band for each station, and the mean over all stations. Using 

the mean R, the fraction of instability variance, α, was calculated and shown in Figure 3.11. During 

both flood and ebb flows, R values are much larger than 1 indicating the presence of rigid lid type 

motions. When R values are large (>>1), the fraction of instability variance, α, is close to 1 

indicating the variance of the mean flow is primarily attributed to unstable motions.  R values 

return to ~1 during weak flows as the tides change and the fraction of instability variance drops 

close to or below 0. R and α values are nearly the same for all tides, and do not show any variation 

associated with offshore wave conditions suggesting that the instabilities are driven by the tidal 

flows.  
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Figure 3.11. (Top) Thirty-minute mean water level relative to NAVD88 calculated from the 
pressure sensor on Station 3 (Signature-B ADCP). (Second row) Ten-minute mean current 
observed at Station 3 (Sig-B). (Third row) Velocity to Pressure Variance Ratio, R, for all ADCP 
stations over the deployment and the average R across the stations (solid black line) relative to the 
R threshold (black dotted line). (Bottom) The fraction of variance explained by the instabilities is 
represented using alpha = 1 – 1/R. The mean R was used in the alpha calculation. 

 

3.5.3 Wavenumber-Frequency Spectra 

Figure 3.12 and Figure 3.13 show the wavenumber-frequency spectra for Runs 20 and 30, 

respectively. The spectra computed with only the u and v components of the velocity are shown 

for each on the left and right, respectively.  Concentrations of energy fall along nearly linear 

dispersion lines at infragravity frequencies.  For both Runs 20 and 30, dominant wavenumbers (+/- 

0.002 - 0.02 m-1) of the low frequency motions (0.0006 - 0.01 s-1) are resolved.  Specifically in 

Run 20, the maximum energy in the wavenumber-frequency spectra of velocity spans 0.0007 – 

0.01 Hz and 0.002 – 0.015 m-1. In Run 30, the maximum energy in the wavenumber-frequency 

spectra of velocity spans 0.0006 – 0.008 Hz and -0.002 to -0.02 m-1. The wavenumber for the 
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instabilities are too short to be gravity waves; the dispersion curves for the low mode edge waves 

are shown for comparison. The positive and negative wavenumbers of Run 20 and 30, respectively, 

indicate that the shear instabilities propagate in the same direction as the mean flow during both 

the ebb and flood tidal stages similar to instabilities of mean alongshore currents in the surf zone.   

 

Figure 3.12. Wavenumber-Frequency spectra of the velocities, u (left) and v (right) for Run 20 on 
the ebb tidal stage on May 28, 2021. The white dotted lines show the modes of edge wave 
dispersion. The black line shows the slope of the shear instability dispersion curve, from which 
the speed of the shear instabilities can be estimated. 

 

The propagation speed of the instabilities is determined from the slope of the linear 

relationship between frequency and wavenumber (Figure 3.12 and Figure 3.13). It is expected that 

if the maximum mean current in the center of the channel varies between 1.0 – 1.5 m/s (based on 

the cross-inlet ADCP transects), the instabilities speed will likely range between 25% - 50% of the 

mean speed based on linear stability theory (Chapter II).  Run 30 shear instability phase speed is 

approximately 0.41 m/s (Figure 3.13), which is approximately 30% - 40% of expected maximum 

current. For Run 20, the instability propagation speed is roughly 0.72 m/s (Figure 3.12), 

approximately 50 – 70% of the expected max current. 
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Figure 3.13. Wavenumber-Frequency spectra of the velocities, u (left) and v (right) for Run 30 
on the flood tidal stage on May 29 - 30, 2021. The white dotted lines show the modes of edge 
wave dispersion. The black line shows the slope of the shear instability dispersion curve, from 
which the speed of the shear instabilities can be estimated. 

 

Figure 3.14 shows the wavenumber-frequency spectra estimated from the pressure sensors 

across the array. Concentration of energy occurs along the lowest mode gravity wave dispersion 

curves, particularly in Run 30 where the offshore incident gravity waves were large. The energy 

falls slightly more towards negative wavenumbers for each Run indicating propagation of low 

mode edge waves into the inlet on both the ebb and flood tides. This is expected that incident 

gravity waves are generated offshore and consequently lead to low-frequency edge waves that 

propagate into the inlet, regardless of the tidal current direction.  Concentrations of energy at high 

wavenumbers were not observed along the instability dispersion lines. 

Wavenumber-frequency spectra from the other tidal cycles show similar results. 

Instabilities propagate in the direction of the flood or ebb tidal currents and do not show any sea 
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surface elevation signal. These results are consistent with R values in Figure 3.11 and linear 

instability theory.  

 

Figure 3.14. Wavenumber-Frequency spectra of the pressure for Run 20 (left) and Run 30 (right). 
The white dotted lines show the modes of edge wave dispersion. 

 

3.5.4 Linear Instability Theory Comparison 

The linear barotropic instability analysis solves the tertiary dispersion equation to predict the initial 

growth rates and associated wavelengths of the unstable modes (Chapter II).  In order for an 

exponentially growing instability to develop, there must be an extremum in the background 

potential vorticity, 𝑉𝑥

ℎ
, and a positive imaginary root to the cubic dispersion equation (Bowen and 

Holman, 1989; Chapter II; Appendix C: Cubic Solution).  Here, there are two extremums allowing 

for unstable modes to occur due to both the southern and/or northern shear (Figure 3.7; Baquerizo 

et al., 2001).  Based on estimated HSI inlet geometry, bathymetry, and velocity structure, the linear 

barotropic instability analysis predicts the initial growth rates of instabilities with characteristic 

wavelengths O(102 – 103 m) and frequencies O(10-3 s-1) (Figure 3.7). The range of unstable 
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wavelengths is 388 – 3000 m and the fastest growing unstable mode has a wavelength of 530 m, 

wavenumber of 0.0119 m-1, frequency of 0.0023 s-1, period of 1561.8 s, and phase speed of 0.34 

m/s, which is ~23% of the 1.5 m/s maximum current. 

3.6 Discussion 

3.6.1 Observed Motions in HSI 

Low frequency motions, O(10-3 – 10-2 s-1) with dominant wavenumbers, O(10-3 – 10-2 m-1) 

consistent with instabilities of the tidal flows were observed in the bounded Hampton/Seabrook 

tidal inlet on both the flood and ebb tides. These progressive, rigid-lid-like motions propagate in 

the direction of the mean tidal current and can lead to the meandering of the mean current and the 

spin-off of nonlinear eddies.  The speed of propagation of the instabilities is 0.41 – 0.72 m/s, which 

is roughly 40 – 70% of the expected maximum mean tidal current flow in the center of the channel 

ranging between 1 – 1.5 m/s.  Both the meandering of the flow and generation of eddies can cause 

horizontal mixing of momentum across the inlet that has implications to tidal energy resource 

assessments, the fate and transport of organic and inorganic matter, and small vessel safety and 

navigation.  

The changing water levels during the max flood and ebb tidal current phase leads to a 

change in volume of water within in the inlet, the width of the flow, the cross-inlet velocity 

structure, and the relative location of the array to areas of the strongest shear.  The oscillatory tidal 

signal can also be seen in the velocity to pressure variance ratio, R, over time (Figure 3.11).  R 

peaks on flooding currents slightly before the high tides when the width of the flow is widest due 

to the higher water levels. When R values are large (>>1), the fraction of instability variance, α, is 

close to 1, indicating high energy in the infragravity band associated with rigid-lid-like motions 
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are consistent with instabilities. The secondary peak around low tides is associated with the 

instabilities present on the ebb tidal flows when there is a smaller volume of water in the inlet and 

the cross-inlet width of the flow is smaller. 

3.6.2 Comparison to Nearshore Motions 

The observed instability motions in the tidal inlet are consistent with observations of shear 

instabilities with similar characteristic wavelengths, frequencies, and speeds generated from the 

shear of the longshore current or rip currents in the nearshore (Oltman-Shay et al., 1989; Haller 

and Dalrymple, 2001; Geiman and Kirby, 2013). The lack of breaking wave group modulations 

within the bounded tidal inlet and the presence of the seaward propagating instabilities on the ebb 

flow (Run 20) indicate that the presence of the instabilities can be attributed to the shear of the 

tidal current. Thus, the generation of the unstable motions observed in the tidal inlet are not 

dependent on incident gravity wave groups as it has been hypothesized in the nearshore (Shemer 

et al., 1991; Long and Özkan-Haller, 2009).  

3.6.3 Vortical Motions due to Bluff Bodies 

On ebb tides, the shedding of vortices from the bridge pilings could occur leading to von Karman 

vortex shedding (Liu et al., 2018). This is seen with the horizontal variability in current direction 

and speed along ADCP transect Line 1 near the bridge (Figure 3.5).  However, this cross-inlet 

velocity structure does not persist and the water column becomes well mixed again by transect 

Line 3 (Figure 3.4 - Figure 3.6) and is found to be well mixed even closer to the bridge (approx. 

transect Line 2) based on data collected in 2011 (McKenna, 2013).  Additionally, Ortega-Casanova 

(2017) found vortex shedding from a rectangular cylinder length-to-width aspect ratios less than 1 

(i.e. square cylinder) occurs in a constricted channel leading to strong mixing while flow around 
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rectangular cylinders with aspect ratios greater than 1 remains steady. The Hampton Harbor bridge 

pilings are rectangular with aspect ratios greater than 1 with lengths longer than widths oriented 

with the channel flow, and therefore are not expected to lead to as much vortex shedding as other 

pilings of circular or lower aspect ratio rectangular dimensions.  

On the flood tide, the orientation of the southern jetty along with a rock outcrop located 

between stations 5 and 6 may present a classic flow separation problem as described in Signell and 

Geyer (1991). This would lead to the generation of vortices that spin off towards the center of the 

channel and thus, away from the sensor array observing the oscillatory motions. The vortices shed 

from the bridge pilings and/or rocks are expected to be advected at the speed of the mean flow 

(Halse, 1997), whereas the shear instabilities observed in HSI have phase speeds at a fraction (0.3 

– 0.7) of the mean flow aligning with linear instability theory. 

The frequency of the vortices shed from either the bridge pilings or rock outcrop can be 

estimated: 

 
𝑓 = 𝑆

𝑈

𝐿
 3.1 

where S is the Strouhal number, U is the freestream velocity, and L is the characteristic length 

scale of the body impeding the flow.  In the case of the bridge pilings, L is the length of the bridge 

pilings in the along-channel direction (~10 m), which spans the width of the Hampton/Seabrook 

bridge.  In the case of the rock outcrop, L is the diameter of the outcrop (~35 m).  Strouhal numbers 

can vary depending on the flow conditions (typically characterized by the Reynolds number) as 

well as the shape and aspect ratio of the bluff body (Okajima, 1982; Lloyd and Stansby, 1997; 

Ortega-Casanova, 2017). Based on prior work, S is estimated to be ~0.2 for the rectangular bridge 

pilings (Okajima, 1982; Ortega-Casanova, 2017) and ~0.35 for the circular rock outcrop (Lloyd 

and Stansby, 1997). Given a max freestream velocity of 1.5 m/s (as observed in HSI), the 
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frequencies of vortices shed from either the bridge pilings or off of the rock outcrop are estimated 

to be >0.01 s-1, which are higher than the dominant low frequency motions observed (<0.01 s-1) in 

the lagged array. Therefore, the shed vorticities from the pilings and rocks are distinguishable as 

having faster phase speeds with slightly higher frequencies than the scales of the shear instabilities 

of interest here. 

3.6.4 Comparison to Linear Theory 

Based on the HSI geometry (i.e. deep center channel (6 m) and shallower lateral side shelves (~2 

m) and current magnitudes (i.e. maximum 1.5 m/s), the linear barotropic instability analysis 

predicts the presence of instabilities with characteristic wavelengths O(102 – 103 m) and initial 

growth rates O(10-3 s-1) of the fastest growing modes (Figure 3.7).  This aligns with the observed 

dominant frequencies of motion O(10-3 – 10-2) s-1 with associated wavenumbers O(10-3 – 10-2) m-

1. The phase speed of instability propagation observed is 40 – 70% of the expected maximum mean 

currents, which is faster than the theoretical prediction of 23% of the max current.  The slightly 

faster observed instabilities relative to the predicted speeds may be due to faster currents observed 

than expected and the inlet geometry funneling the flow and/or the simplicity of the barotropic 

linear stability analysis that does not account for nonlinearities and simply predicts initial growth 

rates versus motions reaching finite amplitudes.  Although the linear instability analysis is limited 

in complexity, the results align with the energy observed along the dispersion lines estimated using 

data collected in the spatially lagged current meter array.  

3.7 Conclusions 

The presence of shear instabilities of tidal currents were observed in the bounded 

Hampton/Seabrook tidal inlet using a spatially lagged array of current meters. Iterative maximum 
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likelihood estimators were used to estimate the wavenumber-frequency spectra of the motions that 

are typically longer than the total length of the array.  The wavenumber-frequency spectra showed 

concentrations of energy along dispersion lines with wavenumbers too high to be low mode gravity 

waves.  In addition, normalized velocity to pressure variance ratios, R, and fraction of instability 

variance, α, show that the infragravity frequency band is dominated by rigid-lid-like motions, 

consistent with instabilities of the mean flow. On the other hand, wavenumber-frequency spectra 

of pressure records were consistent with low mode gravity waves, i.e. edge and leaky waves, and 

energy did not fall along the shear dispersion lines, supporting the linear instability theory. Shear 

instabilities are progressive, propagate in the direction of the mean tidal current at a speed of 

roughly 40 – 70% of the expected maximum mean tidal current and are too slow to be considered 

gravity waves, similar to observations of shear instabilities of mean longshore currents in the 

nearshore.  

 Incident gravity wave breaking occurs primarily outside of the inlet due to shoaling and 

refraction and along the southern bank of the inlet due to the jetties with minimal breaking inside 

the inlet.  Although incident waves may propagate inside the inlet, the shear instabilities 

propagated out of the inlet on the ebb tide following the mean flow indicating the forcing is not 

due to surface gravity wave breaking at wave group time scales.  

 Observations of the shear instabilities are consistent with a theoretical linear instability 

analysis of tidal currents in a bounded inlet.  The fastest growing wave modes are predicted to 

have wavelengths O(102 – 103 m) with initial growth rates of O(10-3 s-1), consistent with the 

characteristic scales of unstable motions observed in the inlet with frequencies of O(10-3 – 10-2 s-

1) and dominant wavenumbers of O(10-3 – 10-2 m-1).   
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 The existence of shear instabilities leads to ecosystem and hydrodynamic implications 

that should be considered. Tidal energy resource assessments depend on velocity to the third 

power and shear instabilities modulate the mean flow, affecting the velocity estimate. The 

meandering of the mean flow along with the spin-off of vortices leads to horizontal mixing of 

momentum across the inlet and can also affect the fate and transport of organic and inorganic 

matter.  
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CHAPTER IV 

4 OBSERVATIONS AND MODELING OF INTENSIFIED TIDAL 

CURRENTS OVER A LATERAL SHELF IN A NARROW ESTUARINE 

CHANNEL 

4.1 Abstract 

The intensification of tidal currents over a lateral shelf in a narrow estuarine channel is 

investigated.  Observations of mean currents along cross-river transects in the Piscataqua River 

within the Great Bay Estuary obtained from a vessel-mounted downward-looking acoustic Doppler 

Current profiler (ADCP) show that currents are strongest in the deeper channel leading up to the 

shelf and intensify over the shallow shelf at Henderson Point, both on the flood and ebb phases of 

the tidal flow. Numerical simulations using the Regional Ocean Modeling System (ROMS) with 

constant forcing and linearized bottom friction reproduce the general behavior of the flow.  Similar 

to prior work examining the intensification of rip currents in the nearshore (Bowen, 1969), the 

potential vorticity balance is used to help explain and understand the physical dynamics. Results 

show that along-channel flow is intensified under high Reynolds number conditions where the 

inertial forces dominate over the frictional and viscous forces.  The intensification of tidal currents 

over shallow regions of a bounded channel leads to spatial variability in cross-channel current 

velocity structure that modifies the lateral shear in mean flow, and can have implications on 

navigation, especially in constricted channels with limited maneuverability, tidal energy resource 

assessments, and the fate and transport of organic and inorganic matter. 
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4.2 Introduction 

Tidally induced pressure gradients in sea level drive mean estuarine tidal currents that can have 

horizontal spatial variability across a bounded channel or inlet. This spatial variability can lead to 

a sheared cross-channel structure in along-channel velocity that is partially dependent on the inlet 

geometry and bathymetry.  The mean velocity (i.e. time averaged flow over at least one hour and 

up to four hours) can be variable along the channel, leading to areas of velocity intensification (up 

to approx. 13% increase relative to the max speed) causing implications for vessel navigation, 

especially in constricted channels with limited maneuverability.  The velocity intensification and 

spatial variability of the mean flow can significantly impact tidal current energy resource 

assessments, which depend on the flow magnitude to the third power (Lalander et al., 2013).  The 

horizontal spatial variability of the mean estuarine flow can also be important for mixing and 

transport between inland bays, freshwater systems, and the coastal ocean (Bowden, 1965; Simpson 

et al., 1990; Geyer and MacCready, 2014).   

Tidal current observations were collected in the Piscataqua River (Figure 4.1) in May 2015 

during a spring tide, using a vessel-mounted acoustic Doppler current profiler (ADCP) equipped 

with bottom tracking. Cross-channel ADCP transects were collected during both flood and ebb 

tides along three transect lines spanning Henderson Point to Sullivan Point (Figure 4.2 and Figure 

4.3). Both the depth-averaged (Figure 4.2) and depth varying (Figure 4.3) along-channel currents 

show strong lateral shear along all three transect lines and an intensification of velocity over the 

shallow lateral shelf off Henderson Point during both the flood and ebb currents. Topographic 

channeling by the bathymetric contours and the subsequent bottom friction is expected to lead to 

stronger currents in the deeper channel rather than on the shelf (Parker, 2007).  For simplified 

topography of planar sloping beach in the nearshore (where Coriolis is neglected), Bowen (1969) 
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examined horizontal depth-averaged circulation and showed that strengthening of the seaward 

currents (rip currents) occurred under increasing Reynolds numbers.  Bowen’s (1969) numerical 

solutions of the circulation were found from the potential vorticity equation including nonlinear 

advective terms (relative vorticity), dissipative terms in the form of either horizontal eddy viscosity 

or a linear bottom friction, and constant radiation stress gradients (forcing terms) from breaking 

incident surface gravity waves.  

Herein, we investigate the forcing mechanisms driving the intensification of tidal currents 

over the shallow areas at Henderson Point using the potential vorticity balance and conservation 

of volume principles.  For the estuarine case we are considering, the curl of the surface wind stress 

is neglected, surface gravity wave forcing is zero, the Coriolis force, 𝑓, is ignored since the depth 

and length scales of the estuarine channel, D, are much less than the Rossby radius of deformation, 

𝐿𝑅 = (𝑔𝐷)1 2⁄ 𝑓⁄ , and the primary forcing of the currents is due to the tidally induced pressure 

gradient. The forcing mechanism and resulting intensification of along-channel currents is 

examined analytically through a non-dimensional analysis and numerically using a hydrodynamic 

model that solves the 3-dimensional momentum equations. 

Intensification and strong cross-channel shear in along-channel velocity may lead to 

horizontal mixing of momentum across the channel. The strength of the horizontal mixing is 

determined by the cross-channel gradient in Reynold’s shear stress, Sxy.  A nonzero Reynolds stress 

can indicate the presence of unstable horizontal motions generated from a perturbation in the shear 

of the mean current and the consequential transfer of energy from the mean flow to the perturbed 

flow (Dodd and Thornton, 1990; Appendix E: Unstable Motions in the Piscataqua River). It is 

expected that the (possibly asymmetric) mixing of momentum will act to smooth the cross-channel 

velocity structure and modify the shear in along-channel flow.  
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The goal of this study is to gain a better understanding of the forcing and implications of 

the intensification of estuarine tidal current velocity and the resulting horizontal spatial variability 

of the mean flow through a narrow, bounded inlet or channel and the consequential mixing of 

momentum. Numerical experiments are conducted that approximate natural field conditions in the 

Piscataqua River by solving the 3-dimensional nonlinear momentum equations to qualitatively 

assess the forcing conditions that produce the observed spatial structure of the mean along-channel 

tidal currents.  The depth averaged velocity is analyzed after the model has spun up and the mean 

currents are quasi-steady. Non-dimensional analysis is used to solve for the Reynolds number that 

describes the strength of the inertial terms relative to the viscous forces, and the model input 

parameters are modified to simulate runs under both high and low Reynolds numbers. The detailed 

methods are discussed below followed by a discussion and concluding remarks.  
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Figure 4.1. (Top left) Study area shown in the red box along the New England coast and Gulf of 
Maine. (Top right). Great Bay Estuary with the study area shown in the red box. (Middle) NOAA 
nautical chart (feet, MLLW) of the study area. (Bottom) Bathymetry (m) used in ROMS. 
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Figure 4.2. Depth-averaged flood (green) and ebb (purple) tidal currents observed from cross-
river ADCP transects on May 2015 during spring tide. Transect lines are labeled from west to 
east: 1 (off Henderson Point), 2, and 3 (off Sullivan Point). 

 

Figure 4.3. Current magnitude (top plots) and direction (bottom plots) along transect line 1 during 
flood (left column) and ebb (right column) tidal stages observed from cross-river ADCP transects 
on May 18, 2015. 
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4.3 Study Site: Piscataqua River 

The study site focuses on the flow south of Seavey Island, home of the Portsmouth Naval Shipyard, 

in the lower Piscataqua River that connects the Great Bay Estuary in New Hampshire to the Gulf 

of Maine (Figure 4.1). Water depths are about 25 m in the center of the channel, and shallow 

abruptly to approximately 12 m at Henderson Point over a shallow ledge.  The tide range (between 

lower-low water, LLW, and higher-high water, HHW) varies between 2 – 4 m based on the neap 

– spring cycle, respectively, and maximum flood and ebb currents can exceed 2 m/s, especially 

during spring tides (Swift and Brown, 1983; Cook and Lippmann, 2017). Freshwater river 

discharge is typically less than 2% of the tidal prism while meteorological subtidal and wind-

induced flows are of second order relative to the dominant M2 tidal forcing, leading to small 

density gradients and a well-mixed estuary (Swift and Brown, 1983; Trowbridge, 2007; Wosnik 

et al., 2014; Cook and Lippmann, 2017).  

The primary force balance in the estuary is between the frictional bottom stress and the 

pressure gradient force (Swift and Brown, 1983; Ertürk et al., 2002). The tidal wave in the lower 

Piscataqua River near the mouth shows partially progressive characteristics and then transitions to 

standing wave behavior further upriver (Cook and Lippmann, 2017). The lower Piscataqua River 

is found to be highly dissipative with 40% of the M2 tidal amplitude decaying over a 12 km area 

(Swift and Brown, 1983; Ertürk et al., 2002; Cook and Lippmann, 2017; Cook et al., 2019).  A 

detailed description of the flow throughout the entire Great Bay Estuary can be found in Cook 

(2019).  The Froude number, 𝐹𝑟 =  
𝑈

√𝑔𝐻
, (ratio of inertial to gravity forces) is less than 1 in both 

the deeper channel (~25 m) and over the shallower shelf (~12 m) where the depths are large relative 

to mean velocities (1 – 2 m/s), indicating that the flow is subcritical.  
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4.4 Methods 

In the following, we describe the observations of along-channel currents that show an 

intensification over the shallow shelf near Henderson Point. We then describe the shallow water 

(depth-averaged) equations of motion and show theoretically the importance of the inertia of the 

flow and frictional terms (through the Reynolds number) in the vorticity balance.  We then describe 

the hydrodynamic model that solves the 3-dimensional fully nonlinear model for the study site 

topography with constant (steady) forcing for flood and ebb tidal currents. An analysis of a lagged 

linear array horizontal velocity component time series to characterize the unsteady motions that 

can lead to cross-channel Sxy gradients is included in Appendix E: Unstable Motions in the 

Piscataqua River. 

4.4.1 Cross-Channel ADCP Transects 

Observations of the ebb and flood tidal currents were obtained from cross-channel transects on 18 

May 2015 during the spring tide using the Coastal Bathymetry Survey System (CBASS; Lippmann 

and Smith, 2009) equipped with a downward facing Teledyne RDI 600 kHz Workhorse acoustic 

Doppler current profiler (ADCP) with bottom tracking capability (McKenna, 2013; Gagnon, 

2018).  The ADCP was calibrated prior to deployment and collected data in 0.5 m size bins 

vertically throughout the water column.  Data were quality controlled by discarding data near the 

bottom due to sidelobe interference and filtering spurious data more than three standard deviations 

from the mean. Several vessel passes along each transect were averaged together over a 24-minute 

duration for the flood case and 14-minute duration for the ebb case. The 3-dimensional currents 

were averaged vertically over two depth bins and binned spatially into 15 m wide overlapping 

sections. Comparisons between CBASS-derived mean flow and direction with bottom mounted 
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(fixed) upward-looking ADCP data show that current magnitudes and directions are highly 

correlated (R2 values of 0.97 and 0.96, respectively) and have RMS errors of 4.5 cm/s and 17°, 

respectively (McKenna, 2013). The observations are qualitatively compared to the numerical 

model output along similarly located cross-channel transects.  

4.4.2 Analytical Equations of Motion 

The shallow water (depth-averaged) horizontal momentum equations under the assumptions that 

the flow is non-divergent and incompressible, Coriolis is neglected, surface wind stress is ignored, 

there is no incident gravity wave motion, and including both linearized bottom friction and 

horizontal eddy viscosity terms, are given by   

 𝜕𝑢
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where  is sea surface elevation,  is the bottom drag coefficient, AH is the constant eddy viscosity, 

g is gravity, t is time, and h is the water depth.  The continuity equation is given by 

 𝜕

𝜕𝑥
(𝑢ℎ) + 

𝜕

𝜕𝑦
(𝑣ℎ) = 0  (4.2) 

The horizontal cross-channel (y-directed) and along-channel (x-directed) velocities, v and u, 

respectively, can be represented in terms of a mass transport stream function, 𝜓, such that 

 𝑢ℎ =  −
𝜕𝜓

𝜕𝑦
 , 𝑣ℎ =

𝜕𝜓

𝜕𝑥
 (4.3) 

After cross-differentiating and subtracting the u and v momentum equations (4.1), the sea 

surface elevation terms are eliminated.  Inserting (4.3), using (4.2), and rearranging terms results 

in the potential vorticity equation  
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where 𝜉 =
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−
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𝜕𝑦
 is the relative vorticity and the subscripts represent derivatives.  For steady 

(mean) currents, (4.4) can be rewritten as 
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Equation (4.5) is similar to Bowen (1969) without wave forcing terms and eliminating either  or 

AH term.  Equation (4.5) are nondimensionalized using characteristic horizontal length (L), velocity 

(U), and depth (H) scales 

𝑥 = 𝑥′𝐿 𝑣 = 𝑣′𝑈 

𝑦 = 𝑦′𝐿 
𝜉 =  𝜉′

𝑈

𝐿
 

ℎ = ℎ′𝐻 𝜓 =  𝜓′𝑈𝐿𝐻 

which yields the non-dimensional, nonlinear potential vorticity equation 

−
𝑈

𝐿

1

ℎ′

𝜕𝜓′

𝜕𝑦′  
𝜕𝜉′

𝜕𝑥′ℎ′ + 𝑈
𝐿

1

ℎ′

𝜕𝜓′

𝜕𝑥′  
𝜕𝜉′

𝜕𝑦′ℎ′ = 

−
𝜆

𝐻

𝜉′

(ℎ′)2
−

𝜆

𝐻

1

(ℎ′)2
𝜕𝜓′

𝜕𝑦′

𝜕

𝜕𝑦′ℎ′ −
𝜆

𝐻

1

(ℎ′)2
𝜕𝜓′

𝜕𝑥′

𝜕

𝜕𝑥′ℎ′ +
𝐴𝐻

𝐿2

1

ℎ′ (
𝜕2𝜉′

𝜕(𝑥′)2
+ 

𝜕2𝜉′

𝜕(𝑦′)2
) 

(4.6) 

The Reynolds number shows the strength of the inertial terms (left-hand-side) relative to the 

viscous terms (right-hand-side), and is given by 

 
𝑅𝑒 =  

𝑈𝐿𝐻

𝜆𝐿2 + 𝐴𝐻𝐻
 (4.7) 

This form for Re is the same as in Bowen (1969) if 𝐻 = 𝐿 and the  term is ignored.  While keeping 

U, H, L, and AH the same for each hydrodynamic model run (described next), the Reynolds number 

can be varied through changes in the bottom drag coefficient, 𝜆. The eddy viscosity coefficient, 

AH, was set as small as possible while maintaining numerical stability and is used for turbulence 
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closure schemes and in parameterizing subgrid-scales of horizontal mixing and was not used in 

varying the Reynolds number conditions (i.e. remained constant). 

4.4.3 Numerical Hydrodynamic Model Configuration 

The nonlinear Navier Stokes momentum equations are solved using the Regional Ocean Model 

System (ROMS), which uses the hydrostatic and Boussinesq approximations on the Arakawa C-

grid in the horizontal with a terrain following vertical structure (sigma coordinates; Haidvogel et 

al., 2008; Hedström, 2018).  The 3-dimensional momentum equations were solved over a 4 hour 

model run time using a 0.5 second baroclinic time step and a 20 second barotropic step. Coriolis 

is assumed negligible and not included (𝑓 = 0).  Relevant ROMS model parameters are listed in 

Table 4.1.  

Table 4.1. ROMS Model Parameters.  

Parameter Description Value 

DX, DY Horizontal grid resolution 5 m 

N Number of vertical layers 10 

DT Baroclinic time step 0.5 s 

NDTFAST Barotropic time step 20 

VISC2 Horizontal viscosity coefficient 0.1 m2/s 

RDRG Linear bottom drag coefficient 10-4 m/s – 
10-2 m/s 

VTRANSFORM Vertical s-coordinate transformation equation 2 

VSTRETCHING Vertical s-coordinate stretching function 4 

THETA_S Vertical s-coordinate surface stretching 
parameter 2 

THETA_B Vertical s-coordinate bottom stretching 
parameter 4 

GAMMA2 Slipperiness condition variable -1 (no slip) 
VOLCONS(EAST, WEST) Conservation of volume True 
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The model uses smoothed bathymetry of the Piscataqua River collected from several 

sources that were compiled and interpolated to create a digital elevation model referenced to mean 

sea level (MSL) as described in Cook et al., (2019). The elevation data was extracted and input 

into the Easygrid routine (available at https://www.myroms.org/wiki/easygrid) to create the high-

resolution, ROMS-compatible model grid.  A 2 m depth offset was applied to the total depth 

throughout the domain to allow for model stability, which is roughly 16.7% depth increase over 

the shelf.  There are ten vertical levels and the horizontal grid resolution is 5 m making up a 1600 

m by 1090 m long domain (319 by 217 grid cells) in the x- and y-directions, respectively (Figure 

4.4).  

 

Figure 4.4. ROMS horizontal grid of the Piscataqua River south of Seavey Island. Displayed 
gridlines are every 25 meters, decimated by a factor of five from the actual model grid for display 
purposes. The grid is not rotated, so the cardinal directions correspond to the grid boundaries. 
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The surface wind stress is set to 0 m/s.  The bottom stress is parameterized using a spatially 

uniform bottom drag coefficient, 𝜆, which ranged between 10-4 m/s and 10-2 m/s and is applied 

linearly to the velocity (Table 4.2). The drag coefficient is consistent with Swift and Brown's 

(1983) bottom drag coefficient, CF, estimates ranging 0.015 to 0.054 based on observations in the 

estuary using the quadratic drag law, 𝐶𝐹 = 
𝜏𝑏

𝜌𝑈2.  Cook et al. (2019) modeled the Great Bay Estuary 

where bottom friction logarithmically depended on the bottom roughness coefficient, Zob = 0.02 

m, and the results showed that a single dissipation value yields reasonable results despite varying 

seafloor characteristics throughout the estuary. The choice of drag coefficient here is also 

consistent with the range of estimates of bed shear stress coefficients in other tidal estuaries, 0.001 

– 0.01, (Ludwick, 1975; Winterwerp and Wang, 2013), as well as in the nearshore environment, 

0.001 – 0.009 (Thornton and Guza, 1986; Whitford and Thornton, 1996; Özkan-Haller and Kirby, 

1999). 

Table 4.2. Model run configurations. The Reynolds Number is calculated using the characteristic 
velocity (U) of 1 m/s, depth (H) of 12 m and length scale (L) of 200 m, which is the approximate 
depth and along-channel length of the lateral shelf off Henderson Point. The eddy viscosity 
coefficient (AH) is 0.1 m2/s for all model runs. The mean and maximum current are calculated over 
the entire domain over the last hour of the model run. 

 Run A Run B Run C Run D 
Current stage Ebb Ebb Flood Flood 
Friction (RDRG, λ) 1e-4 1e-2 1e-4 1e-2 
Reynolds number, Re  462 6 462 6 
Mean current speed 0.53 m/s 0.52 m/s 0.52 m/s 0.44 m/s 
Max current speed 1.86 m/s 1.64 m/s 1.66 m/s 1.57 m/s 

 

The horizontal viscosity depends on the harmonic mixing coefficient (AH used in 

expressions above and called VISC2 in ROMS), which is set to 0.1 m2/s (Table 4.1). This allows 

for nonlinear unstable motions to be resolved while the model remains numerically stable.  A third 

order upstream advection scheme is used to solve for horizontal advection of three-dimensional 
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momentum. A fourth order centered vertical advection scheme is used to solve for vertical 

advection of momentum. A 𝑘 − 𝜀 generic length scale (GLS) turbulence closure scheme (Warner 

et al., 2005) in conjunction with the Kantha and Clayson (1994) stability function are used to 

parameterize the vertical turbulent mixing of momentum and tracers. Mixing of momentum and 

tracers occurs along terrain-following sigma surfaces.  

The lateral boundary conditions are open on the eastern and western boundary and closed 

on the northern and southern boundary with a no-slip lateral condition (Figure 5). After linearly 

ramping up from rest over a one hour period, quasi-steady currents are imposed with clamped east-

west velocities, 𝑢 (baroclinic flow) and �̅� (barotropic flow, where the overbar indicates depth-

averaged), on either the western boundary to simulate ebbing currents or on the eastern boundary 

to simulate flooding currents (Figure 4.5). The cross-channel velocity structure has a sheared 

profile reaching a maximum of 1.0 m/s near the deeper area of the channel and linearly decreasing 

to 0 m/s near the shallow bounding sides (i.e. northern and southern boundaries). The maximum 

current velocity was chosen based on Cook and Lippmann (2017) numerical results that showed 

maximum depth averaged currents ranging between 1 – 2 m/s in the estuary, consistent with 

observations in the area. The results were not sensitive to the cross-channel velocity structure 

chosen for inflow conditions and the profile used is based off of expected conditions given the 

bathymetry and channel geometry. The outgoing flow boundary (i.e. eastern boundary with ebbing 

currents or western boundary with flooding currents) is set to allow disturbances in the free surface 

and velocities (both barotropic and baroclinic) to radiate out of the domain at the speed of gravity 

waves. The total volume is conserved. 
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Figure 4.5. Boundary conditions. The magenta velocity vectors along the western boundary are 
used for ebb flow model runs and the eastern boundary is set to the radiation condition. The green 
velocity vectors along the eastern boundary are used for flood flow model runs and the western 
boundary is set to the radiation condition. The maximum velocity for both the ebb and flood case 
is set to 1 m/s near the deep area of the channel and linearly decreases to 0 m/s near the shallows 
on either side to the north and south. The northern and southern boundaries are closed for all runs. 

 

4.4.4 Model Output Analysis 

The velocities are averaged over the last hour at which time the currents are considered to have 

adjusted to bathymetric and inlet geometric features.  The potential vorticity, s = 
𝑣𝑥− 𝑢𝑦

ℎ
,  is 

calculated using the time and depth averaged velocities and the derivatives in the x- and y-

directions (subscripts) are calculated between neighboring grid cells every 10 m. The stream 

function is calculated by integrating the time and depth averaged velocities, 𝜓 = ∫(�̅�ℎ 𝑑𝑦 −

�̅�ℎ 𝑑𝑥).  

The time-averaged (indicated by the larger overbar) Reynolds shear stress of the depth-

averaged turbulence velocities, 𝑢′, 𝑣′, (i.e. the residuals after removing the mean flow over the last 

hour of the model run) is calculated by 
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𝑆𝑥𝑦 =  ∫ 𝑢′ 𝑣′ 𝑑𝑦

𝑦

0

 (4.8) 

and shows the relative magnitude of mixing of along-channel (x-direction) momentum across the 

channel (y-direction) resulting from the unstable flow and subsequent transferring of energy from 

the mean flow to the turbulent flow. This mixing occurs at scales associated with the instabilities 

of the mean current and includes the subgrid-scale mixing parameterized by the eddy viscosity 

coefficient (AH). The Reynolds shear stress was calculated along similar transects (T1, T2, and 

T3) as those occupied in 2015 (Figure 4.6). 

 

Figure 4.6. The yellow lines represent the ROMS cross-channel transects in latitude (y-direction) 
and named T1 (west), T2 (middle), and T3 (east). These three transects are in similar locations to 
the 2015 ADCP transects (red lines). The magenta dots represent the along-channel spatially 
lagged ROMS array (used in the analysis described in Appendix E), where stations 1 (west) and 8 
(east) are also stations in T1 and T3, respectively. 
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4.5 Results 

4.5.1 Ebbing Currents 

The mean ebb velocity for both model Runs A (Re = 462, λ = 10-4) and B (Re = 6, λ = 10-2) have 

an intensification of velocity over the lateral shelf off of Henderson Point (Table 4.2; Figure 4.7 

and Figure 4.8) and slower velocity in the adjacent deeper channel (Figure 4.2 and Figure 4.3). 

The high Reynolds number (low friction) condition (Run A) shows faster speeds than the low 

Reynolds number (high friction) condition (Run B) over the shelf by approximately 0.2 m/s 

corresponding to a 13% increase in the maximum speed (Figure 4.8).  This intensification of 

velocity over the shelf is also seen by the convergence of streamlines in the high Reynolds number 

(low friction) condition (Run A) relative to the low Reynolds number (high friction) condition 

(Run B; Figure 4.9).  These results are qualitatively similar in character to Bowen's (1969) results 

for their nearshore circulation study.  
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Figure 4.7. Depth integrated mean velocity over bathymetry for ebbing current Runs A (top) and 
B (bottom). Vectors are scaled to 1.5 m/s. The mean is calculated over the last hour of the model 
run. 

On the ebb flow, there is a circulation cell south of Seavey Island centered near transect 

line 2 (Figure 4.2) between Henderson and Sullivan Points opposing the mean flow direction for 

both low and high Reynolds number cases (Figure 4.7), which is similarly observed by the 2015 

ADCP transects (Figure 4.2). This circulation cell is not present in the numerical results (Figure 

11) or in observations collected during flood currents (Figure 4.2).  
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Figure 4.8. Depth integrated mean ebb current magnitude for Runs A (top) and B (middle) and 
the difference between the two (bottom). Depth contours are shown as black lines and labeled. The 
mean is calculated over the last hour of the model run. 
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Figure 4.9. The stream function (white lines) over bathymetry for ebbing current Runs A (top) 
and B (middle) and the difference between the two runs (bottom). The stream function is calculated 
using the depth-averaged, mean velocities over the last hour of the model run. 

 

The low Reynolds number condition (Run B) with ebbing current shows steadier mean 

flow than the high Reynolds number condition (Run A) due to the high friction dampening the 

unstable motions downriver, as seen in the potential vorticity with less spin-off of vorticity in the 

form of eddies (Figure 4.10). The gradient in the potential vorticity over the shelf off Henderson 

Point is sharper in the low Reynolds number condition (Run B) than the high Reynolds number 

condition (Figure 4.10).  
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Figure 4.10. The potential vorticity for ebbing current Runs A (top) and B (middle) and the 
difference between the two (bottom). Depth contours are shown as black lines and labeled. The 
potential vorticity is calculated using the depth-averaged mean velocities over the last hour of the 
model run. 

4.5.2 Flooding Currents 

Similar to the ebb flow case ADCP observations, the mean velocity on the flood current intensifies 

over the lateral shelf off of Henderson Point in both the high and low Reynolds number conditions, 

Run C (Re = 462, λ = 10-4) and Run D (Re = 6, λ = 10-2), respectively (Figure 4.11 and Figure 

4.12). Over the shelf, the velocity increases by approximately 0.1 m/s in the high Reynolds run 

corresponding to an ~8% increase in the maximum speed, which is smaller than the velocity 
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difference experienced in the ebb flow case.  Similar to the ebb flow case and Bowen (1969), the 

streamlines also converge under high Reynolds number conditions (Figure 4.13) with flooding 

currents.  

 

 

Figure 4.11. Depth integrated mean velocity over bathymetry for flooding current Runs C (top) 
and D (bottom). Vectors are scaled to 1.5 m/s. The mean is calculated over the last hour of the 
model run. 
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Figure 4.12. Depth integrated mean flood current magnitude for Runs C (top) and D (middle) 
and the difference between the two (bottom). Depth contours are shown as black lines and 
labeled. The mean is calculated over the last hour of the model run. 

 

Overall, the flood flow results in slower mean velocities throughout the domain than the 

ebb flow for all Reynolds number cases (Table 4.2).  This is likely due to the difference in area 

along the inflow and outflow boundaries leading to changes in velocity necessary to conserve 

volume. The flood case has an expansion of area on the outflow (western boundary) relative to the 

inflow (eastern boundary) leading to slower velocities and the ebb case has a constriction of 

outflow (eastern boundary) relative to the inflow (western boundary) leading to faster velocities.  



90 
 

 

Figure 4.13. The stream function (white lines) over bathymetry for flooding current Runs C 
(top) and D (middle) and the difference between the two (bottom). The stream function is 
calculated using the depth-averaged, mean velocities over the last hour of the model run. 

 

As the currents move beyond transect line T1 and the shelf off of Henderson Point, it is 

worth noting that the currents also intensify over the shallow area near the western boundary of 

the domain versus following the bathymetry contours and having stronger flow in the adjacent 

deeper channel (Figure 4.11), which is not observed on the ebb flow. Also seen in this area is a 

large recirculation cell only present on the flood with stronger return flow in the high Reynolds 

number condition (Run C) with weaker bottom frictional dampening (Figure 4.11).   
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Figure 4.14. Potential vorticity for Runs C (top) and D (middle) with flooding flow and the 
difference between the two (bottom). Depth contours are shown as black lines and labeled. The 
potential vorticity is calculated using the depth-averaged, mean velocities over the last hour of the 
model run. 

4.5.3 Cross-Channel Transects 

For both the high and low Reynolds number cases and during ebbing and flooding flow, there is 

strong cross-channel shear in the along-channel velocity across all three transects (Figure 4.15), 

consistent with the ADCP observations (Figure 4.2). The model (Figure 4.16 and Figure 4.19) well 

reproduces both the depth-integrated (Figure 4.2) and depth-varying (Figure 4.3) currents observed 

along the transects. The model accurately shows faster currents near the surface but are slightly 
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attenuated near the bottom due to bottom friction. There is strong shear on either side of the channel 

at the ends of the three transects due to the no-slip condition and the associated lateral sidewall 

friction. Transects T2 and T3 show strong currents in the deeper channel for both flooding and 

ebbing flow and in the high and low Reynolds number conditions. Transect T1 is notable in that 

the flow is fastest over the shelf at Henderson Point relative to the adjacent deep channel, evident 

in both the depth averaged and 3-dimensional currents (Figure 4.15 - Figure 4.21).  
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Figure 4.15. Depth averaged mean velocity across three transect lines (T1 – T3) for runs A and C 
(top) and B and D (bottom). The mean is calculated over the last hour of the model run. 

 

4.5.4 Reynolds Shear Stress 

The horizontal mixing of momentum is represented by the cross-channel Reynolds shear stress, 

Sxy, calculated across each transect line for the high Reynolds number condition on both the ebb 

(Run A; Figure 4.16 - Figure 4.18) and flood (Run C; Figure 4.19 - Figure 4.21). When Sxy is zero, 
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there is no mixing of momentum because the horizontal velocity components are in quadrature 

(i.e., out of phase by 90°). When Sxy is non-zero and there is a gradient in the Reynolds shear stress, 

momentum is transferred via horizontal mixing.  The mixing increases in areas of strong horizontal 

current shear.  The sign of the Reynolds shear stress is dependent on the sign of the gradient in the 

mean velocity cross-channel profile (Dodd and Thornton, 1990; Church et al., 1992) and indicates 

the direction of mixing of the along-channel flow laterally across the channel.  

The highest Sxy occurs along transect line T1 for both the flood and ebb cases and 

specifically over the lateral shelf at Henderson Point (Figure 4.16 and Figure 4.19). Sxy is 

approximately two orders of magnitude smaller on the flood (Run C) compared to the ebb (Run 

A) along all three transects, likely due to the slower and steadier velocities seen on the flood. For 

ebbing currents (Run A), Sxy is negative along transect line T1 and T2 and positive along transect 

line T3 (Figure 4.16 - Figure 4.18) indicating that the direction of lateral momentum mixing 

changes when moving down river in the direction of the ebbing currents. For flooding currents 

(Run C), Sxy is negative over the lateral shelf at Henderson Point along transect line T1, however 

moving across the channel southwards, is near zero and then becomes slightly positive (Figure 

4.19). Sxy is strongest and negative near the northern end of the channel along transect T2 with 

flooding currents, however changes sign twice becoming positive near mid-channel and negative 

again near the southern end of the channel, indicating that changes in direction of mixing occur 

across the channel (Figure 4.20). Sxy is positive and strongest in the shallow areas towards the 

northern and southern ends of transect line T3 for flooding currents (Figure 4.21). The change in 

sign of Sxy from positive along transect T3 to predominately negative along transect T1 indicates 

a change in direction of mixing as the flooding currents move upriver. 
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Figure 4.16. Run A (ebbing flow). Transect line T1. Mean current magnitude (top) and direction 
(middle) over the last hour of the model run. (Bottom) Reynolds shear stress, Sxy, using time 
averaged (last hour of the model run) depth-averaged (indicated by the overbar) unsteady 
horizontal velocities (�̅�′, �̅�′). 
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Figure 4.17.  Run A (ebbing flow). Transect line T2. Mean current magnitude (top) and 
direction (middle) over the last hour of the model run. (Bottom) Reynolds shear stress, Sxy, using 
time averaged (last hour of the model run) depth-averaged (indicated by the overbar) unsteady 
horizontal velocities (�̅�′, �̅�′). 
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Figure 4.18. Run A (ebbing flow). Transect line T3. Mean current magnitude (top) and direction 
(middle) over the last hour of the model run. (Bottom) Reynolds shear stress, Sxy, using time 
averaged (last hour of the model run) depth-averaged (indicated by the overbar) unsteady 
horizontal velocities (�̅�′, �̅�′). 
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Figure 4.19. Run C (flooding flow). Transect line T1. Mean current magnitude (top) and 
direction (middle) over the last hour of the model run. (Bottom) Reynolds shear stress, Sxy, using 
time averaged (last hour of the model run) depth-averaged (indicated by the overbar) unsteady 
horizontal turbulence velocities (�̅�′, �̅�′). 
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Figure 4.20. Run C (flooding flow). Transect line T2. Mean current magnitude (top) and 
direction (middle) over the last hour of the model run. (Bottom) Reynolds shear stress, Sxy, using 
time averaged (last hour of the model run) depth-averaged (indicated by the overbar) unsteady 
horizontal velocities (�̅�′, �̅�′). 



100 
 

 

Figure 4.21. Run C (flooding flow). Transect line T3. Mean current magnitude (top) and 
direction (middle) over the last hour of the model run. (Bottom) Reynolds shear stress, Sxy, using 
time averaged (last hour of the model run) depth-averaged (indicated by the overbar) unsteady 
horizontal velocities (�̅�′, �̅�′). 

 

4.6 Discussion 

Here, we investigate the forcing mechanisms driving an intensification of the mean tidal current 

through a narrow estuarine channel over a lateral shelf off Henderson Point in the Piscataqua River 

observed by cross-channel ADCP transects.  Although it is expected that faster currents flow 

through the deeper channel where the dampening effect from bottom friction is weaker, the 

velocity is observed to be strongest on the shallow shelf during both the ebb and flood currents.  

Numerical simulations using ROMS were conducted to better understand the flow dynamics and 
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forcing mechanisms driving the velocity intensification over the shelf.  The numerical results 

qualitatively well reproduced the observations of both the depth averaged and vertically varying 

horizontal currents observed along three cross-channel transect lines south of Seavey Island.  

 The velocity intensification in the tidal current through the bounded channel is analogous 

to rip currents in the nearshore studied by Bowen (1969).  Numerical solutions in Bowen (1969) 

show that under high Reynolds number conditions a narrowing of streamlines and strengthening 

of the seaward flow (rip currents) occurs. Similar to Bowen (1969), we ignore the Coriolis force 

and investigate the potential vorticity balance where the relative vorticity dominates and the flow 

is inertial. Our results are consistent with Bowen (1969) in that under high Reynolds number 

conditions (low bottom friction and eddy viscosity), streamlines cross bathymetric contours and 

converge leading to intensification of velocities over the lateral shelf at Henderson Point during 

both ebb and flood currents.  Under low Reynolds number conditions, the bottom friction dampens 

the flow. 

 The potential vorticity balance is used to better understand the fluid dynamics and forcing 

mechanisms.  The strong shear in along-channel velocity drives a strong cross-channel gradient in 

potential vorticity throughout the channel, and especially over the shelf at Henderson Point, with 

both flood and ebb currents (Figure 4.10 and Figure 4.14). The positive (negative) potential 

vorticity seen over the shelf on the ebb (flood) flow leads to cyclonic (anticyclonic) vorticity that 

contribute to circulation up onto the shelf.  Although the potential vorticity is not conserved here 

due to the inclusion of bottom friction and eddy viscosity, those terms are considered small relative 

to the inertial terms under high Reynolds number conditions. This is seen by comparing the inertial 

time scale of motion, 𝐿
𝑈

, with the frictional spin down time, 𝐻
𝜆
, assuming the eddy viscosity term is 

negligible, so that  𝐴𝐻

𝐿2 ≪
𝐻

𝜆
. To maintain numerical stability, 𝐴𝐻 was set to 0.1 m2/s, however the 
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eddy viscosity coefficient may be smaller (e.g. ~0.01 m2/s) in realistic estuarine conditions. Using 

characteristic scales of motion over the Henderson shelf that were similarly used in calculating the 

Reynolds number, the inertial time scale (200 s or approx. 3 min) is much faster than the time it 

would take bottom friction to spin down the currents (1.2x105 s or > 33 hr) in high Reynolds 

number conditions (𝜆 = 10−4) or even in moderate friction conditions (𝜆 = 10−3; >3 hr). 

Therefore, we can assume the potential vorticity is approximately conserved, 𝐷

𝐷𝑡
(

𝜉

ℎ
) ≈ 0, in which 

case the relative vorticity must weaken when the depth shoals over Henderson Point.   

 While the potential vorticity is approximately conserved and contributes to changes in the 

horizontal shear structure, the volume is also conserved and plays a role in the velocity 

intensification observed over the shelf. Since the flow is predominately inertial, supported by the 

low Froude number (<1) and large Reynolds number, the velocity will increase over the shallow 

shelf at Henderson Point to conserve volume.  

On the flood tide, the currents also intensify over the shallow area near the western 

boundary of the domain versus following the bathymetry contours and having stronger flow in the 

adjacent deeper channel (Figure 4.11).  This is consistent with similar forcing mechanisms as those 

causing the intensification of velocity over the shelf at Henderson Point and therefore, may suggest 

the forcing may be more generally applied in other inlets and channels with comparable 

bathymetric and topographic features with similar scales of motion leading to velocity 

intensifications.  However, there are no observations available to verify the model results and 

therefore will not be further discussed.  It is worth noting the intensification was not observed with 

ebbing currents, likely due to the proximity to the western inflow that has a clamped boundary 

condition and therefore, the flow may not have enough space to adjust to the bathymetry before 

reaching this shoal.  
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This velocity intensification over the shelf at Henderson Point leads to stronger cross-

channel shear that can support unstable motions (Appendix E: Unstable Motions in the Piscataqua 

River). The unstable motions cause lateral mixing of momentum, the magnitude of which is 

calculated through the Reynolds shear stress, Sxy.  Prior studies have found horizontal mixing of 

momentum to smooth the cross-channel velocity structure and diffuse the velocity gradients (Dodd 

and Thornton, 1990). The expected direction and magnitude of mixing of momentum is dependent 

on the velocity shear structure and inversely proportional to the potential vorticity gradient (Dodd 

and Thornton, 1990; Chapter II).  Momentum is horizontally mixed across the channel from areas 

with fast velocities towards the areas of weaker velocities while transferring energy from the mean 

tidal current to the turbulent flow.  The magnitude of mixing is strongest in areas of high current 

shear, as experienced over the shelf at Henderson Point during both the ebb and flood currents 

(Figure 4.16 and Figure 4.19).  

Intensification of velocity (up to approx. 13% increase relative to the max speed) over the 

lateral shelf at Henderson Point and the consequential unstable motions that lead to horizontal 

mixing of momentum can have significant impacts on safe and economical navigation (Chen et 

al., 2013), tidal current energy resource assessments that depend on the velocity to the third power 

(Lalander et al., 2013), the fate and transport of organic and inorganic matter, and estuarine 

dynamics including salt transport.  

4.7 Conclusions 

Spatial variability of the tidal currents are analyzed numerically using ROMS to better understand 

the forcing mechanisms driving the cross-channel current structure over a lateral shelf at 

Henderson Point in the Piscataqua River.  Results improve understanding of tidal current dynamics 
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and horizontal mixing of momentum in inlets and estuaries across narrow channels with variable 

bathymetry.  

 Our results are analogous to and consistent with Bowen (1969), in that an intensification 

of velocity (convergence of streamlines) over the lateral shelf at Henderson Point resulted from 

the potential vorticity balance including frictional terms during both quasi-steady (flood and ebb 

tidal) currents. When bottom friction and eddy viscosity are small, the flow is highly inertial (high 

Reynolds number conditions) leading to streamlines crossing bathymetric contours (horizontal 

cross-river circulation) and increased velocities over the shallow lateral shelf.  Given the cross-

channel structure of the velocity, the water is pushed up onto the shelf by the potential vorticity.  

Due to the shallower depth, the velocities increase due to conservation of volume, which leads to 

even stronger horizontal shear in the mean along-channel tidal currents.  

The consequential unstable motions lead to horizontal mixing of momentum, the 

magnitude of which is calculated through the Reynolds shear stress, Sxy. The mixing is largest in 

the area with the strongest shear, which occurs over the lateral shelf at Henderson Point where 

currents are intensified. The mixing is expected to modify the cross-channel velocity structure and 

smooth out the gradients in shear of the mean along-channel tidal current. The velocity 

intensification over the shelf along with the unstable motions and mixing of momentum can have 

impacts on navigation, tidal current energy assessment, and estuarine dynamics, including the fate 

and transport of organic and inorganic substances.  
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CHAPTER 5 

5 CONCLUSIONS 

This research aims to better understand the spatial and temporal variability of tidal currents, 

primarily the high frequency variability about the mean, flowing through narrow inlets and/or 

bounded estuarine channels. Chapter 2 is a theoretical analytical analysis of instabilities of tidal 

currents. Observations were collected in the Hampton-Seabrook Inlet and analyzed in Chapter 3 

to determine the presence of unstable motions. Chapter 4 uses a numerical hydrodynamic, 3-

dimensional model to study the flow and analyze the velocity intensification over a lateral shelf in 

the Piscataqua River. 

Chapter 2 describes the general dispersion equation of barotropic instabilities of tidal 

currents analytically solved over simple bathymetry through idealized and variable channel 

geometries.  The solution is third-order and depends on the wavenumber, maximum current 

magnitude, horizontal shear of the current, cross-inlet geometry and bathymetry, and a linear 

friction coefficient. The cross-channel velocity, bathymetry, and geometry can be altered to 

approximate typical natural inlet geometries allowing for a range of scenarios to be examined. The 

resulting dominant wavelengths are O(102 m), periods are O(102 - 103 s), and growth rates of the 

fastest growing unstable modes are O(10-3 - 10-2 s-1) with phase speeds approximately one third of 

the maximum velocity, consistent with instabilities of longshore currents studied in the nearshore 

(Bowen and Holman, 1989; Dodd and Thornton, 1990).  

This work expands upon Bowen and Holman (1989) solution for nearshore longshore 

currents in that the bathymetry is variable (piecewise linear) and includes the presence or absence 

of lateral shelves, the flow is bounded on either side, there are two extremums in the potential 

vorticity (one of the requirements for the growth of unstable modes), and a linear bottom friction 
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is included.  Bottom friction suppresses the unstable motions leading to slower initial growth rates 

and a reduced range of unstable wavenumbers. Faster growing modes with a larger range of 

unstable wavenumbers and stronger horizontal mixing (represented by the cross-channel Reynolds 

shear stress) occur under stronger shear conditions and cross-channel bathymetry with wide, deep 

shelves. Horizontal mixing acts to smooth the initial velocity cross-channel structure and stronger 

mixing by the instabilities occurs in the areas of higher lateral current shear. These results suggest 

that tidal currents in inlets will produce unstable modes that can mix momentum laterally, 

impacting transport of particulate and dissolved organic and inorganic matter through the inlet. 

 In Chapter 3, observations were collected in the Hampton-Seabrook Inlet to determine the 

presence of instabilities of tidal currents consistent with the general solution found in Chapter 2.  

To estimate the wavenumbers of shear instabilities, a spatially-lagged array consisting of seven 

sensors measuring tri-directional currents and pressure were deployed for one week during the 

spring tide in May 2021. Using iterative maximum likelihood estimators, wavenumber-frequency 

spectra are estimated during 3-4 hour time periods with approximately steady currents on both the 

flood and ebb tides.  Dominant wavenumbers (± 0.002 - 0.02 m-1) of the low frequency motions 

(0.0006 - 0.01 s-1) with corresponding wavelengths (± 314.2 – 3141.6 m) and periods (628.3 – 

10472 s) are resolved and consistent with motions determined from the barotropic linear stability 

analysis described in Chapter 2. The instabilities are directed into the inlet on flood tides and out 

of the inlet on the ebbs, consistent with the expected generation and propagation of unstable modes 

produced by the cross-channel shear. The normalized velocity-to-pressure variance ratio at each 

station shows that the infragravity band is dominated by rigid-lid-like motions (R>>1) during both 

the flood and ebb tide. The lack of breaking wave group modulations within the inlet and the 

presence of the seaward propagating instabilities on the ebb flow indicate that the presence of the 
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instabilities can be attributed to the shear of the tidal current. These results are consistent with 

instabilities of longshore currents observed in the nearshore (Oltman-Shay et al., 1989) and the 

resulting high frequency variability of the currents can lead to the horizontal mixing of momentum 

across the inlet impacting estuarine dynamics.  

An intensification of velocity over a lateral shelf off Henderson Point in the Piscataqua 

River was observed by cross-river transects of a downward-looking vessel-mounted ADCP in 

2015 during both the flood and ebb on the spring tide. In Chapter 4, a numerical hydrodynamic 

model (ROMS) was used to model the flow and better understand the forcing mechanisms driving 

intensification of velocity over the shallow shelf versus in the deeper adjacent channel, where 

bottom friction is expected to have less of a dampening effect on the depth-averaged currents. 

Analogous to prior work examining the intensification of rip currents in the nearshore (Bowen, 

1969), the potential vorticity balance is used to help explain and understand the physical dynamics. 

Results show that the along-channel flow is intensified (convergence of streamlines) over the later 

shelf under high Reynolds number conditions, where the inertial forces dominate over the 

frictional and viscous forces, during both quasi-steady flooding and ebbing currents.  The potential 

vorticity is approximately conserved since the inertial time scales are much faster than the 

frictional spin down time.  Given the cross-channel structure of the velocity, the water is circulated 

up onto the shelf by the potential vorticity.   Due to the shallower depth, the velocities increase 

due to conservation of volume, which leads to even stronger horizontal shear in the mean along-

channel tidal currents.  The intensification of tidal currents over shallow regions of a bounded 

channel leads to spatial variability in cross-channel current velocity structure that can support 

unstable motions that cause horizontal mixing of momentum that act to smooth the lateral shear in 

mean flow.  
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This work aims to help researchers better understand the spatial and temporal high 

frequency variability of mean tidal currents flowing through narrow estuarine channels. This 

variability can lead to horizontal mixing of momentum across the channel and significantly impact 

estuarine dynamics.  

 

5.1 Applications to NOAA 

NOAA’s National Ocean Service’s (NOS) Center for Operational Products and Services (CO-

OPS) routinely measures mean (calculated in 6 minute intervals) tidal currents along the U.S. 

coasts and estuaries, from which predictions of flood and ebb current magnitudes and phases over 

spring-neap tidal cycles are calculated.  The users of these products include mariners, as well as 

scientists and engineers interested in numerical model development and verification. The location 

of current meter deployments within a given estuary as part of either NOAA’s PORTS (Physical 

Oceanographic Real-Time System) or NCOP (National Currents Observation Program) surveys 

are determined from a variety of factors including proximity to the navigational channel, historical 

predictions of max current speeds, preexisting numerical model simulations of the area, and 

reconnaissance data of the site.  Typically in NCOP surveys, sensors may be spaced widely apart 

(up to several miles) in order to span the estuary leaving large spatial gaps in the tidal current 

structure.  Although these data are invaluable in representing expected tidal current velocities and 

phases experienced by mariners, they do not consider the high frequency variability in the flow 

relative to the 6-min mean, nor the horizontal spatial variability resulting from the cross-channel 

shear in the mean along-channel current since these sensors are typically profiling vertically 

through the water column at a single location.  This work highlights the importance of 

understanding the temporal and spatial variability of mean currents and by using numerical models 
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and ADCP transects collected across channels, NOAA can better determine the optimal sensor 

locations for future PORTS and NCOP current meter stations in areas where the max tidal current 

is experienced.  

Observations of tidal currents are critical in developing and validating hydrodynamic 

models enabling more accurate and reliable output and products.  NOAA’s NOS Coast Survey 

Development Lab (CSDL) and CO-OPS jointly develops, implements, and maintains several 

Operational Nowcast and Forecast Hydrodynamic Model Systems (OFS) throughout the coastal 

U.S. that provide nowcasts and short-term forecasts (up to 72 hr.) of a variety of oceanographic 

and meteorological products, including currents (Vincent et al., 2003).  These models help fill 

spatial gaps in real-time tidal current observations, which are both expensive and can be difficult 

to maintain.  Fine grid resolution is necessary to accurately resolve the spatial structure of the mean 

tidal current flow throughout the estuary, especially through narrow inlets where current shear is 

strong and navigation is hazardous.  As NOAA’s OFS models continue to increase resolution in 

inlets and estuaries, especially in model domains expanding further up rivers, ADCP transects 

across estuarine channels and temporary ADCP deployments will be critical in validating the 

models and ensuring accurate nowcast and forecasts of the mean current, especially in areas with 

high temporal and/or spatial variability.  

 

5.2 Future Work 

There are a variety of considerations for future work in investigating the temporal and spatial 

variability of mean tidal currents in estuaries and tidal inlets with narrow channels. In Chapter 2, 

the horizontal eddy viscosity coefficient was neglected in the analytical solution, which could be 

included in future analysis for completion. The inclusion of this term is expected to dampen the 
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growth rates causing less energetic, longer along-channel motions due to a decrease in the high-

wavenumber oscillations, and slightly slower phase speeds based on results found by Falqués and 

Iranzo (1994) and Özkan-Haller and Kirby (1999).  

In Chapter 3, the array deployments were limited by the federally maintained navigational 

channel and all current meters were deployed outside of the channel along the southern side of the 

inlet to help ensure safety of vessels and the equipment.  However, in addition to the spatially 

lagged array along the southern side of the inlet, it would have been helpful to also have a cross-

channel array and/or a spatially lagged array along the northern side of the inlet.  The cross-channel 

array would provide insight into the spatial variability of the tidal currents while providing time 

series of velocity filling in temporal gaps between collecting data on ADCP transects. The 

spatially-lagged array along the northern side of the inlet would be used to observe instabilities 

due to the shear along the northern side and be compared with the scales of motion generated from 

the shear along the southern side of the inlet on both the flood and ebb tide. This would be 

especially beneficial if there is asymmetry in the location of the max currents across the channel 

between the flood and ebb tidal currents.  

In Chapter 4, the model used clamped inflow conditions based on expected velocity 

structure at the boundaries. Ideally, the smaller domain model would be nested into a larger domain 

model and the forcing conditions would be based on the tidally induced pressure gradient resolved 

in the larger domain model. The model domain could also be expanded in order to analyze the 

shallow area near the western boundary where currents were observed to have intensified on the 

flood tide to determine if this is experienced on the ebb flow given ample space away from the 

inflow boundary for the currents to adjust to the bathymetry and topography.  
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APPENDIX A. BOUNDARY CONDITIONS 

Table A-1. Matching conditions at region boundaries. The subscripts on the stream function (ψ), 

sea surface elevation (η), coefficients, and fraction of depth (α) denote the region (0-3), while the 

subscript on x denotes the cross-inlet location.  

Cross-inlet 

location, x 
Stream function, 𝝍(x) Sea surface elevation, (x) 

x = 0 

(in Region 0) 
𝜓0 (0) = 0 𝜂0(0) =

1

𝑔(𝛼0ℎ)
[(𝑐 + 

𝑖

𝑘

𝜆

𝛼0ℎ
) 𝜓0𝑥] 

x = 𝑥1= 𝛾1𝑥0 

(Region 0 = 

Region 1) 

𝜓0(𝑥1) = 𝜓1(𝑥1) 𝜂0(𝑥1) = 𝜂1(𝑥1) 

𝐴0 sinh(𝑘𝑥1) = 

𝐴1 sinh(𝑘𝑥1)

+ 𝐵1 cosh(𝑘𝑥1) 

1

𝑔(𝛼0ℎ)
[(𝑐 + 

𝑖

𝑘

𝜆

𝛼0ℎ
) 𝜓0𝑥] =  

− 
1

𝑔(𝛼1ℎ)
[(𝑉𝑚 − 𝑐 − 

𝑖

𝑘

𝜆

𝛼1ℎ
)𝜓1𝑥

− 𝑉1𝑥𝜓1] 

x = 𝑥2=  

𝑥0(𝛾1 +  𝛿) 

(Region 1 = 

Region 2 ) 

𝜓1(𝑥2) = 𝜓2(𝑥2) 𝜂1(𝑥2) = 𝜂2(𝑥2) 

𝐴1 sinh(𝑘𝑥2)

+ 𝐵1 cosh(𝑘𝑥2) = 

𝐴2 sinh(𝑘𝑥2)

+ 𝐵2 cosh(𝑘𝑥2) 

− 
1

𝑔(𝛼1ℎ)
[(𝑉𝑚 − 𝑐 − 

𝑖

𝑘

𝜆

𝛼1ℎ
)𝜓1𝑥

− 𝑉1𝑥𝜓1] = 

− 
1

𝑔(𝛼2ℎ)
[(𝑉𝑚 − 𝑐 − 

𝑖

𝑘

𝜆

𝛼2ℎ
)𝜓2𝑥

− 𝑉2𝑥𝜓2] 

x = 𝑥3= 𝜓2(𝑥3) = 𝜓3(𝑥3) 𝜂2(𝑥3) = 𝜂3(𝑥3) 
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𝑥0(𝛾1 +  1)  

(Region 2 = 

Region 3) 

𝐴2 sinh(𝑘𝑥3)

+ 𝐵2 cosh(𝑘𝑥3) = 

𝐴3[sinh(𝑘𝑥3)

− tanh(𝑘𝑥𝑚𝑎𝑥) cosh(𝑘𝑥3)] 

− 
1

𝑔(𝛼2ℎ)
[(𝑉𝑚 − 𝑐 − 

𝑖

𝑘

𝜆

𝛼2ℎ
)𝜓2𝑥

− 𝑉2𝑥𝜓2] =  

1

𝑔(𝛼3ℎ)
[(𝑐 +

𝑖

𝑘

𝜆

𝛼3ℎ
 ) 𝜓3𝑥] 

x = xmax = 

𝑥0(𝛾1 + 1 + 𝛾2 ) 

(in Region 3) 

𝜓3(𝑥𝑚𝑎𝑥) = 0 𝜂3(𝑥𝑚𝑎𝑥) =
1

𝑔(𝛼3ℎ)
[(𝑐 +

𝑖

𝑘

𝜆

𝛼3ℎ
 ) 𝜓3𝑥] 
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APPENDIX B. COEFFICIENT EQUATIONS 

The resulting coefficient (A and B) equations after applying boundary conditions (Table A-1).  The 

indexing on the coefficients and fraction of depth (α) indicates the region. Note C is shorthand for 

the hyperbolic cosine and S is shorthand for the hyperbolic sine. The indexing on C, S, and velocity 

(V) denotes the location across the inlet, e.g. C1 = cosh(𝑘𝑥1). Vm is the max velocity, k is the 

wavenumber, and TL is short hand for tanh(xmax). 

𝐴0 = 𝐴1 + 
𝐵1𝐶1

𝑆1
 

𝐵1

𝐴1
= 

𝜎𝐶1𝑆1(𝛼1 − 𝛼0) − 𝛼0𝑉1𝑥𝑆1
2 + 𝑖

𝜆
ℎ

𝐶1𝑆1 (
𝛼1

𝛼0
− 

𝛼0

𝛼1
)

𝛼0𝑉1𝑥𝐶1𝑆1 − 𝜎(𝛼1𝐶1
2 − 𝛼0𝑆1

2) − 𝑖
𝜆
ℎ

(
𝛼1

𝛼0
𝐶1

2 − 
𝛼0

𝛼1
𝑆1

2)
 

𝐴2 = 𝐴1 + 
𝐵1𝐶2

𝑆2
− 

𝐵2𝐶2

𝑆2
 

𝐵1

𝐴1
=

𝜎𝐶2𝑆2(𝛼2− 𝛼1)+ 𝑘𝑉𝑚𝐶2𝑆2(𝛼1− 𝛼2) + 𝑆2
2(𝛼2𝑉1𝑥− 𝛼1𝑉2𝑥) + 𝑖

𝜆

ℎ
𝐶2𝑆2(

𝛼2
𝛼1

− 
𝛼1
𝛼2

) + 𝐵2(𝜎𝛼1− 𝛼1𝑘𝑉𝑚+ 
𝛼1
𝛼2

𝑖
𝜆

ℎ
)

𝜎(𝛼1𝐶2
2− 𝛼2𝑆2

2)−𝑘𝑉𝑚(𝛼1𝐶2
2− 𝛼2𝑆2

2)− 𝐶2𝑆2(𝛼2𝑉1𝑥− 𝛼1𝑉2𝑥) + 𝑖
𝜆

ℎ
(
𝛼1
𝛼2

𝐶2
2− 

𝛼2
𝛼1

𝑆2
2)

  

𝐴3 = 
𝐴2𝑆3 + 𝐵2𝐶3

𝑆3 − 𝑇𝐿𝐶3
 

𝐵2

𝐴2
=

 
𝜎[𝛼2𝑆3(𝐶3− 𝑇𝐿𝑆3) − 𝛼3𝐶3(𝑆3− 𝑇𝐿𝐶3)]− 𝛼3𝑉2𝑥𝑆3(𝑆3− 𝑇𝐿𝐶3)−𝑖

𝜆

ℎ
(

𝛼3
𝛼2

𝐶3(𝑆3− 𝑇𝐿𝐶3)− 
𝛼2
𝛼3

𝑆3(𝐶3− 𝑇𝐿𝑆3)) 

𝜎[𝛼3𝑆3(𝑆3− 𝑇𝐿𝐶3) − 𝛼2𝐶3(𝐶3− 𝑇𝐿𝑆3)]+ 𝛼3𝑉2𝑥𝐶3(𝑆3− 𝑇𝐿𝐶3) − 𝑖
𝜆

ℎ
(

𝛼2
𝛼3

𝐶3(𝐶3− 𝑇𝐿𝑆3)− 
𝛼3
𝛼2

𝑆3(𝑆3− 𝑇𝐿𝐶3))
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APPENDIX C. CUBIC SOLUTION 

The cubic equation for linear instabilities of tidal currents through a laterally bounded inlet is 

below. Note C, S, and T are shorthand for the hyperbolic cosine, sine and tangent, respectively. 

The indexing on C and S denotes the location across the inlet, e.g. C1 = cosh(𝑘𝑥1). Vm is the max 

velocity, k is the wavenumber, and TL is short hand for tanh(xmax). Derivatives are expressed in 

the subscript and the subscript on velocity indicates the velocity magnitude in that region, e.g. 𝑉1 

is the velocity magnitude in Region 1, and 𝑉1𝑥 = 
𝜕𝑉1

𝜕𝑥
.  

 

0 = 𝜎3

[
 
 
 
 
 
 
 
 (𝛼1 + 𝐶2

2(𝛼2 − 𝛼1))(𝛼1𝐶1
2 − 𝛼0𝑆1

2) (𝛼2𝑆3 (
𝐶3

𝑇𝐿

− 𝑆3) − 𝛼3𝐶3 (
𝑆3

𝑇𝐿

− 𝐶3))

+ (𝐶2𝑆2(𝛼2 − 𝛼1)(𝛼1𝐶1
2 − 𝛼0𝑆1

2) + 𝐶1𝑆1(𝛼1 − 𝛼0)(𝛼1𝐶2
2 − 𝛼2𝑆2

2)) ×

(𝛼3𝑆3 (
𝑆3

𝑇𝐿

− 𝐶3) − 𝛼2𝐶3 (
𝐶3

𝑇𝐿

− 𝑆3))

+ ((𝛼1𝐶2
2 − 𝛼2𝑆2

2) −  𝛼1) (
𝐶1𝑆1𝐶2

𝑆2

(𝛼1 − 𝛼0) (𝛼2𝑆3 (
𝐶3

𝑇𝐿

− 𝑆3) − 𝛼3𝐶3 (
𝑆3

𝑇𝐿

− 𝐶3)))
]
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+𝜎2

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −(𝛼1 + 𝐶2

2(𝛼2 − 𝛼1))(𝛼1𝐶1
2 − 𝛼0𝑆1

2) (𝛼3𝑉2𝑥𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) +  𝑖

𝜆

ℎ
(

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3)))

−𝑘𝑉𝑚(𝛼1 − 𝐶2
2(𝛼1 − 𝛼2))(𝛼1𝐶1

2 − 𝛼0𝑆1
2) (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

+𝑖
𝜆

ℎ
 (

𝛼1

𝛼2
(𝛼1𝐶1

2 − 𝛼0𝑆1
2) + 𝛼1 (

𝛼1

𝛼0
𝐶1

2 − 
𝛼0

𝛼1
𝑆1

2))(𝛼2𝑆3 (
𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

−𝛼0𝑉1𝑥𝐶1𝑆1(𝛼1 + 𝐶2
2(𝛼2 − 𝛼1)) (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

+𝑆2 (𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) +   𝑖
𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
− 

𝛼1

𝛼2
)) ×

(𝛼1𝐶1
2 − 𝛼0𝑆1

2) (𝛼3𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) − 𝛼2𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3))

+ 𝐶2𝑆2(𝛼1𝐶1
2 − 𝛼0𝑆1

2)

(

 
 
 
 
 

(𝛼2 − 𝛼1) (𝛼3𝑉2𝑥𝐶3 (
𝑆3

𝑇𝐿
− 𝐶3)) 

−𝑖
𝜆

ℎ
(𝛼2 − 𝛼1) (

𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3))

+ ((𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) (𝛼2𝑆3 (
𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3)))

)

 
 
 
 
 

+ 𝑖
𝜆

ℎ
𝐶2

2  ((𝛼1𝐶1
2 − 𝛼0𝑆1

2) (
𝛼2

𝛼1
− 

𝛼1

𝛼2
) + (

𝛼1

𝛼0
𝐶1

2 − 
𝛼0

𝛼1
𝑆1

2) (𝛼2 − 𝛼1)) (𝛼2𝑆3 (
𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

+𝐶2𝑆2(𝛼2 − 𝛼1) (𝑖
𝜆

ℎ
(

𝛼1

𝛼0
𝐶1

2 − 
𝛼0

𝛼1
𝑆1

2) − 𝛼0𝑉1𝑥𝐶1𝑆1 ) (𝛼3𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) − 𝛼2𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3))

−𝐶1𝑆1(𝛼1 − 𝛼0) (𝑘𝑉𝑚(𝛼1𝐶2
2 − 𝛼2𝑆2

2) + 𝐶2𝑆2 (𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) −  𝑖
𝜆

ℎ
(

𝛼1

𝛼2
𝐶2

2 − 
𝛼2

𝛼1
𝑆2

2)) ×

((𝛼3𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) − 𝛼2𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3)) + 

𝐶2

𝑆2
(𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3)))

+ 𝐶1𝑆1(𝛼1 − 𝛼0)(𝛼1𝐶2
2 − 𝛼2𝑆2

2) (𝛼3𝑉2𝑥 (
𝑆3

𝑇𝐿
− 𝐶3) (𝐶3 −

𝐶2𝑆3

𝑆2
 ) − 𝑖

𝜆

ℎ
(

𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3)) )

+ 𝑖
𝜆

ℎ

𝐶1𝑆1𝐶2

𝑆2
 (𝛼1 − (𝛼1𝐶2

2 − 𝛼2𝑆2
2) )(𝛼1 − 𝛼0) (

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

−𝑆1 (𝛼0𝑉1𝑥𝑆1 −  𝑖
𝜆

ℎ
𝐶1 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
)) (𝛼1𝐶2

2 − 𝛼2𝑆2
2) ×

((𝛼3𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) − 𝛼2𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3)) + 

𝐶2

𝑆2
(𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3 ) −  𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3)))

+ 𝛼1
𝐶2

𝑆2
𝐶1𝑆1𝛼3𝑉2𝑥𝑆3(𝛼1 − 𝛼0) (

𝑆3

𝑇𝐿
− 𝐶3)

+ 𝑆1 𝛼1
𝐶2

𝑆2
(𝐶1𝑘𝑉𝑚(𝛼1 − 𝛼0) + 𝛼0𝑉1𝑥𝑆1) (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

−𝑖
𝜆

ℎ

𝐶2

𝑆2
𝐶1𝑆1 (

𝛼1

𝛼2
(𝛼1 − 𝛼0) + 𝛼1 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
))(𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



125 
 

+𝜎

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (𝛼1𝑘𝑉𝑚 −  𝑖

𝜆

ℎ

𝛼1

𝛼2
) (𝛼3𝑉2𝑥𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3) (𝛼1𝐶1

2 − 𝛼0𝑆1
2) + 𝛼0𝑉1𝑥𝐶1𝑆1 (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3)))

+
𝜆

ℎ
(𝛼1𝑘𝑉𝑚𝑖 +

𝜆

ℎ

𝛼1

𝛼2
)

(

 
 

(𝛼1𝐶1
2 − 𝛼0𝑆1

2) (
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3)) −

(
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (𝛼2𝑆3 (
𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3)) 

)

 
 

+
𝜆

ℎ
(𝛼0𝑉1𝑥𝐶1𝑆1𝛼1𝑖 + 𝛼1

𝜆

ℎ
(

𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2)) (
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

+ 𝛼1𝛼3𝑉2𝑥𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) (𝛼0𝑉1𝑥𝐶1𝑆1 −  𝑖

𝜆

ℎ
(

𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2))

+ 𝑆2(𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) )(𝛼1𝐶1
2 − 𝛼0𝑆1

2) ×

(𝛼3𝑉2𝑥𝐶3 (
𝑆3

𝑇𝐿
− 𝐶3) − 𝑖

𝜆

ℎ
 (

𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3)))

−𝐶2𝛼3𝑉2𝑥 (𝑘𝑉𝑚𝐶2𝑆3(𝛼1 − 𝛼2) − 𝑖
𝜆

ℎ
 𝑆2𝐶3 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) (𝛼1𝐶1

2 − 𝛼0𝑆1
2) (

𝑆3

𝑇𝐿
− 𝐶3)

+ (
𝜆

ℎ
)

2

𝐶2𝑆2 (
𝛼2

𝛼1
−

𝛼1

𝛼2
) (𝛼1𝐶1

2 − 𝛼0𝑆1
2) (

𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3))

−𝑖
𝜆

ℎ
𝐶2(𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) ) ×

(

 
 

(𝛼1𝐶1
2 − 𝛼0𝑆1

2) (
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3)) − 

(
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (𝛼2𝑆3 (
𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3)) 

)

 
 

−𝐶2𝛼3𝑉2𝑥𝑆3 (𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) + 𝑖
𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) (𝛼1𝐶1

2 − 𝛼0𝑆1
2) (

𝑆3

𝑇𝐿
− 𝐶3)

+ 𝐶2𝛼0𝑉1𝑥𝑆1
2 (𝐶2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) −  

𝑖

𝑆2

𝜆

ℎ
(

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2))(𝛼2𝑆3 (
𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

+ 𝑖
𝜆

ℎ
𝐶1𝑆1𝛼3𝑉2𝑥 (𝐶3 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
) (𝛼1𝐶2

2 − 𝛼2𝑆2
2) −

𝐶2𝑆3

𝑆2
 (𝛼1 − 𝛼0) (

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2)) (
𝑆3

𝑇𝐿
− 𝐶3)

+ (
𝜆

ℎ
)

2

𝐶1𝑆1
𝐶2

𝑆2
((

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2) (𝛼1 − 𝛼0) + (
𝛼1

𝛼0
− 

𝛼0

𝛼1
) (𝛼1𝐶2

2 − 𝛼2𝑆2
2)) (

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

− 𝑖
𝜆

ℎ
𝐶1𝑆1

𝐶2

𝑆2
𝛼3𝑉2𝑥𝑆3 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
) (

𝑆3

𝑇𝐿
− 𝐶3) (𝛼1𝐶2

2 − 𝛼2𝑆2
2)

+ (
𝜆

ℎ
)

2

𝐶1𝑆1
𝐶2

𝑆2

𝛼1

𝛼2
(

𝛼1

𝛼0
− 

𝛼0

𝛼1
) (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

−
𝐶2

𝑆2
𝐶1𝑆1𝛼3𝑉2𝑥𝑆3 (𝛼1𝑘𝑉𝑚 − 𝑖

𝜆

ℎ

𝛼1

𝛼2
) (𝛼1 − 𝛼0) (

𝑆3

𝑇𝐿
− 𝐶3)

−
𝜆

ℎ

𝐶2

𝑆2
𝐶1𝑆1 (𝑖𝛼1𝑘𝑉𝑚 +

𝜆

ℎ

𝛼1

𝛼2
) (𝛼1 − 𝛼0) (

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

−
𝐶2

𝑆2
𝛼1𝑆1𝛼3𝑉2𝑥𝑆3 (𝛼0𝑉1𝑥𝑆1 − 𝑖

𝜆

ℎ
𝐶1 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
)) (

𝑆3

𝑇𝐿
− 𝐶3)

−
𝜆

ℎ

𝐶2

𝑆2
𝛼1𝑆1 (𝑖𝛼0𝑉1𝑥𝑆1 +

𝜆

ℎ
𝐶1 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
))(

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

+𝑆1
𝐶2

𝑆2
(𝑖

𝜆

ℎ
𝐶1𝛼1𝑘𝑉𝑚 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
) + 𝑖

𝜆

ℎ

𝛼1

𝛼2
𝛼0𝑉1𝑥𝑆1 − 𝛼0𝑉1𝑥𝑆1𝛼1𝑘𝑉𝑚) (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

+(
𝜆

ℎ
)

2

𝐶1𝑆1 (
𝛼1

𝛼0
− 

𝛼0

𝛼1
) (𝛼1𝐶2

2 − 𝛼2𝑆2
2) (

𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3))

]
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 + 𝐶2

2 𝜆

ℎ
(

𝜆

ℎ
(𝛼1𝐶1

2 − 𝛼0𝑆1
2) (

𝛼2

𝛼1
−

𝛼1

𝛼2
) + 𝑖𝛼0𝑉1𝑥𝐶1𝑆1(𝛼2 − 𝛼1)) (

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

− 𝛼0𝑉1𝑥𝐶1𝑆1𝑆2 (𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) +  𝑖
𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) ×

(𝛼3𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) − 𝛼2𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3))

+ 𝛼0𝑉1𝑥𝐶1𝑆1𝐶2𝛼3𝑉2𝑥(𝐶2𝑆3 − 𝐶3𝑆2) (
𝑆3

𝑇𝐿
− 𝐶3) (𝛼2 − 𝛼1)

−𝛼0𝑉1𝑥𝐶1𝑆1𝐶2 (𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥)  +   𝑖
𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) ×

(𝛼2𝑆3 (
𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

+
𝜆

ℎ
𝑆2 (𝑖𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑖𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) −

𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) ×

(
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (𝛼3𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) − 𝛼2𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3))

+ 𝑖
𝜆

ℎ
𝐶2𝛼3𝑉2𝑥(𝐶3𝑆2 − 𝐶2𝑆3) (

𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (
𝑆3

𝑇𝐿
− 𝐶3) (𝛼2 − 𝛼1)

+
𝜆

ℎ
𝐶2𝑆2 (𝛼0𝑉1𝑥𝐶1𝑆1𝑖 +

𝜆

ℎ
(

𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2)) (𝛼2 − 𝛼1) (
𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3))

+ 𝐶2
2 (

𝜆

ℎ
)

2

(
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2)

(

 
 

(𝛼2 − 𝛼1) (
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3)) −

(
𝛼2

𝛼1
−

𝛼1

𝛼2
) (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

)

 
 

+ 𝑆1 (𝑘𝑉𝑚(𝛼1𝐶2
2 − 𝛼2𝑆2

2) + 𝐶2𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) −  𝑖
𝜆

ℎ
(

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2)) ×

(𝛼0𝑉1𝑥 (𝛼3𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) − 𝛼2𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3)) − 𝐶1𝐶3𝛼3𝑉2𝑥 (𝛼1 − 𝛼0) (

𝑆3

𝑇𝐿
− 𝐶3))

+ 
𝜆

ℎ
𝐶1𝑆1 (𝑖𝑘𝑉𝑚(𝛼1𝐶2

2 − 𝛼2𝑆2
2) + 𝑖𝐶2𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) +  

𝜆

ℎ
(

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2)) ×

((𝛼1 − 𝛼0) (
𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3)) − (

𝛼1

𝛼0
− 

𝛼0

𝛼1
) (𝛼3𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3) − 𝛼2𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3)))

+𝐶1𝑆1𝐶2 (
𝑘𝑉𝑚

𝑆2
(𝛼1𝐶2

2 − 𝛼2𝑆2
2) + 𝐶2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥)) ×

(

 
 

(𝛼1 − 𝛼0) (𝑆3𝛼3𝑉2𝑥 (
𝑆3

𝑇𝐿
− 𝐶3) + 𝑖

𝜆

ℎ
(

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))) −

 𝑖
𝜆

ℎ
(

𝛼1

𝛼0
− 

𝛼0

𝛼1
) (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

)

 
 

+ 𝛼0𝑉1𝑥𝛼3𝑉2𝑥𝑆1
2  (

𝐶2𝑆3

𝑆2
− 𝐶3) (𝛼1𝐶2

2 − 𝛼2𝑆2
2) (

𝑆3

𝑇𝐿
− 𝐶3)

+𝛼0𝑉1𝑥𝑆1
2(𝛼1𝐶2

2 − 𝛼2𝑆2
2)

(

 
 
 
 

𝐶2

𝑆2
𝑘𝑉𝑚 (𝛼2𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3))

+𝑖
𝜆

ℎ

𝐶2

𝑆2
(

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

+𝑖
𝜆

ℎ
(

𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3))

)

 
 
 
 

]
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+ 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

− (𝛼1𝑘𝑉𝑚 − 𝑖
𝜆

ℎ

𝛼1

𝛼2
)

(

 
𝛼0𝑉1𝑥𝐶1𝑆1𝛼3𝑉2𝑥𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3) + (

𝜆

ℎ
)

2

(
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) ×

(
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

)

 

−(𝑖𝛼1𝑘𝑉𝑚 +
𝜆

ℎ

𝛼1

𝛼2
)(

𝛼0𝑉1𝑥𝐶1𝑆1
𝜆

ℎ
(

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3)) −

𝛼3𝑉2𝑥𝑆3
𝜆

ℎ
(

𝑆3

𝑇𝐿
− 𝐶3) (

𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2)

)

− 𝑆2 (𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥)  +   𝑖
𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) ×

(𝛼0𝑉1𝑥𝐶1𝑆1𝛼3𝑉2𝑥𝐶3 (
𝑆3

𝑇𝐿
− 𝐶3) − (

𝜆

ℎ
)

2

(
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (
𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3)))

+ 𝑆2
𝜆

ℎ
(𝑖𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑖𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) −

𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) ×

(𝛼3𝑉2𝑥𝐶3 (
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (
𝑆3

𝑇𝐿
− 𝐶3) + 𝛼0𝑉1𝑥𝐶1𝑆1 (

𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3)))

+ 𝐶2 (𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥)  +   𝑖
𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) ×

(𝛼0𝑉1𝑥𝐶1𝑆1𝛼3𝑉2𝑥𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) + (

𝜆

ℎ
)

2

(
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3)))

+
𝜆

ℎ
𝛼0𝑉1𝑥𝐶1𝑆1𝐶2 (𝑖𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑖𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) −

𝜆

ℎ
𝐶2 (

𝛼2

𝛼1
−

𝛼1

𝛼2
)) ×

(
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

−𝑖
𝜆

ℎ
𝛼3𝑉2𝑥𝑆3𝐶2(𝑘𝑉𝑚𝐶2(𝛼1 − 𝛼2) + 𝑆2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥)) (

𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (
𝑆3

𝑇𝐿
− 𝐶3)

+ 𝐶2
2 (

𝜆

ℎ
)

2

𝛼3𝑉2𝑥𝑆3 (
𝛼1

𝛼0
𝐶1

2 −
𝛼0

𝛼1
𝑆1

2) (
𝛼2

𝛼1
−

𝛼1

𝛼2
) (

𝑆3

𝑇𝐿
− 𝐶3)

+𝑆1 (𝑘𝑉𝑚(𝛼1𝐶2
2 − 𝛼2𝑆2

2) + 𝑆2𝐶2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) −  𝑖
𝜆

ℎ
(

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2)) ×

(𝛼0𝑉1𝑥𝑆1𝛼3𝑉2𝑥𝐶3 (
𝑆3

𝑇𝐿
− 𝐶3) − (

𝜆

ℎ
)

2

𝐶1 (
𝛼1

𝛼0
− 

𝛼0

𝛼1
) (

𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3)))

−
𝜆

ℎ
𝛼0𝑉1𝑥𝑆1

2 (𝑖𝑘𝑉𝑚(𝛼1𝐶2
2 − 𝛼2𝑆2

2) + 𝑖𝑆2𝐶2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) +
𝜆

ℎ
(

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2)) ×

(
𝛼2

𝛼3
𝐶3 (

𝐶3

𝑇𝐿
− 𝑆3) − 

𝛼3

𝛼2
𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3))

− 𝐶2𝑆1𝛼3𝑉2𝑥𝑆3 (
𝑆3

𝑇𝐿
− 𝐶3) (

𝑘𝑉𝑚

𝑆2
(𝛼1𝐶2

2 − 𝛼2𝑆2
2) + 𝐶2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥)) (𝛼0𝑉1𝑥𝑆1 − 𝑖

𝜆

ℎ
𝐶1 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
))

+ 𝑆1𝛼3𝑉2𝑥
𝜆

ℎ
(

𝑆3

𝑇𝐿
− 𝐶3) (

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2) (𝑖𝛼0𝑉1𝑥𝑆1𝑆3
𝐶2

𝑆2
−

𝜆

ℎ
𝐶1𝐶3 (

𝛼1

𝛼0
− 

𝛼0

𝛼1
))

−𝛼0𝑉1𝑥𝑆1
2𝐶2

𝜆

ℎ
(

𝑖

𝑆2
𝑘𝑉𝑚(𝛼1𝐶2

2 − 𝛼2𝑆2
2) + 𝑖𝐶2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) +

1

𝑆2

𝜆

ℎ
(

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2) 𝑥

(
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

)

−𝑖
𝜆

ℎ
𝐶1𝑆1𝛼3𝑉2𝑥𝐶3(𝑘𝑉𝑚(𝛼1𝐶2

2 − 𝛼2𝑆2
2) + 𝑆2𝐶2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥)) (

𝛼1

𝛼0
− 

𝛼0

𝛼1
) (

𝑆3

𝑇𝐿
− 𝐶3) ]
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+ 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ 
𝐶2

𝑆2
𝑆1 (𝛼1𝑘𝑉𝑚 − 𝑖

𝜆

ℎ

𝛼1

𝛼2
)

(

 
𝛼0𝑉1𝑥𝑆1𝛼3𝑉2𝑥𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3) + (

𝜆

ℎ
)

2

𝐶1 (
𝛼1

𝛼0
− 

𝛼0

𝛼1
) ×

(
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3))

)

 

+ 
𝜆

ℎ

𝐶2

𝑆2
𝑆1 (𝑖𝛼1𝑘𝑉𝑚 +

𝜆

ℎ

𝛼1

𝛼2
)(

𝛼0𝑉1𝑥𝑆1 (
𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3)) −

𝐶1𝛼3𝑉2𝑥𝑆3 (
𝛼1

𝛼0
− 

𝛼0

𝛼1
) (

𝑆3

𝑇𝐿
− 𝐶3)

)

−(
𝜆

ℎ
)

2

𝐶1𝑆1
𝐶2

𝑆2
(

𝛼1

𝛼0
− 

𝛼0

𝛼1
) (

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2) ×

((𝛼2𝑆3 (
𝐶3

𝑇𝐿
− 𝑆3) − 𝛼3𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3)) − 𝛼3𝑉2𝑥𝑆3 (

𝑆3

𝑇𝐿
− 𝐶3))

−𝐶2𝐶1𝑆1 (
𝜆

ℎ
)

2

(
𝛼1

𝛼0
− 

𝛼0

𝛼1
) (

𝛼3

𝛼2
𝐶3 (

𝑆3

𝑇𝐿
− 𝐶3) − 

𝛼2

𝛼3
𝑆3 (

𝐶3

𝑇𝐿
− 𝑆3)) ×

(
𝑘𝑉𝑚

𝑆2
(𝛼1𝐶2

2 − 𝛼2𝑆2
2) + 𝐶2(𝛼2𝑉1𝑥 − 𝛼1𝑉2𝑥) −

𝑖

𝑆2

𝜆

ℎ
(

𝛼1

𝛼2
𝐶2

2 −
𝛼2

𝛼1
𝑆2

2))
]
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APPENDIX D. REDUCING THE CUBIC EQUATION TO QUADRATIC 

The cubic equation for linear instabilities of tidal currents through a bounded inlet reduces to the 

quadratic equation that Bowen and Holman (1989) solved for in the nearshore over a flat bottom 

with no friction (λ = 0).  The cross-inlet distance (x) is measured slightly differently in the bounded 

tidal inlet problem here vs. the nearshore problem since there is an additional region, as shown in 

Table D-1.  

Table D-1. The cross-channel distances in the x-direction marked by region boundaries.  

Cross-Inlet Location Bowen and Holman, 1989 Bounded Tidal Inlet 

Region 0 meets Region 1 x = 0 (no Region 0) 𝑥1 = 𝛾1𝑥0 

Region 1 meets Region 2 x = 𝑥0𝛿 𝑥2 = 𝑥0(𝛾1 +  𝛿) 

Region 2 meets Region 3 x = 𝑥0 𝑥3 = 𝑥0(𝛾1 +  1)  

Total cross-channel or inlet 

distance, xmax 

xmax  = ∞ (extends seaward 

without bound) 

xmax = 𝑥0(𝛾1 + 1 + 𝛾2 ) 

To reduce the cubic equation to quadratic, Region 0 width is set to 0 to remove it and 

Region 3 width is set to infinity removing the boundary on one side of the flow, i.e. 𝛾1 = 0, 𝛾2 =

∞, respectively.  In doing so, the bounded tidal inlet cross-channel distances marked by region 

boundaries align with Bowen and Holman (1989) as seen in Table D-1.  By extending the last 

region to infinity, the stream function in the third region (i.e.  𝜓3 = A3 [sinh (kx) – tanh (kxmax) 

cosh (kx)]) is modified to allow for exponential decay of velocity since 𝑥𝑚𝑎𝑥 = ∞ and tanh(∞) =

1.  Numerically, setting 𝛾2 ≥ 3 is nearly equivalent to setting Region 3 width to infinity since 

tanh(3) ≈ 1.  To set a flat bottom across the channel in all regions, the fraction of depth (αh) in 

every region is set to 1, i.e. 𝛼0 = 𝛼1 = 𝛼2 = 𝛼3 = 1.  Note C is shorthand for the hyperbolic cosine 

and S is shorthand for the hyperbolic sine. The indexing on C, S, and velocity (V) denotes the 
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location across the inlet, e.g. S1 = sinh(𝑘𝑥1) = 0 where 𝑥1 = 0. Vm is the max velocity and k is the 

wavenumber.  Many terms cancel and the remaining equation is: 

0 =  𝜎3[1] + 𝜎2[−𝑘𝑉𝑚 − 𝑉2𝑥𝑆3(𝑆3 − 𝐶3) + 𝑆2(𝑉1𝑥 − 𝑉2𝑥)(𝐶2 − 𝑆2) ]

+  𝜎[𝑉2𝑥𝑆2(𝑆2𝐶3 − 𝐶2𝑆3)(𝑉1𝑥 − 𝑉2𝑥)(𝑆3 − 𝐶3) + 𝑉2𝑥𝑆3𝑘𝑉𝑚(𝑆3 − 𝐶3)] + [0]  

Now dividing through by σ, letting Δ𝑉𝑥 = 𝑉1𝑥 − 𝑉2𝑥, where  

𝑉1𝑥 = 
𝑉𝑚 − 0

𝑥2 − 𝑥1
=  

𝑉𝑚

𝑥2
= 

𝑉𝑚

𝑥0𝛿
 

and 

𝑉2𝑥 = 
0 − 𝑉𝑚

𝑥3 − 𝑥2
= 

−𝑉𝑚

𝑥3 − 𝑥2
=

−𝑉𝑚

𝑥0(1 −  𝛿)
 

and rearranging, the resulting equation is the solution Bowen and Holman (1989) found in the 

nearshore: 

0 = 𝜎2[1] +  𝜎[Δ𝑉𝑥𝑆2(𝐶2 − 𝑆2) + 𝑉2𝑥𝑆3(𝐶3 − 𝑆3) − 𝑘𝑉𝑚]

+ [Δ𝑉𝑥𝑆2𝑉2𝑥𝐶2𝑆3(𝐶3 − 𝑆3) + Δ𝑉𝑥𝑆2
2𝑉2𝑥(𝑆3𝐶3 − 𝐶3

2) − 𝑉2𝑥𝑘𝑉𝑚𝑆3(𝐶3 − 𝑆3)] 

Here, S2 = sinh(k𝑥2), where 𝑥2 = 𝑥0(𝛾1 +  𝛿) = 𝑥0𝛿 when Region 0 is set to 0, so S2 = sinh(k𝑥0𝛿), 

which Bowen and Holman (1989) called Sδ and similarly, C2 = Cδ. Since S3 = sinh(k𝑥3), where 

𝑥3 =  𝑥0(𝛾1 +  1) =  𝑥0 when Region 0 is set to 0, S3 = sinh(k𝑥0), which Bowen and Holman 

(1989) called S0 and similarly, C3 is called C0. Substituting in Bowen and Holman equivalent 

notation, including V0 (the max velocity) for Vm, the quadratic solution for the nearshore is: 

0 = 𝜎2 +  𝜎[Δ𝑉𝑥𝑆𝛿(𝐶𝛿 − 𝑆𝛿) + 𝑉2𝑥𝑆0(𝐶0 − 𝑆0) − 𝑘𝑉0]

+ [Δ𝑉𝑥𝑆𝛿𝑉2𝑥𝐶𝛿𝑆0(𝐶0 − 𝑆0) + Δ𝑉𝑥𝑆𝛿
2𝑉2𝑥(𝑆0𝐶0 − 𝐶0

2) − 𝑉2𝑥𝑘𝑉0𝑆0(𝐶0 − 𝑆0)] 
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APPENDIX E. UNSTABLE MOTIONS IN THE PISCATAQUA RIVER 

The presence of instabilities of tidal currents flowing through an inlet in the form of rigid-lid low 

frequency motions, O(10-4 – 10-2 s-1) with dominant wavenumbers, O(10-3 – 10-2 m-1), that 

propagate horizontally in the direction of the mean current at a fraction (30 – 70%) of the max 

current, have been observed (Chapter III) consistent with observations in the nearshore (Oltman-

Shay et al., 1989).  The output from the numerical hydrodynamic model is analyzed to determine 

if unstable motions are present and consistent with lateral mixing of momentum under a nonzero 

horizontal Reynolds stress. 

 Wavenumber-frequency spectra are used to examine the character of unstable motions, and 

computed following methods described in Oltman-Shay et al. (1989), Chapter III, and summarized 

here.  Eight virtual ROMS stations were placed in a spatially lagged array along the channel (Table 

E-1; Figure 4.6), each saving time series of velocities at each vertical level at 0.5 second time 

intervals.  For model Run A, the time series stations 1 - 7 were analyzed over the last two hours of 

the model run. For model Run C, the time series stations 1 – 6 were analyzed over the last three 

hours of the model run after the model had spun up. The total length of the array was shortened by 

not including station 8 in Run A and 7 and 8 in Run C to maintain coherence along the array.  The 

velocity at each station was detrended by regressing against a quadratic to remove low frequency 

changes to the mean current due to changes in sea surface elevation similar to methods for analysis 

of surf zone instabilities (Oltman-Shay et al., 1989).  For a spatially lagged, linear array that is 

short relative to the wavelengths of interest, the iterative maximum likelihood estimator (IMLE) 

developed by Pawka (1982, 1983) can be used to estimate the wavenumber-frequency spectrum 

of the long wavelength, low frequency motions (Pawka, 1983; Oltman-Shay and Guza, 1984, 

1987; Oltman-Shay et al., 1989; Howd et al., 1992). Following Oltman-Shay and Guza (1984), a 
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Kaiser-Bessel cosine-taper data window with 50% overlap was applied prior to calculating the 

cross-spectral matrix and the IMLE beta and gamma parameters were set to 1 and 20, respectively.  

For all calculations, the IMLE wavenumber bin width was set to 0.001 m-1.   

Table E-1. Virtual station locations. The stations in the along-channel array are spatially lagging 
in longitude (x-direction). The stations in the cross-channel transect are equally spaced in latitude 
(y-direction) by 15 grid cells or 75 m. Stations italicized are in both the along- and cross-channel 
transects. 

Station number Grid cell 
Location (x, y) 

Cumulative 
Distance (m) Depth (m) 

Along-channel lagged array 
1 (137, 65) 0 14.4 
2 (151, 65) 70 14.6 
3 (157, 65) 100 15.5 
4 (167, 65) 150 17.5 
5 (171, 65) 170 18.2 
6 (195, 65) 290 25.7 
7 (215, 65) 390 26.8 
8 (260, 65) 615 26.3 

Cross-channel transects 
T1 x = 137  
T2 x = 200 
T3 x = 260 

 

When calculating spectra, velocity data were windowed using a Hanning taper and 

ensemble averaged using 8 ensembles with no overlap resulting in 16 degrees of freedom (DOF). 

The normalized total velocity to pressure variance ratio, R = 
〈𝑢2〉+ 〈𝑣2〉

〈𝑝2〉
𝑔

ℎ

⁄ , defined by Lippmann et 

al. (1999) was then calculated for each run and over the full array deployment time period. R can 

be used to estimate the fraction of gravity waves versus velocity instabilities that make up the 

infragravity frequency band; when R >> 1, the infragravity band is dominated by velocity 

fluctuations consistent with rigid-lid motions and when R ≤ 1, gravity waves are present and 

dominate in the infragravity band.  
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 The time series of velocity at stations in the lagged array during both ebbing (Run A) and 

flooding (Run C) currents in the high Reynolds number condition show that the model spins-up 

over the first hour followed by growth of unstable motions (Figure E-1 and Figure E-2). The 

character of the ebbing flow qualitatively changes with the initial development of apparent longer 

period motions followed later by shorter oscillations (Figure E-1). The flooding flow is steadier 

than the ebb and does not change in character over time (Figure E-2).   

 

Figure E-1. Run A (ebbing flow). Depth averaged velocity, 𝐮 ̅(left column) and 𝐯 ̅ (right column), 

for stations 1 (top) to 7 (bottom) in the along-channel lagged array. 
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Figure E-2. Run C (flooding flow).  Depth averaged velocity, 𝒖 ̅(left column) and 𝒗 ̅ (right 

column), for stations 1 (top) to 6 (bottom) in the along-channel lagged array. 

 

The wavenumber-frequency spectra for both the ebbing and flooding flow shows the 

energy is concentrated in narrow bands indicating the dominance of fastest growing unstable 

modes (Figure E-3 and Figure E-4). The unidirectional energy shows that the unstable motions 

propagate in the direction of the mean currents: for Run A, the energy is associated with positive 

wavenumbers indicating an eastward direction of propagation following the ebbing currents 

(Figure E-3) and for Run C, the energy is associated with negative wavenumbers indicating a 

westward direction of propagation following the flooding currents (Figure E-4).  

The phase speed of the unstable motions is roughly 1.2 m/s on the ebb (Run A) across 

stations 1 - 7 during the last two hours of the model run. The corresponding mean and max along-

channel, depth-averaged current (�̅�) speed at stations 1 – 7 on the ebb flow (Run A) are 0.54 m/s 
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and 2.90 m/s, respectively. Therefore, the phase speed is roughly 41% of the maximum current 

aligning with prior studies that have shown unstable motions generated from perturbations in the 

shear of the tidal current are expected to move between ½ - ¼ of the maximum along-channel 

current speed (Bowen and Holman, 1989).  

 

 

Figure E-3. Run A (ebbing flow) wavenumber – frequency spectra of depth averaged velocity, �̅� 

(left) and �̅� (right). The white lines show the dispersion curves for leaky (solid) and edge 

(dashed) waves. 
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Figure E-4. Run C (flooding flow) wavenumber – frequency spectra of depth averaged velocity, 

�̅� (left) and �̅� (right). The white lines show the dispersion curves for leaky (solid) and edge 

(dashed) waves. 

 

For flooding currents (Run C), the mean and max along-channel, depth-averaged current 

(�̅�) speed at stations 1 – 6 for the last three hours of the model run are 1.00 m/s and 1.36 m/s, 

respectively. The flooding mean along-channel current is 0.46 m/s faster than the mean ebb 

current, however the maximum flood current speed is 1.54 m/s slower than the maximum ebb 

speed. The corresponding phase speed of the unstable motions is roughly 0.52 m/s on the flood 

(Run C), which is approximately 38% of the maximum flood current, consistent with the ebb case 

and prior studies (Bowen and Holman, 1989; Oltman-Shay et al., 1989; Chapter II; Chapter III).  

The nearly linear relationship in wavenumber-frequency space on both the ebb and flood 

current indicates these motions are non-dispersive, consistent with prior findings (Bowen and 

Holman, 1989; Church et al., 1992; Oltman-Shay et al., 1989; Chapter II; Chapter III).  The 

velocity to pressure variance ratio normalized by the gravity wave speed, R, as defined by 

Lippmann et al. (1999) during both the flooding and ebbing currents shows high energy (> 1) in 
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low frequencies (10-3 - 10-2 Hz). This indicates the low frequency, unstable motions are consistent 

with horizontal, rigid-lid-like motions (Figure E-5 and Figure E-6).  This suggests that 

perturbations in horizontal velocities are consistent with instabilities of the flow and contribute to 

lateral momentum mixing. 

The strong horizontal shear at the study site supports the possibility for the growth of rigid-

lid, unstable motions as observed in the wavenumber-frequency spectra using the spatially lagged 

array and the velocity to pressure variance ratio, R (Figure E-3, Figure E-4, Figure E-5, and Figure 

E-6).  The instabilities observed in the ROMS model output are likely generated from perturbations 

in the shear of the tidal currents.  It is worth noting that the instabilities of the mean flow are 

suppressed when either the bottom friction or the eddy viscosity is increased leading to smaller 

Reynolds numbers and weaker mean flow, consistent with previous studies (Bowen and Holman, 

1989; Dodd and Thornton, 1990; Özkan-Haller and Kirby, 1999; Chapter II). The horizontal, rigid-

lid, unstable motions propagate in the direction of the mean current at roughly 38-41% of the 

maximum current speed consistent with prior studies of instabilities of mean current in the 

nearshore (Bowen and Holman, 1989; Oltman-Shay et al., 1989; Dodd and Thornton, 1990) and 

in estuaries (Chapter II; Chapter III). 
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Figure E-5. Run A (ebbing flow) velocity to pressure variance ratio (R) for stations 1 – 7 and the 

mean across stations. The black dotted line is the R threshold.   
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Figure E-6. Run C (flooding flow) velocity to pressure variance ratio (R) for stations 1 – 6 and 

the mean across stations. The black dotted line is the R threshold.   


