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Previously unknown features in Hatteras Transverse Canyon and environs were recently mapped during
multibeam surveys of almost the entire eastern U.S. Atlantic continental margin. The newly identified features
include (1) extensive landslide scarps on the walls of Hatteras Transverse and Hatteras Canyons, (2) an area of
multiple landslide deposits that block lower Hatteras Transverse Canyon, (3) a large depositional feature
down-canyon from the landslide deposits that rises 100 m above the uppermost Hatteras Fan and has buried
the transition from the mouth of Hatteras Transverse Canyon to uppermost Hatteras Fan, (4) a zone of cyclic
steps on upper Hatteras Fan that suggests supercritical turbidity currents performed a series of hydraulic
jumps and formed large upstream-migrating bedforms, (5) several knickpoints in the channel thalwegs of
both Hatteras Transverse Canyon and Hatteras Canyon, one 40 m high, that suggest both canyon channels are
out of equilibrium and are in the process of readjusting, either to the channel blockage by the extensive landslide
deposits or by a readjustments to increased sedimentation during the last eustatic lowstand, (6) a large area of
outcrop on the lower margin between Pamlico and Hatteras Canyons that previously was interpreted as an
area of slumps, blocky slide debris and mud waves, (7) headward erosion in the head region of Hatteras Trans-
verse Canyonwhere it has intercepted the lowest reaches of Albemarle Canyon channel aswell as headward ero-
sion in a small side channel that has eroded into Hatteras Outer Ridge and (8) sections of bedforms on Hatteras
Outer Ridge that are partially buried by sediment fromWashington–Norfolk Canyon channel as well as by sedi-
ment transported from Hatteras Abyssal Plain. The newly discovered features add a new level of detail to under-
stand the recent processes that have profoundly affected Hatteras Transverse Canyon, Hatteras Canyon and, to a
lesser degree, Hatteras Outer Ridge.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A submarine canyon that strikes roughly parallel, not roughly
perpendicular, to isobaths on a continental margin is a very rare feature
in the world ocean. In fact, transverse submarine canyons are so rare
that the review of the global distribution and geomorphologies of sub-
marine canyons by Harris and Whiteway (2011) does not mention
one submarine canyon that strikes transverse to a margin. However, a
few such canyons; e.g., Ameghino Transverse Canyon and Almirante
Brown Transverse (sometimes referred to as the Patagonia Canyon) on
the Argentine margin (Lonardi and Ewing, 1971; Hernández-Molina
et al., 2009; Lastras et al., 2011) and Valencia Valley in the northwestern
Mediterranean Basin (Palanques and Maldonado, 1985; Amblas et al.,
2011), have been described in some detail. In all of these examples,
including Hatteras Transverse Canyon on the eastern U.S. Atlantic
andya@ccom.unh.edu
continental margin (Fig. 1), there is either a sediment drift (Ameghino,
Almirante Brown and Hatteras Transverse Canyons) or a basement high
(Valencia Channel) that has deflected sediment transport away from
downslope to a cross-slope trend. The existence and uniqueness of
Hatteras Transverse Canyon has been known since the late 1960s. Al-
though, since the advent of modern commercially available multibeam
echosounders (MBES) in the 1960s, Hatteras Transverse Canyon and
the adjacent Hatteras Outer Ridge have not until now been mapped
with a MBES. A modern deep-water MBES can map large areas of the
seafloor with swaths of ~50 m/sounding spacing and even denser co-
registered acoustic backscatter data that provide 3-dimensional digital
views of the seafloor relief and the acoustic response of the seafloor to
the MBES frequency. The area of this study (Fig. 2) was completely sur-
veyedwith a 12-kHzMBES duringmapping of the bathymetry of the en-
tire U.S. Atlantic continental margin between the 1000 and 5500 m
isobaths as part of theU.S. Lawof the Sea Extended Continental Shelf pro-
ject (Gardner et al., 2006). The objective of this work is to use the new
multibeam data to provide a three-dimensional quantitative description
of the seascape at 100 m/pixel resolution, which is much higher than
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Fig. 1. Location of Hatteras Transverse Canyon, Hatteras Outer Ridge and Hatteras Abyssal Plain on the U.S. Atlantic continental margin. Bathymetry is predicted bathymetry of Smith and
Sandwell (1997, v. 17.1). NWC is Norfolk–Washington Canyon. Black rectangle is the location of Fig. 2.
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has been done to date for this area, and to identify various smaller-scale
features that have until now not been described from this area. The
digital terrain model (DTM), together with simultaneously collected co-
registered acoustic backscatter, allow a better understanding of the pro-
cesses that formed and modified the present seafloor than was provided
by the older non-MBES data.

The traditional (pre-MBES) description of the continental margin
southeast of Cape Hatteras is that of a relatively narrow 30- to 60-km-
wide continental shelf, an ~95-km-wide continental slope and a broad
~375-km-wide continental rise that merges with Hatteras Abyssal
Plain at approximately the 5400-m isobath. The slope and rise were
constructed by deposition from turbidity currents (Drake et al., 1968;
Emery et al., 1970; Pilkey and Cleary, 1986) and large mass-transport
deposits (Embley and Jacobi, 1977; Embley, 1980; Twichell et al.,
2009) that were subsequently modified by southward-flowing geo-
strophic currents that reworked the sediment (Heezen et al., 1966;
McCave and Tucholke, 1986). The margin in the area of Hatteras
Transverse Canyon is dominated by a series of submarine canyons and
their channel extensions (here called canyon channels), especially
Albemarle, Hatteras and Pamlico Canyons and to a lesser extent
Washington–Norfolk Canyon (Fig. 2) and their associated canyon
channels (Rona et al., 1967; Newton and Pilkey, 1969), but also by
numerous smaller unnamed canyons and canyon channels. These
canyons and canyon channels trend directly downslope until they are
captured by Hatteras Transverse Canyon, located immediately upslope
of Hatteras Outer Ridge that has served as an obstacle to continued
downslope flow of turbidity currents. Hatteras Outer Ridge, a large
late Tertiary to Late Pliocene sediment drift, has diverted sediments to
the southwest that were initially transported directly downslope
through the canyons and canyon channels to the Hatteras Abyssal
Plain. The diversion of sediments formed Hatteras Transverse Canyon
and redirected sediment to a more southerly location on Hatteras Fan
(Cleary and Conolly, 1974). The mouth of Hatteras Transverse Canyon
emerges from the southwestern end of Hatteras Outer Ridge, where
sediment has once again been diverted to the southeast by the large
failuremasses of Cape Fear and Cape Lookout Slides (Fig. 2) and eventu-
ally emerged onto Hatteras Fan as a series of small distributaries that
spread out onto the southern Hatteras Abyssal Plain.

Work in the 1960s identified Hatteras Transverse Canyon and
Hatteras Outer Ridge as somewhat anomalous features and various in-
terpretations derived from single-beam echosounder and subbottom-
profiler data were offered to explain their character. The bathymetry
of Hatteras Transverse Canyon was first described by Rona et al.
(1967) based on about 30 wide-angle single-beam echosounder pro-
files. They also produced a map of the lower reaches of Hatteras and
Pamlico Canyons in the area where Hatteras Transverse Canyon
captures the two canyons. They noted that the course of Hatteras Trans-
verse Canyon roughly parallels rather than trends perpendicular to the
regional isobaths, as is more typical of the other canyons and canyon
channels in the region. Subsequent studies of this area using wide-
angle single-beam echosounders and subbottom profilers were made
by Rona and Clay (1967), Newton and Pilkey (1969), Cleary and
Conolly (1974), Cleary et al. (1977), Bunn and McGregor (1980) and
Pratson and Laine (1989), with seismic-reflection profiles by Tucholke
and Laine (1982) and with GLORIA long-range sidescan-sonar images
and widely spaced seismic profiles by Popenoe and Dillon (1996).
These studies outlined the general characteristics of lower Hatteras
Canyon but with widely dispersed tracklines and varying qualities of
bathymetry. Rona et al. (1967) related the trend of lower Hatteras
Canyon to a deflection of downslope sediment transport by Hatteras
Outer Ridge. The bathymetry of Hatteras Outer Ridge was first men-
tioned by Heezen et al. (1959) and later investigated by Rona et al.
(1967), Rona (1969), Asquith (1979), Tucholke and Laine (1982),
Mountain and Tucholke (1985) and Locker and Laine (1992). Rona
et al. (1967) suggested the formation of both Hatteras Transverse
Canyon andHatterasOuter Ridge, aswell as bedforms on lowerHatteras
Canyon (so-called “lower continental rise hills” in the descriptions from
the 1960s) were due to current-controlled sedimentation related to the
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Western Boundary Undercurrent that flows southwestward over the
area (Heezen et al., 1966).

Prior to the development of theHatteras Outer Ridge, a series of sub-
marine canyons funneled sediment down the margin and out onto
Hatteras Abyssal Plain. Hatteras Outer Ridge developed as some of the
fine-grained sediments from gravity-driven, downslope events were
intercepted by a geostrophic current presumed to be the precursor of
the Western Boundary Undercurrent. A shear zone developed between
the geostrophic flow and theGulf Stream that created an area conducive
to the formation of a sediment drift that eventually buried the lower
reaches of the canyons and proximal submarine fans in this area
(Tucholke and Laine, 1982). During the latest Pliocene, the construc-
tional phase of Hatteras Outer Ridge was interrupted by a series of
intensifications of the Western Boundary Undercurrent that were
responses to the initiation of Northern Hemisphere glaciations
(Tucholke and Laine, 1982). Consequently, an alternation of erosion
and deposition dominated processes on Hatteras Outer Ridge through-
out the Quaternary.

Prior et al. (1984) and Pratson and Laine (1989) commented that the
present seascape of the entire continental margin in this area is mostly
blanketed by only a few meters of Holocene sediment, suggesting to
them that the large-scale geomorphology has been effectively unmodi-
fied by modern (b5 ka) processes. The only exceptions mentioned by
Fig. 2.A. Plan view of theMBES bathymetry (upper).White rectangles show the locations of Fig
yon (HTC), Pamlico Canyon (PC), Hatteras Canyon (HC), Albermarle Canyon (AC), Washington
part of Hatteras Abyssal Plain (HAP), Cape Fear Slide (CFS), Cape Lookout Slide (CLS) and a sect
(upper) and the same with annotations as in panel A. White rectangle is the location of Figs. 5
Prior et al. (1984) are in areas of outcrop on themiddle and lower mar-
gin and in scarps on canyon walls where modern sediment has been
eroded away by recent turbidity-current events.

2. Data and methods

The new MBES bathymetry and acoustic backscatter data provide
complete (i.e., 100%) coverage of this area (Fig. 2) withmillions of accu-
rately located (b0.2% water depth and b5 m spatial uncertainties)
soundings (depths) of variable spatial density that typically are spaced
at ~50 m intervals as well as co-registered backscatter values spaced
at a higher density. The sounding density allows the construction of a
DTM with a maximum resolution of 100 m/pixel for the study area.
The DTMwas constructed from data collected on 4 cruises; two cruises
in 2005 (PF05-1 and PF05-2) using a hull-mounted 12-kHz Kongsberg
Maritime EM121A MBES system aboard USNS Pathfinder, one cruise in
2008 (KNOX17RR) with a hull-mounted 12-kHz Kongsberg Maritime
EM120 MBES on RV Roger Revelle and a 2012 cruise (RB12-1) with the
NOAA Ship Ronald H. Brown equipped with a hull-mounted Kongsberg
Maritime 12-kHz EM122MBES system. All three of theseMBES systems
have active roll, pitch and yaw beam steering. A full patch test was con-
ducted in the survey area prior to each cruise to ensure attitude sensor
offsets were correct. Sound speeds in the water columnwere calculated
s. 4, 7, 8 and 11. Annotated bathymetry (lower) with locations of Hatteras Transverse Can-
–Norfolk Canyon channel (WNC), Hatteras Outer Ridge (HOR), upper Hatteras Fan (UHF),
ion of Blake Ridge. Isobaths interval meters. B. Plan view of the MBES acoustic backscatter
, 6 and 13.



Fig. 2 (continued).
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from calibrated multiple expendable bathythermograph casts collected
at least once every 6 h on each cruise. Sound speed was integrated into
the MBES data acquisition system to compensate for the refraction ef-
fects within the water column by ray tracing each sounding to its accu-
rate location on the seafloor. Navigation on each cruise utilized an
inertial motion unit (IMU) interfaced to a differential global positioning
system that provided position fixes with an accuracy better than±1m.
Data from the four cruises were combined into a single DTMwith a ver-
tical resolution of ~1 m that shows no horizontal or vertical offsets
where the separate datasets join together.

The Kongsberg MaritimeMBES systems collected acoustic backscat-
ter co-registered with each bathymetric sounding. When the received
amplitudes are properly calibrated to the outgoing signal strength, re-
ceiver gains, spherical spreading and attenuation, the corrected back-
scatter provides clues to the composition of the surficial seafloor.
However, the 12-kHz acoustic signal undoubtedly penetrates the sea-
floor to an unknown, but perhaps significant, depth in some areas
(Gardner et al., 1991), thereby generating a received backscatter value
that is a function of some unknown combination of acoustic impedance,
seafloor roughness and volume reverberation.

In addition to the MBES, each ship was equipped with a high-
resolution Knudsen 3260 subbottom profiler. The profilers collected
continuous subbottom profiles along each cruise track with a max-
imum penetration of ~50 m, a specified vertical resolution of 30 cm
at depths greater than 1000 m and a vertical beam width of 6° to
10°.
All of the data were horizontally referenced to theWGS-84 ellipsoid
and vertically referenced to instantaneous sea level.

3. Results

3.1. Hatteras Transverse Canyon System

The MBES bathymetry shows that Hatteras Transverse Canyon
trends 220°, roughly parallel to the regional isobaths, with a gently cur-
vilinear 130-km length before it exits out of its confines to form the
upper portion of southernHatteras Fan (Fig. 2). The Hatteras Transverse
Canyon channel floor descends fromwater depths of 4718m at its head
to depths N5960 m before it is buried by landslide deposits at ~78 km
down channel. The upper 38.5 km of the channel has a gradient of
0.23°, then the gradient increases to 0.32° for the next 18.3 km after
which the channel abruptly steps down and the gradient flattens to
0.01° for the remaining 21.5 km before being blocked by landslide
deposits. The channel width varies for the first 135 km from 0.6 to
4.4 km but then abruptly increases to between 12.3 and 43.8 km wide
at ~130 km down-canyon (Fig. 3A). The channel eventually evolves
into a series of distributary channels on the upper Hatteras Fan. The
incision depth of Hatteras Transverse Canyon increases along the can-
yon length, from 60 m of relief at the head of the canyon to 325 m at
119 km down-canyon (Fig. 3B), a point just below the confluence of
Hatteras Transverse Canyon with Hatteras Canyon. There are four arcu-
ate knickpoints (i.e., abrupt steps) of the channel; a 40m drop occurs at



Fig. 3.Histograms of channel floorwidth distance down canyon (A), canyon incision depthwith distance down canyon, (B), and slope of canyon floor distance down canyon (C). Lettered
arrows point to knickpoints a, b, c and d in canyon channels.
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41.8 km down-canyon at 4978 m water depth, a 10 m drop occurs at
48.5 km down canyon at 5015 m water depth, an 8 m drop at 58.5 km
down canyon at 5073 m water depth and a 16 m drop at 61.8 km
down canyon at 5081 m water depth (arrows “a” through “d”, respec-
tively, in Figs. 3C and 4). From a point 119 km down-canyon to the
upper Hatteras Fan, the incision of the canyon floor decreases to
below the resolution of the MBES. The upper 17 km of Hatteras Trans-
verse Canyon has walls with slopes of 6° to 12°. The left-hand wall
(when facing down-canyon) of Hatteras Transverse Canyon is generally
steeper (6° to 8°) from 17 to 34.8 km down-canyon compared to the
right-hand wall (2° to 4°). Up to this point (51.8 km from the head),
the canyon walls show little evidence of landslide scarps. However,
down-canyon beyond51.8 km, bothwalls are heavily erodedwith land-
slide scarps (Fig. 4).

The headwall of Hatteras Transverse Canyon rises almost 100 m
above the canyon floor where Albermarle Canyon channel (Fig. 4)
reaches the top of the Hatteras Transverse Canyon headwall. Much of
the older literature called Albermarle Canyon and channel “Albermarle
Transverse Canyon”; however, its trend clearly is not transverse to the
isobaths except for the last 15 km (Fig. 2). The upper 5 km of Hatteras
Transverse Canyon forms a loop around a central bathymetric high
that stands 70 m above the eastern side of the canyon floor and 40 m
above the western floor of the loop (Fig. 4). The high within the loop
is 3 km by 0.9 km in plan view and is oriented N–S. The northern end
of the high is aligned with the end of Albermarle Canyon channel
where it enters Hatteras Transverse Canyon.

A small 8.5 km long side channel enters from the east at 16.5 km
from the head of Hatteras Transverse Canyon (Fig. 4). This small side
channel trends S70°W and descends 140 m with a slope of 0.7° from
its head to its confluence with Hatteras Transverse Canyon channel.
No step in depth occurs from the side channel floor to the main floor
of Hatteras Transverse Canyon. The side channel widens towards its
head, from 0.9 km at the confluence with Hatteras Transverse Canyon
to 2.4 km at its head, giving the appearance of headward erosion with
40 m of relief at the headwall. The small side channel has a maximum
incision of 90 m that occurs at the confluence with Hatteras Transverse
Canyon.

Landslide deposits, indicated by lumpy bathymetry elevated above
the trend of the smooth channel floor, and landslide scarps occur
along some, but not all, sections of Hatteras Transverse Canyon
(Fig. 5). The channel floor of Hatteras Transverse Canyon, from its
head to a point 54.8 km down-canyon, is very flat with relief just at or
below the resolution of the 12-kHz MBES (b10 m at these depths) and
the canyon walls in this section show no signs of landslide scarps. The
next 23.8 km of the canyon floor continues with little relief but the can-
yonwalls have extensive landslide scarps (Fig. 5). The series of landslide
scarps on the east wall above the confluence with lower Hatteras Can-
yon are 21.8 km long with 300 m of relief. The opposite west wall has
a series of smaller scarpswithmaximumrelief of ~150m. The landslides
in this area have exposed at least three levels of apparent outcrops with
surface dips that parallel the regional slope of the seafloor (labels 1, 2
and 3 in Fig. 4). The largest section of landslide scarps and landslide de-
posits on Hatteras Transverse Canyon occur 5.5 km below the conflu-
ence with lower Hatteras Canyon, 83 km from the head of Hatteras
Transverse Canyon (area between black arrowheads in Fig. 5). This
landslide section has extensive landslide scarps on both canyon walls,
although the landslide scarps on the west wall in this section have not
exposed outcrops. Landslide deposits extend for 24 km down-canyon
and have accumulated as high as 25 m above the featureless channel
floor that impede any present flow down-canyon. A series of large and
several smaller landslide scarps are found on the channel walls that ap-
pear to be associated with the landslide deposits on the channel floor
(Fig. 5). The landslide deposits were identified by constructing a series
of bathymetric and acoustic backscatter profiles across both the DTM



Fig. 4. Plan view of bathymetry and canyon floor profiles of Hatteras Transverse Canyon (HTC) and lower Hatteras Canyon. Location of canyon floor profile A-B-C (white capital letters)
shown as white dashed line. Profiles A-B and C-B shown in lower panels. Locations of channel knickpoints a, b, c and d in Hatteras Transverse Canyon and knickpoints e, f and g in lower
Hatteras Canyon are shown at white lower-case letters and arrowheads. Outcrops of bedding planes shown in black arrows and landslide scarps shown by black numbers 1, 2 and 3.
Isobaths in meters. See Fig. 2A for location.
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and backscatter digital mosaics that delineated individual mounds of
higher relief and backscatter. The landslide deposits stand 15 to 25 m
higher than the trend of the channel floor and the deposits have back-
scatter values that range from −28 to −26 dB that reflects a rougher
microbathymetry when compared to the typically smoother adjacent
channel floor with backscatter values of −37 to −36 dB. The total
volume of landslide deposits in this section of the channel is at least
20 km3. The headwalls of the landslide scarps on the canyon walls
have 50 to more than 100 m of relief with extensive debris aprons at
their bases.



Fig. 5. Plan view of the bathymetry in the vicinity of the confluence of Hatteras Transverse
Canyon (HTC) and lower Hatteras Canyon (LHC) showing extensive landslide scarps and
associated landslide deposits (between black arrowheads). Outcrops on the channel
walls are indicated with white arrowheads. Red arrowhead points to knickpoint a in
lower Hatteras Canyon. White circles mark locations of piston cores VM22-2 and
E10365 discussed in text. Black dashed line shows location of older landslide scarps
with no indication of landslide material in the adjacent channel. Yellow dashed line
showsmore recent landslide scarps and associated landslidematerial in adjacent channel.
See Fig. 2A for location. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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3.2. Lower Hatteras Canyon

Lower Hatteras Canyon trends directly downslope and enters
Hatteras Transverse Canyon from the north-northwest with no step in
floor depths at the confluence (Fig. 4). Compared to Hatteras Transverse
Canyon, lower Hatteras Canyon is narrow with channel widths that
increase from only 200 to 500 m along the lower 300 km of the canyon.
An incised channel thalweg decreases in incision depth down channel
from 100 to 40 m and abruptly disappears 23 km up-canyon from the
confluence of lower Hatteras Canyon with Hatteras Transverse Canyon
(locations e, f, and g, respectively, Fig. 4). Lower Hatteras Canyon in gen-
eral has downcut from less than 100 m to as much as 260 m into the
lower continental margin. The last 35 km of the channel profile of
lower Hatteras Canyon has an overall gradient of 0.4° but with three
knickpoints that occur at 7.5, 16 and 37.5 km up-canyon from the con-
fluence of lower Hatteras Canyon and Hatteras Transverse Canyon. The
channel floor descends 110, 70 and 60 m at the knickpoints to water
depths of 5080 m, 4975 m and 4805 m, respectively (profile C–B in
Fig. 4). Landslide scarps occur only on the lower 22.6 km of the canyon
but there is no evidence at the resolution of the MBES data of landslide
deposits on the floor of the canyon.
Fig. 6.Plan viewof acoustic backscatter of upperHatteras Fan (UHF), Cape Fear Slide (CFS),
Cape Lookout Slide (CLS), the southern end of Hatteras Outer Ridge (HOR) and the lower
reaches of Hatteras Transverse Canyon (HTC) and Hatteras Canyon (LHC). Location shown
on Fig. 2A. Cyclic steps are described in text. Solid white line shows the extent of landslide
deposits on floor of HTC. See Fig. 2B for location.
3.3. Upper Hatteras Fan

Hatteras Transverse Canyon leads directly out onto Hatteras Fan but
only the upper part of Hatteras Fan was mapped with MBES. Upper
Hatteras Fan (UHF) does not have a typical morphology of submarine
fans because it is confined between Hatteras Outer Ridge on the north-
east and two large gravity slides, Cape Lookout (CLS) and Cape Fear
Slides (CFS), on the southwest and the channel leading to the head of
the upper fan is blocked by landslide deposits (Fig. 6). Levees typically
on upper fans and a feeder channel that trends out onto the upper fan
are not found associated with UHF. Also, a large depositional feature
blocks the entire channel immediately down slope from the landslide
deposits (Fig. 7). This feature is 120 km long and varies between 9 and
26 km wide with an average height above the channel floor of ~100 m
that represents ~235 km3 of material. The deposit is clearly not related
to the large landslide deposits found upslope as shown by the ~30 km
downslope offset of the center of the deposit from the southern end of
the landslide deposits and by a 70-m-deep bathymetric low between
the landslide deposits and the depositional feature (Fig. 7A and B).

Upper Hatteras Fan has a zone composed of what appears to be cy-
clic steps (Parker, 1996; Kostic and Parker, 2006; Fildani et al., 2006;
Cartigny et al., 2011; Konstic, 2011; Covault et al., 2014) that rises as
much as 50m above themain channel floor (Figs. 6 and 7) immediately
downslope from the large depositional feature (Fig. 7A and C). The
cyclic-step zone has 20 to 30 m of relief between successive relatively
flat surfaces that are 6.5 to 13.5 km long (downslope), 1.5 to 5 km
wide (edge to edge), with arcuate plan shapes that are convex down-
slope. The cyclic steps occur on a slope of 0.2° and abruptly die out to
the southeast on a slope of 0.02°.

A series of small, very shallow curvilinear distributary (?) channels,
best seen in the acoustic backscatter, can be followed for at least
73 km immediately downslope of the cyclic-step zone of the upper
fan (Fig. 6). The relief of the distributary channels is below the resolu-
tion of the MBES at these depths but they are clearly defined on the
acoustic backscatter image, with values of −33 dB compared to the
−37 dB backscatter values of the intervening areas between the chan-
nels. The distributaries are confined to the northern edge of the upper
section of the depositional feature but splay out to occupy about a third
of the width of upper Hatteras Fan where the depositional feature
ends and they continue to splay out downslope. These must be what
Popenoe and Dillon (1996) interpreted as sediment waves from GLORIA
imagery of the upper Hatteras Fan.



Fig. 7. (A) Plan view of bathymetry of lower-most Hatteras Transverse Canyon (HTC), upper-most Hatteras Fan (UHF) and lower-most Hatteras Canyon (HC). Landslide scarps and asso-
ciated deposits occur between solid white lines. Depositional feature described in text is outlined by black dashed area. Profile B–D–E shown in dashedwhite line. Area of Fig. 5 shown by
black rectangle. (B) Bathymetric profile B–D shows the relationship between landslide deposits that presently block transport of sediments to the depositional feature on the floor of floor
of upper Hatteras Fan. (C) Subbottom profile from D to E shows cyclic steps of upper Hatteras Fan. See Fig. 2A for location.
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3.4. Hatteras Outer Ridge

Only the southwestern half of Hatteras Outer Ridge was mapped
with aMBES system. Hatteras Outer Ridge is a large (N19,000 km3) sed-
iment drift immediately downslope (southeast) of Hatteras Transverse
Canyon (Fig. 1) that has buried the lower reaches of Albermarle and
Hatteras Canyons and the upper parts of their associated fans, as well
as buried several sections of lower canyons farther to the northeast
towards Hudson Canyon (Tucholke and Laine, 1982). Hatteras Outer
Ridge was constructed during the Miocene to Late Pliocene (Sheridan
et al., 1978; Tucholke and Laine, 1982) and is at least 700 m thick. The
feature is at least 600 km long with a maximum width of ~150 km.
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The crest of the southern half of Hatteras Outer Ridge trends N42°E for
the first 158 km from the southwestern end, then the crest changes
trend to N53°E for at least another 100 km (Fig. 8). Water depths of
the crest in the southern half of the ridge range from ~4700 m at the
southwest end to a minimum depth of 4360 m at a point 222 km to
the northeast along the crest. The water depth of the crest slowly
deepens to 4473 m northeastward at the end of the MBES data. The
southern half of the ridge is asymmetrical in NW-SE cross section with
slopes of 0.9° on the northwest side but with slopes of ~0.5° on the
southeast side and the northwest flank is only ~10 km wide compared
to as much as 140 kmwide for the southeast flank because of the differ-
ences in water depths of the two flanks.

The surface of HatterasOuter Ridge is coveredwith bedforms (Fig. 8)
that are described in older literature as “lower continental rise hills”
(Fox et al., 1968; Rona, 1969; Hollister and Ewing, 1972; Benson and
Sheridan, 1978; Asquith, 1979) even though Rona (1969) correctly
noted that the features are not hills but elongate ridges. The consensus
by the 1980s was that these features are actually modified bedforms,
not “hills” in the strict sense (Tucholke and Laine, 1982; Mountain and
Tucholke, 1985), although the name “continental rise hills province”
remained in later literature (e.g., Pratson and Laine, 1989; Locker and
Laine, 1992). Fox et al. (1968) studied a small area of the bedforms in
detail and concluded they are relict antidunes. The MBES data clearly
delineate the features as bedforms and several subbottom-profiler
records were collected across the bedforms during the MBES cruises
that provide insights into their structure. Individual bedforms range in
Fig. 8. Plan view of the bathymetry of Hatteras Outer Ridge (HOR) (outlined in red dashed line).
along A–A′–B. Short solid red lines are crests of bedforms. Bold white lines are locations of subb
andWNC isWashington–Norfolk Canyon channel. See Fig. 2A for location. (For interpretation of
article.)
length from a few 10s of km to more than 200 km and their crests rise
from 12 to greater than 100 m above the surface of Hatteras Outer
Ridge (Fig. 9A). Wavelengths of the bedforms range from 2 to ~11 km.
There is no correlation of bedform wavelength to crest water depth or
bedform height (Fig. 9A–C). The bedform crests have a strong east–
west orientation that is 30 to 50° off the general trend of the margin
in this area (Fig. 9D). Individual bedform shapes vary from nearly sym-
metrical to sharply asymmetrical (Fig. 10) although there are no areas
with one shape that predominates over the other. Sections of the
bedform field in themiddle of Hatteras Outer Ridge have beenmodified
by channelized sediment deposition sourced from the Washington–
Norfolk Canyon system (Fig. 1) that has been directed downslope and
out onto the sediment drift and has partially filled in the troughs be-
tween bedforms (Fig. 11), as first noted by Rona (1969). The troughs
of the bedforms in the path of this downslope transport have been filled
with acoustically strong, horizontally stratified sediment (first noted by
Fox et al., 1968 and shown conclusively by Hollister and Ewing (1972).
Sediment transported from the Hatteras Abyssal Plain to the east has
also filled bedform troughs on the southeastern edge of Hatteras
Outer Ridge (Fig. 11).

3.5. Nearby Features

3.5.1. Cape Fear Slide
Cape Fear Slide (CFS) is a major landslide that stretches more than

390 km downslope from a crown scarp at the 2411 m isobath. The
Isobath interval is 200m.White line A–A′–B is the crest of HOR and lower panel is a profile
ottom profiles shown in Fig. 10. HTC is Hatteras Transverse Canyon, HC is Hatteras Canyon
the references to color in thisfigure legend, the reader is referred to theweb version of this



Fig. 9. (A) plot of bedformwave height vs. wavelength; (B) plot of bedform crest water depth vs. wavelength; (C) plot of bedform crest water depth vs. wave height; polar plot of bedform
crest orientation compared to the trend of the regional margin in this area.

27J.V. Gardner et al. / Marine Geology 371 (2016) 18–32
landslide was first described by Embley (1980) and later by Popenoe
et al. (1993), Popenoe and Dillon (1996), Hornbach et al. (2007) and
Lee (2009). The age of the Cape Fear event is 14.5 to 9 ka (Paull et al.,
1996; Rodriguez and Paull, 2000). The distal toe of CFS is an abrupt
15 m wall with a slope of ~3°. The toe of the slide is 76 km wide at its
widest. The northern margin of the CFS overlaps Cape Lookout Slide
(discussed below) and is clear evidence that the Cape Lookout Slide oc-
curred some time before the CFS event (Popenoe and Dillon, 1996)
(Fig. 12).
3.5.2. Cape Lookout Slide
Only a section of exposed distal Cape Lookout Slide (CLS) is seen in

the mapped area, located north of and partially overridden by the CFS
(Fig. 12). This section of the CLS is part of a much larger slide feature
that originated on the lower slope (Popenoe and Dillon, 1996). There
is ~10 m of relief where the younger CFS overlaps the CLS. Although
all that can be said of the age of the CLS is that it predates the CFS, the
Fig. 10. (A) Symmetrical bedforms with sediment fill in troughs on subbottom line L416; (B) ir
bedforms with no fill on subbottom line L412a.
significance of the CLS to the present study is that it forms the present
western boundary of upper Hatteras Fan. The southwestern flank of
upper Hatteras Fan is now buried beneath the CLS but the northeastern
flank of the CLS certainly now and perhaps in the past has diverted the
lower reaches of Hatteras Transverse Canyon towards the southeast and
out onto the upper Hatteras Fan.
3.5.3. Area between Pamlico and Hatteras Canyons
The MBES acoustic backscatter data in the region between Pamlico

and Hatteras Canyons shows a large area of anomalously high backscat-
ter for this area (Fig. 13A and B). The anomalous area encompasses
~6500 km2 and is roughly confined between the 4600 and 5150 m
isobaths. Typical backscatter values outside this anomalous region
range from−36 to −30 dB whereas within the anomalous area back-
scatter values are −28 to−25 dB. Long (~50 km), low (b15 m) linear
ridges that strike N20°E, 60° to the regional slope (Fig. 13B) occur only
within the high backscatter area.
regular bedforms with sediment fill in troughs on subbottom line L415b; (C) symmetrical



Fig. 11. (Left panel) plan view of bathymetry of central Hatteras Outer Ridge. (Right panel) same plan view as left panel showing transport paths of sediment fromWashington–Norfolk
Canyon-channel system (WNC) ontoHatteras Outer Ridge that has been deposited in the troughs between the bedforms.White arrows pointingwest indicate direction of sediment trans-
port from Hatteras Abyssal Plain that has partially buried bedforms. See Fig. 2A for location.
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4. Discussion

Hatteras Transverse Canyon occurs in an area that includes the distal
reaches of several major canyons, a large sediment drift and two large
mass-failure deposits. The newmultibeam bathymetry and backscatter
data reveals mesoscale (i.e., ~100-m horizontal and ~5-m vertical)
features that have not previously been described for this area. Newly
described features include extensive landslide scarps on the walls of
Fig. 12. Perspective view looking north-northwest of acoustic backscatter draped on bathymet
and 589 show the overlap of Cape Fear Slide onto the distal Cape Lookout Slide (CLS) and the
Hatteras Transverse Canyon, large landslide deposits that completely
block Hatteras Transverse Canyon, several knickpoints in most of the
channel floors, a region of cyclic steps on upper Hatteras Fan and a
large area of outcrop between Pamlico and Hatteras Canyons.

Numerous landslide scarps occur on both walls of Hatteras Trans-
verse Canyon and the lower reaches of lower Hatteras Canyon, but for
most of their length the canyon floors show no evidence of landslide
deposits. The landslide deposits that were initially deposited on the
ry of the distal parts of Cape Fear Slide (CFS) and upper Hatteras Fan. Subbottom lines 588
cyclic steps of the surface of the upper-most upper Hatteras Fan, respectively.



Fig. 13. Plan views of bathymetry (A) and color-coded acoustic backscatter (B) of outcrop area between Pamlico Canyon (PC) and Hatteras Canyon (HC). White dashed line encompasses
outcrop area. White arrowheads point to representative linear pattern of outcrops. Isobath interval 100 m. See Fig. 2B for location.
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Hatteras Transverse Canyon floor upstream of the confluence with
lower Hatteras Canyon must have been reworked and transported
through the lower reaches of the canyon and out onto the area below
the confluence. However, immediately down canyon from the conflu-
ence of Hatteras Transverse Canyon and lower Hatteras Canyon,
a large landslide complex completely blocks the lower canyon. The
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composite landslide deposits are located in the immediate area of
extensive landslide scarps on the wall of Hatteras Transverse Canyon
below the confluence of Hatteras Transverse Canyon and lowerHatteras
Canyon. The landslide deposits are 24 km long and asmuch as 25mhigh
and completely fill the channel in the landslide zone. The lack of land-
slide deposits on the floor of Hatteras Transverse Canyon and lower
Hatteras Canyon above the confluence of Hatteras Transverse Canyon
andHC suggests that the landslide scarps on thewalls of Hatteras Trans-
verse Canyon and lower Hatteras Canyon and their associated deposits
are either older than the composite landslides farther down canyon or
that the landslide deposits were reworked, transported down canyon
and accreted to the composite landslide deposits below the confluence
of Hatteras Transverse Canyon and lower Hatteras Canyon. Alternately,
the landslide deposits may be older than the composite landslide
deposits and make up part of the large depositional feature found
farther downslope. There is no evidence on the surface of the landslide
deposits that a channel has begun to incise through the deposits. This
suggests that either 1) no post-landslide turbidity currents have
transited through Hatteras Transverse Canyon or 2) any significant-
sized post-landslide turbidity currents that flowed down Hatteras
Transverse Canyon and lower Hatteras Canyon were either blocked
by, or perhaps were guided over, the landslide deposits. Regardless,
the distributary (?) channels on the upper Hatteras Fan are inactive
channels that formed prior to the blockage by the landslide deposits.
Lamont Doherty Earth Observatory piston core VM22-2 (Fig. 5) was col-
lected from Hatteras Transverse Canyon is at the southern end of the
landslide deposits. The top of the core consists of 1.72 m of medium
olive gray hemipelagic sand, with a 10-cm-thick interbed of foram marl
ooze that overlies a foram marl ooze. Eastward core 10365 (Fig. 5) was
collected from Hatteras Transverse Canyon up-canyon from the land-
slides and is described as having a surface sand layer greater than
0.8 m thick (Field and Pilkey (1971). The lack of hemipelagic sediment
at the top of the core Eastward 10365 suggests that Hatteras Transverse
Canyon may have been an active conduit for sand transport up until
the late Holocene. The surface sand layer in the Eastward 10365 up-
canyon from the landslides, together with the surface sand layer of core
VM22-2 within the landslide deposits, suggests that the landslides with-
in Hatteras Transverse Canyon are probably Holocene in age and not
Pleistocene or older, otherwise one would expect a thin hemipelagic
cap on the cores. However, there is always the possibility that the surfi-
cial sediment was lost in the coring process.

It is tempting to correlate the channel knickpoints with the outcrops
on thewalls of Hatteras Transverse Canyon and lower Hatteras Canyon.
However, thewater depths of the knickpoints and outcrops do not form
a plane surface or surfaces. The one exception is the channel knickpoints
at 5081 m in Hatteras Transverse Canyon and at 5080 m in lower
Hatteras Canyon (d and e in Fig. 5). These knickpoints may indeed be
the result of excavations of resistant horizontal strata by erosion in the
channels (Popenoe and Dillon, 1996). However, a more likely explana-
tion is that all the knickpoints in the floors of Hatteras Transverse
Canyon and lower Hatteras Canyon, which are all up-channel from the
large landslide deposits, represent a disruption of the equilibrium pro-
files of both canyon channels by the landslide deposits, thus elevating
the distal-most canyon channels, and that the two channels are present-
ly headward-eroding to re-establish new equilibrium profiles. The flat,
featureless nature of the channel floors of both Hatteras Transverse
Canyon and lower Hatteras Canyon suggests channel entrenchment dur-
ing knickpoint retreat has yet to begin (Pirmez et al., 2000; Kneller, 2003;
Mitchell, 2004, 2006; Holland and Pickup, 1976; Heiniö and Davies,
2007). In addition to the knickpoints in the channel, the head of Hatteras
Transverse Canyon and the side channel of upper Hatteras Transverse
Canyon also appear to be eroding headward. The presence of knickpoints
also could be an indication that the canyon channels are re-establishing
their equilibrium profiles after a period of increased sedimentation
(e.g., Amblas et al., 2011) after the last glacial lowstand, as first suggested
by Embley and Jacobi (1986). Hatteras Canyon, a tributary channel to
Hatteras Transverse Canyon, must be adjusting by erosion to a drop in
the thalweg of Hatteras Transverse Canyon channel, the principal chan-
nel, because there is no suggestion of a step down at the confluence of
the two channel floors. Also, the channel floor of lower Hatteras Canyon
is steeper (0.69°) upstream of the confluence with Hatteras Transverse
Canyon than the principal channel floor (0.02°), which Mitchell (2004)
suggests reflects the tributary's smaller contributing areas.

The cyclic steps described on the upper Hatteras Fan resemble in
dimensions features described as cyclic steps that are thought to
imply accelerated turbidity currents with supercritical turbulent flow
on the stoss side and subcritical flow on the less side of the features
(Parker, 1996; Kostic and Parker, 2006; Fildani et al., 2006; Cartigny
et al., 2011; Konstic, 2011; Covault et al., 2014). Cyclic steps are described
as predominately formed from accelerated suspended-sediment trans-
port that generates upslope-migrating large bedforms (the steps) sepa-
rated by zones of hydraulic jumps that produce erosion and sediment
bypass (Konstic, 2011). These flows have been modeled from flume
studies (Parker, 1996; Kostic and Parker, 2006; Cartigny et al., 2011;
Konstic, 2011), as well as described offshore California in the Shepard
Bend of Monterey Canyon (Fildani et al., 2006), Eel Canyon channel
(Lamb et al., 2008), San Mateo Canyon (Covault et al., 2014), and Santa
Monica and Redondo Canyons (Tubau et al., 2015), as well as from
Horseshoe Valley in the Gulf of Cadiz (Duarte et al., 2010), Agadir Canyon
off Morocco (Macdonald et al., 2011) and Setǘbal Canyon off Portugal
(Macdonald et al., 2011). The cyclic steps on upper Hatteras Fan may
not be active today, principally because the large sediment pile may
have blocked the flows upstream from the occurrence of the steps. The
low channel gradients of Hatteras Transverse Canyon (0.2°) may not
have accelerated turbidity current speeds fast enough to allow them to
flow over the ~100-m relief of the large deposit that blocks the lower
Hatteras Transverse Canyon channel. However, the 0.6° gradients of
lowerHatteras Canyonmay be enough to accelerate, or at least not decel-
erate, turbidity currents enough to run up over the large deposit. The lack
of sediment cores and high-resolution subbottom profiles from these
features precludes any additional speculation.

Newton and Pilkey (1969), Embley and Jacobi (1986), Pratson and
Laine (1989) and Popenoe and Dillon (1996) all mention a hummocky
area between Pamlico and Hatteras Canyons on the lower margin
(Fig. 2A and B) as seen on seismic records and sidescan images. These
authors suggested the hummocky terrain is the result of slumps, blocky
slide debris or mud waves. Popenoe and Dillon (1996) concluded that
the so-called hummocky area is an old landslide draped by hemipelagic
sediment. This range of water depths coincides with the lower range of
effects from the Western Boundary Undercurrent (Schneider et al.,
1967). The high acoustic backscatter of this area (−25 to −28 vs
−36 dB for the surrounding area) is also seen on the walls of Hatteras
Transverse Canyon and lower Hatteras Canyon, which suggests that
the high backscatter area is a region of outcrops with only a very thin
sediment cover most likely because of relatively recent erosion by the
Western Boundary Current.

5. Conclusions

Recentmapping the area of Hatteras Transverse Canyon and envi-
rons using high-resolution multibeam bathymetry, co-registered
acoustic backscatter and 3.5-kHz subbottom profiler data allows a
geomorphometric analysis of the area. The detailed digital terrain
model generated from these data reveals several previously unknown
important features in an area that were not identified in earlier studies.
The newly discovered features add to a better understanding of the re-
cent processes that have profoundly affected Hatteras Transverse Can-
yon, Hatteras Canyon and, to a lesser extent, Hatteras Outer Ridge. The
newly identified features include:

• Extensive landslide scarps that are restricted to the walls of lower
Hatteras Transverse Canyon and lower Hatteras Canyon.
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• An area composed of a series of landslide deposits that clog Hatteras
Transverse Canyon just down canyon from the confluence of Hatteras
Transverse and Hatteras Canyons.

• A large depositional feature down canyon from composite landslides
that may represent older landslide deposits. This deposit rises 100 m
above the fan surface and appears to completely cover the transition
zone between lowermost Hatteras Transverse Canyon and the upper-
most Hatteras Fan.

• A series of knickpoints in the channel floor of lower Hatteras Trans-
verse Canyon and lower Hatteras Canyon that suggest both canyon
channels are in the process of reestablishing new equilibrium profiles,
either because of the disruption of a former equilibrium profile by the
blockage of the canyons by the extensive landslide deposits or from a
period of increased sedimentation during and immediately after the
last glacial eustatic lowstand.

• Headward erosion has occurred at the head region of Hatteras
Transverse Canyon and has intercepted the lowest reach of Albemarle
Canyon. Headward erosion has also occurred in a small side channel
that has eroded into Hatteras Outer Ridge.

• Sections of the troughs between large bedforms that ornament the
top of Hatteras Outer Ridge are partially buried by sediment fed
from Washington–Norfolk Canyon channel as well as by sediment
transported from Hatteras Abyssal Plain.

• A zone of cyclic steps occurs on the upper Hatteras Fan immediately
down slope from a large depositional feature. The cyclic steps suggest
vigorous supercritical turbidity currents with suspended-sediment
transport flowed onto the upper fan to create the upslope-migrating
cyclic-step bedforms. The age relationship between the cyclic steps
and the depositional feature is unknown.

• A large (~6500 km2) area of outcrop on the lower margin that is
almost devoid of blanketing hemipelagic sediments.
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