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ABSTRACT 

HIGH-FREQUENCY BROADBAND SEAFLOOR BACKSCATTER IN A SANDY 

ESTUARINE ENVIRONMENT 

 

by 

Eric J. Bajor 

University of New Hampshire, September, 2015 

  

 Seafloor backscatter collected with high-frequency (> 100 kHz) hydrographic 

echosounders has become an important aspect of seafloor characterization for benthic ecologists 

and other scientists.  The mechanisms that control acoustic scattering at these high frequencies 

are not completely understood, although surficial roughness and the presence of discrete particles 

(e.g., shell hash) are likely contributors.  To further our understanding of the impact these 

mechanisms have on seafloor scattering, broadband (100-250 kHz) acoustic measurements were 

taken at a grazing angle of 45° in a shallow-water, sandy environment with a known presence of 

shell hash.  Stereo imagery was collected simultaneously to quantify the surficial roughness of 

the seafloor. Sediment samples were also collected at the site of the experiment to quantitatively 

analyze the content of shell hash.  Backscatter observations between the frequencies of 170 kHz 

– 250 kHz showed a minimal increase in amplitude with increasing frequency while observations 

at lower frequencies between 100 kHz – 150 kHz showed an apparent increase in amplitude 

relative to increasing frequency.  Data to model comparisons of the frequency dependence of 

seafloor backscatter were made to both roughness and discrete particle scattering models 

indicating neither model is a good descriptor of the seafloor backscatter response.   
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 CHAPTER 1 

 

1 INTRODUCTION 

 

With over half the world’s population living near a coastal region, creating and 

maintaining accurate maps of the seafloor remains important as overall human impact on the 

world’s oceans is continually increasing [Brown and Blondel, 2009].  One component of such 

mapping is the collection of acoustic backscatter, which is defined as the amount of acoustic 

energy received by a sonar after a complex interaction with the seafloor [Stuart, 2012].  The 

interaction between acoustic waves and the seafloor is complex and driven by irregularities 

within or at the water-sediment interface including surficial roughness, spatial variations in the 

sediment physical properties, and by the presence discrete inclusions such as shell pieces, 

commonly referred to as shell hash [Lurton, 2010]. 

Backscatter is quantified in terms of the scattering strength of a patch of seafloor 

ensonified by a sonar’s beam as depicted in Figure 1-1. 
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Figure 1-1.  Illustration of conceptual outline related to the quantification of acoustic backscatter.  𝜃𝑖 and 𝜃𝑠 are the 

incident and scattering angles, respectively, and R is the range from the sonar transducer to the target seafloor. 

 

 The scattered pressure field measured by the sonar is defined by Equation 1, in units 

proportional to intensity, when an ensemble of measurements is taken of statistically equivalent 

patches of seafloor; 

 〈|𝑃𝑠(𝑅)|2〉 =
|𝑃𝑖|

2𝐴𝜎

𝑅2
𝑒−2𝛼𝑅 Equation 1 

where 𝑃𝑠  (brackets, 〈    〉, indicate an ensemble average) is the scattered pressure received by the 

sonar, 𝑃𝑖 is the incident pressure at the seafloor, 𝐴 is the ensonified area, 𝑅 is the range to the 

seafloor, 𝛼 is the absorption coefficient associated with the two-way transmission loss (𝑇𝐿) of 

the transmitted and received signal, and 𝜎 is the backscattering cross section [Jackson and 

Richardson, 2007].  The backscattering cross section is more commonly defined as the ‘bottom 

scattering strength’ of the seafloor given by the decibel equivalent;  

 𝑆𝑏 = 10 log10 𝜎. Equation 2 

Backscatter measurements are collected for their use in seafloor characterization by 

means of seafloor imaging, seabed mapping, and habitat mapping.  Typically, when these 
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measurements are collected in less than a few hundred meters water depth, multibeam 

echosounders (MBES), operated above 100 kHz, are utilized [Lurton, 2010].  Researchers and 

scientists who collect these measurements often use them to create mosaics of seafloor 

backscatter of a particular survey area [Brown and Blondel, 2009] or to invert the measurements 

based on theoretical backscatter models to estimate intrinsic properties of the seafloor [Jackson 

et al, 1996].  However, either use of seafloor backscatter has its own set of challenges.  When 

creating mosaics, data is often combined from multiple surveys in which various MBES may 

have been used.  Changes in backscatter measurements over a single area may then be the result 

of either the use of varying operating frequencies by different MBES systems or a physical 

change in seafloor bottom type.  Moreover, inversion of backscatter data relies solely on 

physically based models for acoustic scattering, which are not fully understood at the higher 

operating frequencies common to MBES systems [Jackson and Richardson, 2007].   

Limited modeling done in support of seafloor backscatter at frequencies above 100 kHz, 

makes it unclear to what specific seafloor scattering mechanisms control backscatter 

measurements at high frequencies.  Inconsistencies in backscatter measurements are generally 

credited to inhomogeneities of a seafloor bottom type, either within the sediment volume, or at 

the water-sediment interface.  The interaction between an acoustic signal and the seafloor will 

vary based on the presence of inhomogeneities and their size relative to the wavelength of the 

acoustic signal.  For example, it has been suggested that shell fragments overlaying a sandy 

environment dominate acoustic scattering at high operating frequencies when the size of the shell 

hash is small relative to the acoustic wavelength [Williams et al., 2002; Ivakin, 2004; Lyons, 

2005; Williams et al., 2009].  Similarly, it has also been suggested by models presented by 

Jackson and Richardson [2007] that seafloor backscatter is dependent on the presence of surficial 
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roughness elements that are also small relative to the acoustic wavelength.  When such seafloor 

scattering mechanisms are present within a survey area, the backscatter response from the 

seafloor is expected to change as the acoustic wavelength, or operating frequency of a sonar, 

changes with respect to the physical size of seafloor scattering mechanisms related to scattering.  

A lack of a basic understanding of the mechanisms that control acoustic backscatter at high 

frequencies limits our ability to properly discriminate between seabed bottom types, ultimately 

hindering the capability to accurately map the seafloor. 

To further understand the relationship between the frequency dependence of acoustic 

backscatter and seafloor scattering mechanisms discussed, a field experiment was conducted in 

Portsmouth Harbor, New Hampshire, USA.  The harbor is located towards the mouth of the 

Piscataqua River, and is split by the border between New Hampshire and Maine (Figure 1-2).  

The bottom composition in the general area of the experiment is diverse, consisting of an 

assortment of various sediment types including sand, gravel, and bedrock outcroppings.  The 

area is exposed to the ocean and subject to tidally influenced currents.  Of particular interest in 

this study were a sand wave field and gravel field, i.e. channel lag deposits, located in lower 

Portsmouth Harbor, both of which are shown in Figure 1-2.  The sand wave and gravel fields 

were the chosen areas of interest based on historical data sets that characterized each section of 

the seafloor prior to experimentation. 
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Figure 1-2. Experimental location and characterization of major depositional environments located in Portsmouth 

Harbor [Ward and McAvoy, 2014].  The experiment described herein took place within the sand wave field and 

channel lag deposits highlighted by the red boxes.   

 

 The sand wave field was characterized by collection of sediment samples [Ward and 

McAvoy, 2014], video screen grabs [Felzenburg, 2009; Ward and McAvoy, 2014], current 

observations [Felzenburg, 2009], and multiple MBES surveys [Felzenburg, 2009].  MBES 

surveys were conducted between June 2007 and July 2008 and revealed the presence of large 

sand dunes ranging from approximately 3 to 5 m in wavelength and 0.1 to 0.5 m in height on the 

eastern periphery of the sand wave field.  In addition to the large sand dunes, video screen grab 

data revealed the presence of smaller sand ripples approximately ~0.20 m in wavelength 

overlaying the sand dunes.  The combination of sediment samples and current observations taken 

in the sand wave field by Felzenburg [2009] indicated that current magnitude during both flood 

and ebb tide events exceeded the critical threshold for incipient motion of the sediment based on 
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mean grain size of the sediment, inferring a change in the surficial roughness of the sand wave 

field with respect to time.  However, grain size distribution statistics of the sediment remained 

relatively uniform in time.  This was confirmed by samples collected by Ward and McAvoy 

[2014], as compared to samples collected by Felzenburg [2009], following multiple sediment 

sample and video data cruises occurring on June 20th, October 21st, and December 17th in 2013.  

Consistency of the sediment samples suggests spatial stability within the sand wave field with 

respect to time despite the dynamic nature of the area.  Inspection of samples taken by Ward and 

McAvoy [2014] also revealed the presence of high shell hash content located in the sand wave 

field.  Shell hash grain size ranged from 0.5 mm to 4 mm and accounted for nearly 20% of 

sediment samples.   

The gravel field was also characterized by grain size from sediment samples and video 

data collected during the sampling cruises in 2013.  Overall mean grain size distribution of the 

gravel field ranged from 4 mm to 33 mm with a mean grain size of approximately ~12 mm 

[Ward and McAvoy, 2014]. 

Historical characterization of the sand wave and gravel fields provided adequate 

environmental description of each area needed to design an experiment aimed at providing 

insight to the linkages between the seafloor scattering mechanisms inherent to both areas (i.e. 

surficial roughness, presence of discrete inclusions) and acoustic backscatter measurements.  The 

main portion of the experiment involved a broadband acoustic survey during the dynamic period 

of a flood tide event.   Backscatter observations were collected between 90 kHz – 260 kHz 

utilizing two split-beam echosounders (SBES), to examine the frequency and temporal 

dependence of backscatter observations over both sand wave and gravel fields.  The frequency 

response of the measurements was limited to upper and lower frequency bands of 170 kHz - 250 
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kHz and 100 kHz – 150 kHz, respectively.  This limitation was due to the distorted nature of the 

broadband signals produced by each individual SBES used during the survey. 

The operating frequencies used during the experiment corresponded to the small scales of 

the seafloor scattering mechanisms of both the sand wave and gravel fields as determined by 

Felzenburg [2009] and Ward and McAvoy [2014].  The acoustic operating frequency range 

covered a span of acoustic wavelengths from 6 mm – 15 mm within an estimated footprint on the 

seabed of approximately 3.5 m2 over the sand wave field and 5.5 m2 over the gravel field.  

Increased area of the sonar’s beam on the seabed was due to an increase in depth of the water at 

the gravel field location.  The scales of seafloor scattering mechanisms found in the sand wave 

and gravel fields pertinent to the acoustic backscatter observations characterized by spatial scale 

are shown in Figure 1-3. 

 

Figure 1-3. Relative spatial scale of sedimentary make up of sand wave and gravel fields. Acoustic wavelength 

values on the x-axis were determined by historical seafloor characterization of the sand wave and gravel fields by 

Felzenburg [2009] and Ward and McAvoy [2014]. 

 

 Both sites contained seafloor scattering mechanisms characterized as surficial roughness 

features, provided by the pebbly nature of the gravel field and micro-scale sand ripples in the 

sand wave field.  The sand wave field was also characterized as an area containing discrete 

inclusions, by the presence of shell hash in a predominantly sandy area. 
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Stereo imagery data sets were also collected as part of the field experiment in both sand 

wave and gravel fields to quantitatively describe the surficial roughness of each area.  

Quantitative description of the surficial roughness was desired as input to a roughness scattering 

model [Jackson and Richardson, 2007] to make comparisons between theoretical predictions of 

backscatter and acoustic backscatter observations.  Stereo imagery was collected in the sand 

wave field simultaneous to the collection of acoustic backscatter.  This was done due to the 

dynamic nature of the sediment controlled by the tidally induced currents.  Predicted motion of 

the sediment bottom created the hypothesis that the surficial roughness of the sand wave field 

was changing in time, which would ultimately influence the acoustic backscatter measurements, 

if they were indeed controlled by surficial roughness.   

Stereo imagery was collected in the gravel field following the acoustic survey under the 

assumption that the gravel remained stationary in time due to the larger grain size distribution of 

the sediment (4 mm – 33 mm grain sizes).  Historical consistency of sediment samples collected 

by Ward and McAvoy [2014] in the gravel field added confidence to the assumption that the 

gravel field was spatially stable in time when theoretical predictions of backscatter were 

compared to acoustic observations. 

A final data set of sediment samples from the sand wave field was also collected in part 

for the field experiment to provide input to a discrete inclusion scattering model [Ivakin, 2004] 

utilized to compare a theoretical prediction of backscatter based on the presence of discrete 

inclusions (i.e. shell hash) to the acoustic backscatter observations.  Input needed from the 

sediment samples was focused around the grain size distribution of the sediment.  Sediment 

samples were collected by divers in situ just prior to the acoustic survey and stereo camera data 

set collection.   
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The main objective of the experiment described was to identify the seafloor scattering 

mechanism that was the main contributor to acoustic backscatter in the sand wave and gravel 

fields.  This was done by directly relating the frequency dependence of the observed acoustic 

backscatter to the frequency dependence of theoretical backscatter predictions generated from 

surficial roughness and discrete inclusion scattering models.  Each model assumed the frequency 

response of backscatter was controlled by the respective seafloor scattering mechanism of 

interest.  An accurate comparison of either model to the acoustic backscatter would suggest 

surficial roughness or the presence of discrete inclusions as the controlling mechanism of the 

backscatter response depending on the model being compared.  Input parameters from the 

seafloor environment necessary for both scattering models were derived from the stereo imagery 

data sets with respect to surficial roughness and the sediment samples with respect to the 

presence of discrete inclusions. 
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 CHAPTER 2 

 

2 SEAFLOOR SCATTERING MODELS 

 

Both roughness scattering and inclusion scattering models were used to compare 

empirically observed acoustic backscatter to theoretical predictions of backscatter derived from 

each model.  The frequency response of the theoretical predictions was the main focus of the 

comparisons and not the corresponding amplitude of the results, under the assumption that it 

would best indicate the underlying seafloor scattering mechanism (i.e. surficial roughness, 

discrete inclusions) controlling the acoustic backscatter response.  Model predictions were 

adjusted in amplitude and overlaid on the acoustic results for direct comparison of the frequency 

dependence.  Input parameters for each model were obtained from the stereo imagery and 

sediment sample data sets.  For either model, the assumption was made that the controlling 

mechanism of the backscatter response was either surficial roughness or the presence of discrete 

inclusions for the respective model of interest. 

2.1 Surficial Roughness Scattering Model 

In the present work the roughness scattering model utilized in comparing the theoretical 

frequency response of backscatter to the observed frequency response of the acoustic backscatter 

measurements is based on small-roughness perturbation approximation theory.  Small-roughness 

perturbation approximation theory analyzes the scattering from a randomly rough surface with 

excursions that are small compared to the acoustic wavelength of the operating sonar transducer.  

The analysis is made under the boundary condition that the transmitted pressure from an acoustic 
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signal is equal to the sum of the scattered and incident pressures, shown in Figure 2-1 [Weber, 

2014].   

 

Figure 2-1.  Illustration representing roughness scattering under the assumption that the transmitted pressure, 𝑝𝑡  is 

equal to the sum of the scattered pressure, 𝑝𝑠 and the incident pressure, 𝑝𝑖 .   

 

Expansion and evaluation of the boundary condition in a Taylor series around the average 

surface height (e.g. 𝜁 = 0), incorporating only the ‘zeroth’ and first order terms of the Taylor 

series, representing the smooth surface reflection coefficient and roughness elements, 

respectively.  The first order terms of the Taylor series expansion, representing the roughness 

elements, are proportional to 𝑘𝑤𝜁, where 𝑘𝑤 is the acoustic wave number defined by, 

   
𝑘𝑤 =  

2𝜋

𝜆
, Equation 3 

where 𝜆 is the acoustic wavelength.  Under the assumption that the random seafloor surface 

heights projected onto the direction of the acoustic wave are much less than one, 𝑘𝑤𝜁 is 

considered small.  Terms beyond the first order can then be considered negligibly small and 

ignored from the Taylor series approximation [Weber, 2014].  This analysis results in a 

backscattering cross section proportional to the 2D roughness spectrum, 𝑊(Δ𝐾), evaluated at the 

Bragg wave vector, Δ𝐾 [Jackson and Richardson, 2007]; 
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 𝜎 = 𝑘𝑤
4 |𝐴|2𝑊(Δ𝐾) Equation 4 

where A is a constant. 

The Bragg wave vector is defined as the difference between the horizontal components of 

the incident wave vector 𝐾𝑖, produced by a sonar transducer, and the scattered wave vector 𝐾𝑠.  If 

the roughness spectrum of the seafloor has a large peak at some wave vector 𝐾0, there will be 

strong scattering in two directions corresponding to 𝐾𝑠 = 𝐾𝑖 ± 𝐾0, known as Bragg scattering 

[Jackson and Richardson, 2007].  Bragg scattering assumes that for a given angle of incidence 𝜃𝑖, 

the backscatter response is dominated by contributions from scatterers whose return signals are 

in phase as seen in Figure 2-2 [Lurton, 2010].  These scatterers, resolved as the roughness 

spectrum of the seafloor, are distributed at a distance 𝑑 from each other with 2𝑑𝑐𝑜𝑠𝜃𝑖 = 𝑛𝜆 for 

= 1,2, … [Lurton 2010]. 

 

Figure 2-2. Bragg Scattering: at incidence angle 𝜃𝑖, the main contribution to backscatter comes from scatterers with 

spacing 𝑑 such as 2𝑑𝑠𝑖𝑛𝜃𝑖 =  𝜆, building a constructive interference pattern. [Lurton, 2010] 

   

  This condition is satisfied at all angles when the seafloor is isotropic and the Bragg 

wavenumber is defined by, 
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 Δ𝐾 = 2𝑘𝑤𝑐𝑜𝑠𝜃𝑖 , Equation 5 

where 𝜃𝑖 is the grazing angle.  The Bragg wavenumber relates the physical size of the acoustic 

wavelength to the size of the roughness elements present on seafloor.  For this study, relevant 

Bragg wavenumber quantities ranged in magnitude from ~4.5 mm to ~6 mm for the upper band 

of acoustic survey frequencies and ~7 mm to 10.5 mm for the lower band of acoustic survey 

frequencies. 

 The roughness spectrum of the seafloor can be resolved by applying the 2D Fourier 

transform (2D-FFT) to digital elevation models (DEM) or bathymetry maps obtained from a 

stereo imagery data set.  The 2D-FFT is applied to a DEM by Equation 6; 

 𝑊(𝑘𝑥, 𝑘𝑦) =  ∬ 𝑤(𝑥, 𝑦)𝑒−𝑗2𝜋(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦
∞

−∞

, Equation 6 

where 𝑘𝑥 and 𝑘𝑦 are wave vectors in 𝑥 and 𝑦 directions, respectively, and 𝑊(𝐾𝑥, 𝐾𝑦) is the 2D 

spectrum of the DEM matrix, 𝑤(𝑥, 𝑦).  

The 2D roughness spectrum can be characterized by the slope and intercept of the linear 

regression line through a ‘slice’ of the 2D spectrum evaluated at the Bragg wavenumber, 

estimated in log-log space [Briggs et al., 2005].  A slice taken from the 2D-FFT equates to the 

1D spectrum obtained by integrating the 2D spectrum over the wave vector component 

orthogonal to the 1D measurement track [Jackson and Richardson, 2007].  This relationship is 

described by the following; 

 
𝑊1(𝐾𝑥) =  ∫ 𝑊2(𝐾𝑥, 𝐾𝑦)𝑑𝐾𝑦 Equation 7 

where subscripts 1 and 2 indicate the number of dimensions of the spectrum.  𝐾 is the Bragg 

wavenumber in respective subscript directions, 𝑥 and 𝑦. 
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  Characterization utilizing 1D slices through the 2D roughness spectrum is made under 

the assumption that the roughness spectrum obeys a simple power law, 

 𝑊2(𝐾) =  
𝜔2

𝐾𝛾2
 Equation 8 

where 𝜔2 is the spectral strength related to the intercept of the linear regression line of the 

spectrum slice and 𝛾2, the spectral exponent, is the absolute value of the spectral slope plus unity 

[Jackson et al. 1996].  The magnitude of the overall spectrum evaluated at a given value of the 

Bragg wavenumber describes the amount of acoustic energy returned from a seafloor scattering 

mechanism whose physical size relates to the corresponding Bragg wavenumber.  Significant to 

this study, the spectral exponent relates to the frequency response of acoustic backscatter in 

terms of small-roughness perturbation approximations by the relationship, 

 𝜎(𝑓) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑓4−𝛾2 Equation 9 

where 𝜎 is the backscattering cross section, and 𝑓 is frequency [Jackson and Richardson, 2007].  

Typically, most seafloors possess a roughness spectrum on the order of 𝐾−3 to 𝐾−3.5 resulting in 

an increase in backscattering strength of ~3 dB when doubling the operating frequency of a sonar 

transducer [Weber, 2014].   

2.2 Discrete Inclusion Scattering Model 

An inclusion scattering model developed by Ivakin [2004] was also utilized in comparing 

the frequency dependence of acoustic backscatter observations to theoretical predictions of 

backscatter under the assumption that the presence of discrete inclusions was mechanism 

controlling the backscatter response of the seafloor.  Similar to the comparison of the roughness 

scattering model to backscatter observations, the objective of the comparison was to directly 

compare the frequency response of the theoretical prediction to the frequency response of the 

acoustic observations under the assumption that the analysis of the frequency response would 
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best indicate the underlying seafloor scattering mechanism (i.e. surficial roughness, discrete 

inclusions) controlling the acoustic backscatter response. 

The inclusion model assumes that the presence of discrete inclusions or scatterers, such 

as shell hash or coarse sand grains, that are large compared to the mean grain size of a sample 

distribution, are the controlling mechanisms of the backscatter response.  Theoretical backscatter 

predictions are described in terms of the individual scattering functions of discrete targets and 

statistical distributions of parameters, such as size, shape, and material makeup [Ivakin, 2004]. 

The inclusion model assumes that seabed scattering is due to volume heterogeneity of the 

sediment with average acoustic parameters of sound speed and density. Sound speed and density 

of individual particles and the surrounding sediment volume are assumed to be independent of 

depth [Ivakin, 2004].  A seabed backscattering coefficient, or backscattering cross section per 

unit area of the seabed surface, which describes a theoretical section of seafloor comprised of 

specific sediment parameters that contributes to the backscatter response, can be estimated as, 

 𝑚𝑠 = |𝑊|4𝜇−2𝑚𝑣ℎ𝑝(𝑓, Χw), Equation 10 

where 𝑊 is the sound transmission coefficient of the water-sediment interface, 𝜇 is the sediment 

to water density ratio,ℎ𝑝 is the sound penetration depth, and 𝑚𝑣 is the volume backscattering 

coefficient of the sediment.  For purposes of this analysis, the sound transmission coefficient and 

water to sediment density ratio were neglected in this calculation.  Both parameters are constants 

and only effect the overall magnitude of the resultant theoretical prediction of backscatter based 

on the model and not the frequency response.  Equation 10 was then simplified to, 

 𝑚𝑠 = 𝑚𝑣ℎ𝑝(𝑓, Χw), Equation 11 

becoming a function of only the sound penetration depth and the volume scattering coefficient.   
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The depth of sound penetration into the sediment is calculated as a function of frequency, 

𝑓 and grazing angle, Χ𝑤; 

 
ℎ𝑝 =  

𝑅𝑒√(𝑛2 − cos2 Χ𝑤)

2𝛽𝑛𝑜
, Equation 12 

where 𝛽 = 2𝑘𝛿, 𝑘 =
2𝜋𝑓

𝑐𝑤
, and 𝑛 = 𝑛𝑜(1 + 𝑖𝛿) are the attenuation coefficient, wavenumber, and 

complex refraction index of the sediment, respectively.  𝛿 is the loss parameter, and 𝑛𝑜 is the 

water to sediment sound speed ratio (
𝑐𝑤

𝑐
).  Loss parameter and sediment sound speed parameters 

were estimated for calculation of the sound penetration depth as 0.01 and 1700 m/s, respectively 

[Ivakin, 2004]. 

Sound penetration depth estimates decrease with increasing frequency as depicted in 

Figure 2-3.  Maximum penetration depths are seen at the lowest frequencies and decrease as 

frequency increases. 

 

Figure 2-3. Sound penetration depth into seafloor calculated as a function of frequency and a grazing angle of 45°. 

 

The volume scattering coefficient, 𝑚𝑣, is estimated as, 
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𝑚𝑣 =

3

4𝜋
∫ 𝐹(𝑘𝑎)𝑎−2𝜓𝑣(𝑎)𝑑𝑎 Equation 13 

where 𝐹 is a dimensionless scattering function, 𝜓𝑣 is a volume size distribution function, and 𝑎 

is the equivalent radius of individual scatterers (radius of a sphere having the same volume as a 

non-spherical inclusion).  Variable changes in magnitude of the volume scattering function with 

respect to frequency and particle grain size are controlled by the response of both the 

dimensionless scattering function and the overall grain size distribution of the sediment sample, 

which is directly correlated to the volume size distribution function.  The volume size 

distribution function is calculated by, 

 
𝜓𝑣 =

4

3
𝜋𝑎4𝜓𝑁(𝑎) Equation 14 

where the number size distribution function, 𝜓𝑁(𝑎) is given by, 

 
𝜓𝑁(𝑎) =

Δ𝑁𝑎

𝑉Δ𝑎
. Equation 15 

where Δ𝑁𝑎 is the total number of particles in a sieve interval, and 𝑉 is the entire sediment sample 

volume.  The dimensionless scattering function, 𝐹 is defined as,  

where, 

𝐹(𝑘𝑎) =
𝑅𝑜

2

4
(𝑘𝑎)4 (1 +

𝑅𝑜
2

𝑅2
(𝑘𝑎)4)

−1

, 

 

𝑅𝑜 =
2

3
(1 −

𝜌𝑐2

𝜌𝛼𝑐𝛼
2

) +
𝜌𝛼 − 𝜌

𝜌𝛼 + 𝜌/2
, 𝑅 =

𝜌𝛼𝑐𝛼 − 𝜌𝑐

𝜌𝛼𝑐𝛼 + 𝜌𝑐
. 

Equation 16 

Density (𝜌), and sound speed (𝑐) define the sediment properties in terms of individual particles 

with the subscript 𝛼 and the surrounding sediment as 𝜌 and 𝑐.  Analysis of the dimensionless 

scattering function predicts Rayleigh scattering at frequencies that correspond to a value of 𝑘𝑎 ≪

1 for individual particle sizes.  Rayleigh scattering occurs from particles that are much smaller 
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than the acoustic wavelength.  In such a case, omni-directional scattering is assumed and the 

shape of the particle is irrelevant.  However, in the regime where 𝑘𝑎 > 1, where particle size is 

not small compared to the acoustic wavelength, the assumption is made that directional 

scattering occurs and the shape of the particle directly effects the scattering.  Figure 2-4 depicts 

this relationship for particles with diameters of 2 mm, 2.8mm and 4mm.  Transition frequencies 

for each particle size from non-directional to directional scattering are found in Table 2-1. 

 

Figure 2-4. Dimensionless scattering function as a function of 𝑘𝑎 for particle sizes of 2mm, 2.8mm and 4mm. 

 

Table 2-1. Transition frequency to 𝑘𝑎 > 1 for select particle diameter sizes. 

Particle Diameter, mm Transition Frequency, 𝑘𝑎 > 1 

2 238.5 

2.8 168.5 

4 119 
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Results of the dimensionless scattering function for all other particle sizes with a diameter less 

than 2 mm remains in the region where 𝑘𝑎 ≪ 1. 

 Behavior of the dimensionless scattering function that describes the difference between 

Rayleigh scattering and non-Rayleigh scattering of discrete inclusions is important to note in 

conjunction with the volume size distribution function related to the volume scattering 

coefficient.  Although the dimensionless scattering function will remain constant regardless of 

the sediment sample distribution, given it is only a function of sediment size and frequency, its 

impact on the magnitude of the volume scattering coefficient will vary based on the volume size 

distribution function.  For example, particles with large diameters extending beyond the limits of  

Rayleigh scattering will have more of an impact on the volume scattering function based on the 

higher magnitude of the dimensionless scattering function in comparison to smaller sized 

particles.  However, if only few particles of these larger diameters are present within the sample, 

their impact on the volume scattering function will be reduced due to the low magnitude of the 

volume size distribution function.  Evidence of this behavior can be seen in Figure 2-5 for 

acoustic operating frequencies of 120 kHz and 200 kHz given a theoretical grain size 

distribution, also shown in Figure 2-5.  Generally, larger grain sizes have an increased effect on 

the magnitude of the volume scattering coefficient.  However, the volume scattering coefficient 

decreases as a function of grain size beginning at approximately 3.5 mm – 4 mm when the 

acoustic operating frequency is equal to 120 kHz.  This is due to the decrease in the volume 

distribution function at larger grain sizes outweighing the increase in the dimensionless 

scattering function, which limits the effect of the dimensionless scattering function on the 

volume scattering coefficient. 
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Figure 2-5. Theoretical volume size distribution function and volume scattering coefficient. 

 

 

As a result, theoretical predictions of backscatter are determined by conversion of 

Equation 10 to its decibel equivalent; 

 

 𝑆𝑏 = 10 log10 𝑚𝑠. Equation 17 
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 CHAPTER 3 

 

3 PHYSICAL MEASUREMENTS 

 

Sediment samples, acoustic Doppler current profiler (ADCP) observations, underwater 

stereo photography, and SBES backscatter observation data sets were acquired to evaluate the 

frequency dependence of seafloor backscatter strength, and the mechanisms believed to control 

this dependence, within the sand wave field in Portsmouth Harbor on 1 October 2014.  With the 

exception of the sediment samples, data related to the sand wave field was collected during the 

high magnitude current of a flood tide to capture the dynamic current driven properties of the 

seafloor.  Sediment samples within the sand wave field were collected by divers at slack tide 

prior to flood tide, for diver safety. The ADCP and stereo photography data sets were collected 

via a tripod system (Figure 3-1) deployed on site by divers.  Acoustic observations of the gravel 

field were also collected during the survey period.  Stereo imagery related to the gravel field was 

collected after the survey period upon retrieval of the system from the sand wave field. 
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Figure 3-1. Tripod system deployed in the sand wave field containing stereo camera system and ADCP current 

profiler (not pictured). 

 

3.1 Physical Setting 

The survey line selected for acoustic data collection, passed over both sand wave and 

gravel fields located in Portsmouth Harbor.  Seafloor bedforms and sediment grain sizes in both 

areas were relevant to acoustic operating frequencies between 100 kHz – 250 kHz corresponding 

to physical acoustic wavelengths of 6 mm to 15 mm.  The transect was approximately 600 m 

long, and is outlined by the orange line in Figure 3-2. 
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Figure 3-2. Survey transect through sand wave and gravel field. 

 

  Both sand wave and gravel field locations had been sampled extensively prior to data 

collection and noted for their consistency of sediment grain size distribution from multiple 

different sampling cruises [Ward and McAvoy, 2014].  The sand wave field consisted of very 

poorly sorted to moderately well sorted, slightly granular medium sands with high shell hash 

content.  This classification was made from sediment samples with grain size distributions that 

ranged from grain diameters of 0.0625 mm to 4 mm with an overall mean grain size of ~0.5 mm.  
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The larger grain sizes (0.707 mm to 4 mm) were generally comprised of shell hash and were 

responsible for a significant portion (~20%) of the samples.  The gravel field consisted of very 

poorly sorted sandy pebble gravels or pebble gravels.  Grain size diameters in the gravel field 

ranged from 0.0625 mm to 32 mm with an overall mean grain size of ~12 mm.  Video data 

screen grabs taken from sediment sampling cruises found in Figure 3-3 provide visual 

interpretation of the seafloor composition at each major site. 

 

Figure 3-3. Screen grab video data of sand wave and gravel field.  Images from the sand wave field are found in the 

left panel and images from the gravel field are found in the right panel.  Note that in the top left image, the camera is 

above the seafloor.  The camera scale present in each image is roughly 0.5 m2. 

 

Current Observations 

The presence of strong tidal currents in Portsmouth Harbor was also of particular interest 

in the region of the sand wave field due to the smaller grain size composition and high 
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probability of sediment transport.  Tidally influenced sediment transport would result in a 

composition change of the seafloor that would possibly lead to a change in the overall statistics 

of the seafloor roughness spectrum.  Changes in the roughness spectrum would affect the 

theoretical prediction of seafloor backscatter related to small-roughness perturbation theory 

discussed in Chapter 2.1.  Therefore, an ADCP current profiler (1200 kHz RDI Workhorse 

Sentinel) was deployed via the tripod system within the sand wave field to characterize the 

magnitude and direction of the current during the survey period utilized for comparison to 

sediment transport theory provided by Felzenburg [2009].   

The tripod system was deployed on the eastern periphery of the sand wave field at 

approximately 43.067° N, 70.704° W, (Figure 3-2) utilizing an A-frame and winch system.  

Current observations from the ADCP were truncated to 6:34 PM UTC through 10:14 PM UTC to 

synchronize results to acoustic backscatter observations.  The truncated time period in which 

data collection occurred is outlined in Figure 3-4. 

 

Figure 3-4. Time series of tide elevation during the 24 hour period surrounding the field experiment. Yellow dots 

indicate the start and stop periods of data collection [NOAA, 2015]. 
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ADCP current speed and direction were recorded from 1.55 m above the bottom to the 

free surface of the water during a flood tidal cycle and are presented in Figure 3-5.  Average 

depth of the water was computed to be 13.3 m by the ADCP over the survey period. 

 

Figure 3-5.  Time-series of ADCP current speed in m/s and direction is degrees.  The nominal sea surface is at 0 m 

and the tripod was deployed at ~12 m.  Depths are shown as negative numbers on the y-axis.  Direction of the tide 

was north flowing represented by 0°/360°. 

 

The time series of the ADCP current profile shows an increase in current speed with 

height above the bottom.  Maximum current speeds of ~55 cm/s closest to the seabed, were 

reached at the beginning of the survey and decayed to approximately zero by the end of data 

collection.  Comparison of the current profile data to subset sections of flood tide data collected 

by Felzenburg [2009] (Figure 3-6), also on the eastern periphery of the sand wave field, 

suggested that adequate current velocities to initiate incipient motion of the sediment were 

reached during the survey period. 
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Figure 3-6. Time-series of ADCP current speed (in cm/s) and direction (in degrees) for all bins, corresponding to 

1.03 to 8.83 m above the bottom.  Flood currents are north-flowing (dark blue/red in the bottom image) and ebb 

currents are south flowing (green) [Felzenburg, 2009].  Flood current events are outlined by black boxes. 

  

Maximum current speeds closest to the seabed, during flood tide events were ~54 cm/s 

according to Figure 3-6.  Felzenberg [2009] predicted levels of shear stress from near bottom 

current velocities that exceeded the critical threshold for incipient motion based on the size 

distribution of the sediment and current velocity profiles within the sand wave field.  The 

combination of consistency in current profile data and grain size distribution estimates from data 

sets collected for this study to data sets provided by Felzenburg [2009] and Ward and McAvoy 

[2014] added confidence to the assumption that sediment in the sand wave field was in fact in 

motion during high current velocity periods of the acoustic survey. 
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3.2 Data Collection and Results 

Stereo Imagery Data: Surficial Roughness Scattering 

An underwater stereo photography system was also deployed with the tripod system to 

collect simultaneous imagery data within the sand wave field during the SBES survey to provide 

quantitative description of the surficial roughness of the seafloor needed as input to the 

roughness scattering model.  Stereo imagery data was also collected in the gravel field following 

the acoustic survey.  Divers assisted in the deployment of the tripod system to ensure proper 

positioning of the camera’s field of view (FOV) perpendicular to the current direction.  

Positioning of the stereo camera system was important to avoid local scouring effects from the 

instrumentation itself if the current were to flow parallel to the tripod structure.  Two HackHD 

cameras, separated by a baseline of 40 cm, at a fixed focal length of 1 m from the bed, were used 

to construct the stereo camera system.  The stereo camera system was mounted to a weighted 

tripod by a cantilevered arm that extended 1 m beyond the structure.  The cantilevered arm was 

supported by aluminum piping structures angled at 30° that were attached to the tripod itself 

(Figure 3-7). 
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Figure 3-7. Tripod system with mounted stereo camera system. 

 

GoPro Eye of Mine underwater stereo cases were used to house each camera and were 

mounted rigidly to the tripod system as shown in Figure 3-8.  Small LED light panels were used 

as a light source to illuminate the seafloor and enhance image quality. 

 

Figure 3-8. Close-up view of cameras and LED light panels rigidly mounted to cantilevered arm attached to the 

tripod. 
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The cameras were tilted at an angle of 10° with respect to the horizontal axis to ensure 

overlap of the seafloor within the FOV of each camera during acquisition of the images. The 

overlapped section of the FOV was used to recreate 3D representation of stereo image pairs.  

Two 4.00 millimeter 80° (diagonal FOV) camera lenses were used, allowing for an acquired 

combined FOV of approximately ~1 m2 (Figure 3-9).  The cameras recorded images at a rate of 

six pictures per minute over the course of a 4-hour survey period, totaling 1,325 stereo pairs. 

 

Figure 3-9. Illustration showing overlap FOV of stereo camera system due to the 10° tilt of each camera towards the 

center of the baseline. 

 

The stereo camera system was also calibrated before its use in data collection to account 

for lens distortion.  The calibration process was carried out by divers in situ during deployment 

of the system.  This was done to guarantee minimal changes in each cameras’ orientation from 

the start of the calibration process to the end of data collection.   

Diver calibration duties consisted of holding a 1 m2 black and white checkerboard pattern 

(Figure 3-10) within the FOV of the cameras to collect unique images of the calibration target.  

The checkerboard pattern was created using PowerPoint ensuring a uniform pattern of 50 mm 

alternating black and white squares.  It was printed and laminated before being attached to a 1/4” 
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thick sheet of aluminum.  After the process was complete, the divers moved the tripod system 

away from the calibration site to the top of a dune where the seafloor was undisturbed. 

 

 
Figure 3-10. Stereo camera calibration target. 

 

The stereo camera system was calibrated to correct for lens distortion evident Figure 

3-11.  This distortion was corrected in order to construct three dimensional point clouds, or 

digital elevation models (DEM) from a given stereo image pair necessary in determination of the 

roughness spectrum.  Using a tool box provided by the California Institute of Technology 

[Bouguet, 2013] calibration image pairs were used to develop correction parameters for both left 

and right images of the data set.  Correction parameters were then used in conjunction with the 

program LensCorrect, developed at the Center for Coastal and Ocean Mapping/Joint 

Hydrographic Center (CCOM/JHC), to remove the curve effects caused by the lens [private 
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communication].  Straight lines were drawn across corrected images to verify the calibration 

process and the removal of lens distortion before being applied to the data set.  An example of 

this process can be seen in Figure 3-11.   

 
Figure 3-11. Example of uncorrected and corrected calibration images taken from stereo imagery data set.  The 

straight yellow line that is collinear with the connection of black and white squares verifies the removal of curved 

lens distortion. 

 

DEM’s are generated by matching corresponding points common to each image of a 

stereo image pair [Lyons et al., 2002].  This process becomes possible following the 

transformation of a given set of stereo images to a common plane, known as rectification.  The 

rectification process determines the transformation of each image’s plane, such that conjugate 

epipolar lines become collinear and parallel to one of the image axes [Lyons et al., 2002].  

Rectification reduces the computational work load on DEM generation from a two dimensional 

search process to a one dimensional search process [Lyons et al., 2002].  Parameters relevant to 

this process were also determined by the toolbox provided by Caltech. 
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Software developed by the University of Stuttgart, Germany was utilized to perform both 

rectification and automatic stereo-correlation for each corrected image pair [Rothermel et al.].  

Automatic stereo-correlation is the process of determining the position of corresponding points 

on two images to generate a DEM [Lyons et al., 2002].  A technique known as area based 

matching was used to complete automatic stereo-correlation.  Area based matching searches a 

sub-window within a larger window within a given stereo pair, until correlation between two 

points is maximized.  The two points that correspond to the maximum correlation are considered 

the same point in each image [Lyons et al., 2002].  This process is repeated until the entire image 

has been searched, and a DEM has been created.  The DEM can be considered as a bathymetric 

map of each stereo pair. See appendix for post processing details. 

DEM results from the sand wave field were first compared to large scale MBES results 

from Felzenburg [2009] to verify stereo image processing techniques generated accurate results.  

The stereo camera system was positioned roughly on top of a sand dune, thus the larger scale 

bedforms from the MBES data were expected to compare relatively well to the stereo imagery 

data.  Large bedforms evident in MBES data ranged from 10 cm to 50 cm in height [Felzenburg, 

2009], which were comparable to DEM results of the single sand dune visible within the FOV of 

the stereo cameras.   The sand dune decreased from 22 cm in elevation to 13 cm in elevation over 

the course of the survey.  Elevation change of the large bedform at 15-minute intervals during 

the most dynamic part of the survey period (~ 6:35 PM UTC – 8:00 PM UTC; Low Tide – 2:42 

PM UTC, High Tide – 8:54 PM UTC ) is shown in Figure 3-12.  Changes in elevation of the 

sand dune imply sediment motion due to tidally influenced currents within the sand wave field as 

suggested by Felzenburg [2009]. 
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Figure 3-12. Elevation profiles (right) derived from DEM results (left).  Warm colors denote deeper sections of the 

bedform in each DEM.  Elevation change represents the difference from the lowest section of the bedform profile to 

the highest. 
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Total elevation change of the sand dune over the entire survey period is shown in Figure 

3-13.  The bedform experienced a net decrease in elevation of approximately 7 cm. 

 

Figure 3-13.  Elevation profiles of large bedform observed by the stereo camera system at the start of the survey 

(top) and the end of the survey (bottom).  A total elevation change of ~7 cm was recorded. 

 

The roughness spectrum of each DEM was computed applying the techniques outlined in 

Chapter 2.1.  However, each spectrum was calculated by averaging horizontal slices taken from 

25 individual sub spectra of each DEM (Figure 3-14) in place of a single horizontal slice through 

the complete spectrum.  This was done to prevent the dominant effects of low frequency 

bedforms present in the complete spectrum of each DEM due to larger bedforms such as the sand 

dunes and sand ripples located in the FOV of the stereo camera system.  The maximum 

wavelength of the acoustic signal was only 15 mm (0.015 m), whereas the sand dunes ranged 

from 3 m – 5 m in wavelength and ripples were approximately 0.20 m in wavelength 
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[Felzenburg, 2009].  Therefore, scattering effects from larger bedforms were negligible in terms 

of the acoustic data and filtered out of the stereo imagery data.  

 

Figure 3-14. Illustration of example calculation of roughness spectrum for stereo imagery data collected in the sand 

wave field. (A) Division of DEM into 25 evenly spaced sub sections. (B) Corresponding sub section of DEM 

highlighted in grey in the upper left hand corner of (A).  (C) 2D spectrum of (B) where the black line represents the 

horizontal slice taken from the spectrum equivalent to 1D integration of the 2D spectrum. 

   

Although the roughness scattering model assumes the seafloor was isotropic [Jackson and 

Richardson, 2007], horizontal slices over the 2D spectrum were of interest due to the mounted 

orientation of the sonar transducers.  The beam of each SBES was subject to scattered returns 

from the horizontal orientation of the spectrum.  Directionality of bedforms present on the 

seafloor is recognized by pronounced directionality of the central peak in a 2D spectrum. [Briggs 
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et al. 2005].  If any directionality was present in the data collected, it was accounted for by 

applying this methodology. 

It is also important to recognize that prior to application of the 2D-FFT, DEM’s were fit 

to a plane to remove any trends in the data and gridded to 2 mm spacing to ensure uniformly 

spaced data within the DEM matrix. A Hanning window was also applied to each DEM prior to 

application of the 2D-FFT to mitigate spectral leakage effects.  Spectral leakage can be attributed 

to the finite size of data segments used in this analysis [Lyons et al., 2002].  A Hanning window 

was chosen for its low sidelobe levels and fast falloff rate and can be defined as, 

 
𝑤(𝑛) = cos2 [

𝑛

𝑁
] = 0.5 [1.0 + 𝑐𝑜𝑠 [

2𝑛

𝑁
𝜋]] , 

 

𝑛 =  −
𝑁

2
, … , −1,0,1, … ,

𝑁

2
. 

Equation 18 

The Hanning window belongs to the 𝐶𝑜𝑠𝛼(𝑋) family of windows, which are dependent on the 

parameter 𝛼 [Harris, 1978].  As 𝛼 increases, the first sidelobe level decreases from the peak of 

the main lobe, which improves effects on spectral leakage.  However, as 𝛼 increases, the 

mainlobe of the window  increases, resulting in a loss of frequency resolution.  For a Hanning 

window, where 𝛼 = 2, sidelobe levels falloff at a rate of 18 dB/octave while maintaining a 

relatively narrow mainlobe.  The highest sidelobe level for a Hanning window is -32 dB from the 

peak of the main lobe, whose equivalent noise bandwidth equates to 1.5 frequency bins [Harris, 

1978].   

Results of the roughness spectrum were compared when applying a Blackman-Harris 

window to the data set, rather than a Hanning window.  The comparison was made to ensure bias 

effects from spectral leakage were at a minimum regardless of window choice.  The first side 
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lobe level of the Blackman-Harris window was significanlty lower than that of the Hanning 

window at -92 dB falling off at a rate of 6 dB/octave [Harris, 1978].  However, the main lobe of 

the Blackman- Harris was wider than that of the Hanning window at 2 frequency bins [Harris, 

1978].  Comparison of the roughness spectrum computed using either window proved to vary by 

only a few hundredths of a decimal place.  This result confirms that spectral leakage effects were 

mitigated equally by either window choice and the data was not biased uniquely by either 

window. 

A total of 1,325 spectra were computed from stereo imagery data over the sand wave 

field.  The behavior of the slope of the roughness spectra, was evaluated independently at the 

Bragg wavenumber in log-log space, corresponding to both the upper and lower frequency bands 

of acoustic data collected.  The lower band of frequencies corresponded to a resolution range of 

~7 mm to ~10.5 mm.  The upper band frequencies corresponded to a resolution range of ~5 mm 

to ~6 mm, after the analysis window was cutoff at 225 kHz (𝐾 = 1,333 𝑟𝑎𝑑/𝑚).  This 

restriction was applied due to the behavior of resultant spectra lines leveling out at frequencies 

beyond this frequency range.  The cutoff region describes the beginning of the noise floor of the 

system where data at higher frequencies becomes unreliable.  The noise floor was most likely 

caused by high frequency noise near the edges of the 2D spectrum.  The cutoff point is 

highlighted in Figure 3-15. 
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Figure 3-15. Example roughness spectrum that exhibits behavior of leveling out beyond 225 kHz (K = 1,333 rad/m). 

 

Inspection of individual slope values calculated from each unique spectrum in both upper 

and lower frequency bands (Figure 3-16) revealed consistency throughout the data set, 

suggesting spatial stability of the seafloor related to the surficial roughness.  Although the 

seafloor composition appeared to change by visual inspection of the stereo imagery, roughness 

spectrum results did not.  Slope values in each frequency band varied by only a few tenths in 

magnitude when averaged in time over 3-minute intervals.   
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Figure 3-16.  Evaluated slopes of roughness spectra for both lower (left) and upper (right) frequency bands.  The 

black line indicates a 3-minute rolling filter of the data in each panel. 

 

However, slope results appear noisy due to the high variability of individual spectra and 

the short range of frequency bands at which each spectra was evaluated.  Variation in slope from 

consecutive spectra at each frequency band was influenced by subtle changes in spikes inherent 

to individual spectra evident in Figure 3-17.  The spikes were caused by an increase in energy 

within the spectrum at the corresponding wavenumber.  As a result, approximately 7% of slopes 

in the upper frequency band and 1% in the lower frequency band were calculated positive, 

despite the overall trend of each spectrum possessing a downward sloping behavior.    

 

Figure 3-17.  Example of two individual spectra calculated from corresponding DEM’s. Slopes calculated in both 

upper and lower frequency bands are noticeably different in each spectrum. Note the positive slope calculation in the 

upper frequency band shown in the right panel of the figure. 
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Due to the consistency of the slope results and the high variability of individual spectra, 

the resultant spectral exponent required to determine a theoretical prediction of backscatter based 

on the roughness scattering model, was calculated for each frequency band based on the slope 

evaluated from all spectra averaged in time.  The resultant slope value and corresponding 

spectral exponent for each frequency band can be found in Table 3-1.  Graphical representation 

of the results is shown in Figure 3-18. 

Table 3-1. Average slope and corresponding spectral exponent values for roughness spectrum over the sand wave 

field. 

Lower Frequency Band (100 - 150 kHz) Upper Frequency Band (170 - 225 kHz) 

Slope  Spectral Exponent, γ2 Slope  Spectral Exponent, γ2 

-2.5 3.5 -1.4 2.4 

 

 

Figure 3-18. Resulting average roughness spectrum over the sand wave field.  The solid black lines indicate the 

linear regression fit of the spectrum at each corresponding frequency band. 
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Applying the results from Table 3-1 to Equation 9 suggested that the theoretical seafloor 

backscatter response computed from data collected over the sand wave field would increase 

proportional to frequency according to 10 log10 𝑓0.5 for the lower band of frequencies and 

10 log10 𝑓1.6 for the upper band of frequencies.  The theoretical prediction of backscatter for 

each frequency band is shown in Figure 3-19. 

 

Figure 3-19. Theoretical backscatter prediction for sand wave field produced by roughness scattering model. 

 

 Theoretical predictions of backscatter based on the roughness scattering model were also 

calculated for data collected over the gravel field.  An example DEM from the gravel field is 

shown in Figure 3-20. 
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Figure 3-20. DEM example derived from stereo imagery collected in the gravel field. 

 

No current data was collected over the gravel field, therefore sediment transport analysis 

was not done to predict incipient motion of the sediment.  However, the assumption was made 

that the gravel field remained spatially uniform in time and roughness spectrum statistics would 

not change.  The assumption was made based on the larger sediment composition derived from 

grain size distribution statistics provided by Ward and McAvoy [2014].  Grain size ranged from 

4 mm – 33 mm within the gravel field.   

Results of individual slopes calculated from individual spectrum derived from images 

collected in the gravel field possessed similar characteristics to those in the sand wave field.  The 

data appeared noisy due to peaks in individual spectra, yet consistent varying by only and few 

tenths in magnitude over 3-minute interval averages (Figure 3-21). 
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Figure 3-21. Evaluated slopes of roughness spectra for both lower (left) and upper (right) frequency bands.  The 

black line indicates a 3-minute rolling filter of the data in each panel. 

 

Final results pertaining to the roughness spectra (i.e. slopes and spectral exponents) from 

data collected over the gravel field were computed after averaging together all individual 

roughness spectra in time.  Slope and spectral exponent values for upper and lower frequency 

bands are found in Table 3-2.  The corresponding roughness spectrum related to the results in 

Table 3-2 is shown in Figure 3-22. 

Table 3-2.  Average slope and corresponding spectral exponent values for roughness spectrum over the gravel field. 

Lower Frequency Band (100 - 150 kHz) Upper Frequency Band (170 - 225 kHz) 

Slope  Spectral Exponent, γ2 Slope  Spectral Exponent, γ2 

-2.3 3.3 -1.7 2.7 
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Figure 3-22. Resulting average roughness spectrum over the gravel field.  The solid black lines indicate the linear 

regression fit of the spectrum at each corresponding frequency band. 

 

Applying the gravel field results to Equation 9 suggested that the seafloor backscatter 

response from the lower band of frequencies would increase proportional to frequency according 

to 10 log10 𝑓0.7 and 10 log10 𝑓1.3 for the upper band of frequencies.  The theoretical prediction 

of backscatter for each frequency band is shown in Figure 3-23. 
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Figure 3-23. Theoretical backscatter prediction for gravel field produced by roughness scattering model. 

 

Sediment Samples: Discrete Inclusion Scattering 

Sediment samples were also collected by divers on site of the tripod system deployed 

within the sand wave field.  Parameters specific to the sediment samples were used in 

conjunction with the discrete inclusion scattering model described in Chapter 2.2 to generate a 

theoretical prediction of backscatter to be compared to acoustic observations.  The sedimentary 

composition of the gravel field was not ideal for comparison of acoustic backscatter results to the 

discrete inclusion scattering model.  Divers manually collected grab samples from the top 1.5’’of 

sediment of a ~10 in2 area using their hands.  A total of two samples were collected behind the 

tripod system (Figure 3-24) to ensure an untouched sample area where the stereo imagery was 

collected. 
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Figure 3-24. Top view illustration of tripod system describing sediment sample collection site. 

 

Grain size analysis procedures were conducted both before and after shell hash was 

dissolved from each sample to quantitatively describe the shell hash content by means of grain 

size.  Samples were processed twice to ensure repeatability following standard sieve and pipette 

procedures described by Folk [1980].  Shell hash content was dissolved from each sample by 

periodically adding 10% HCl solution to the samples over a span of 4 days.  Approximately 40 

ml of HCl were added to each sample daily.  Sample statistics for grain size distribution data 

were calculated using logarithmic Folk and Ward [1957] graphical measures implemented by 

GRADISTAT grain size analysis software [Blott and Pye, 2001]. 

Results from grain size analysis of the sediment are found in Table 3-3 and are consistent 

with findings from Ward and McAvoy [2014].  Sediment samples prior to HCl digestion were 

classified as moderately well sorted, slightly gravelly medium sand with high shell hash content.  

Similarly, samples post digestion were classified as moderately well sorted slightly gravelly 

medium sand.  However, the total sample weight decreased from 17% - 22% following digestion 
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of shell hash, suggesting a high percentage of shell hash content.  Major decreases in class 

weight percentage can be seen in phi sizes between -2 and 0.5 (4 mm – 0.707 mm), implicating a 

majority of the shell hash content was present in these class sizes.  An increase in weight at phi 

sizes 3, 3.5, and 4 (0.125 mm, 0.088 mm, 0.0625 mm) post digestion can be explained due to the 

expedited breakdown of the quartz sand upon exposure to the 10% HCl solution.  The addition of 

weight at these phi sizes was small compared to the overall weight of the phi classes of interest 

containing shell hash.  These sets of statistics were not used in the determination of theoretical 

backscatter strength based on inclusion model scattering but calculated to give a general idea of 

the amount of shell hash content within each sample. 

Table 3-3. Grain statistics from Portsmouth Harbor sediment samples utilizing Folk and Ward [1957] logarithmic 

method.  Skewness and kurtosis are dimensionless parameters and mean and median grain size are in units of 𝜙, 

where 𝜙 = −𝑙𝑜𝑔2(𝑚𝑚) 

Sample ID Mean, 𝜙 Median, 𝜙 Sorting, 𝜙 Skewness Kurtosis 

1.A 1.076 (0.47 mm) 1.133 0.690 -0.217 1.147 

1.B 1.067 (0.48 mm) 1.124 0.687 -0.214 1.155 

1.A no shell 1.206 (0.43 mm) 1.215 0.517 -0.060 0.977 

2.A no shell 1.215 (0.43 mm) 1.239 0.581 -0.132 0.972 
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Figure 3-25. Grain size distribution by weight of sediment samples shown in left panel.  Histograms on the right 

panel show difference in class weight between samples pre- and post- HCl digestion (total sample weight w/ shell – 

total sample weight w/o shell).  Therefore a positive reading in weight difference signifies higher concentration of 

shell hash at the respective grain size.  The highlighted green boxes indicate grain sizes where shell hash was visible.  

 

Grain size distribution statistics from Sample 1.A, with shell hash included, were used as 

input to the inclusion scattering model discussed in Chapter 2.2.  The class weight distribution 

was converted to volume size distribution by Equation 14 allowing for calculation of the seabed 

backscattering coefficient by Equation 10 (Figure 3-26). 



50 

 

 

Figure 3-26. Normalized volume distribution function of sample 1.A. 

 

The theoretical prediction of backscatter by the inclusion model assuming the volume 

size distribution curve in Figure 3-26, is shown in Figure 3-27.  Acoustic parameters of the 

sediment, individual grains, and water, needed as input to the discrete inclusion scattering model, 

were taken as those described in Ivakin [2004] from the SAX99 site [Thorsos, 1999] and were as 

follows: 𝜌 =
2𝑔

𝑐𝑚3, 𝑐 = 1.7
𝑘𝑚

𝑠
, 𝛿 = 0.01 (sediments); 𝜌𝛼 =

2.7𝑔

𝑐𝑚3, 𝑐𝛼 = 5.7
𝑘𝑚

𝑠
, 𝛿 = 0 (individual 

grains); and 𝜌𝑤 =
1𝑔

𝑐𝑚3, 𝑐𝑤 = 1.5
𝑘𝑚

𝑠
 (water).  The SAX99 site was comprised of similar 

sedimentary composition compared to the sand wave field as described by Richardson et al. 

[2001].  Both sites consisted of predominately moderately well-sorted quartz sand with the 

presence of shell hash.   
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Figure 3-27. Inclusion model backscattering results.  Values reported for Sb on the y-axis are insignificant due to 

normalization of 𝑚𝑠 based on lack of input parameters.  The shape of the curve remains significant for analysis. 

 

Absolute backscatter levels reported in Figure 3-27 were insignificant when comparing 

them to acoustic backscatter observations due to the offset in amplitude of 𝑚𝑠 based on the 

estimate of acoustic sediment input parameters utilized with Equation 10.  Estimation of such 

parameters still provided an accurate re-creation of the theoretical backscatter prediction with 

respect to frequency and was only offset in amplitude.  Figure 3-28 shows an example of an 

offset in only amplitude caused by alteration of sound speed and density of the sediment volume 

and individual grains.  
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Figure 3-28. Backscatter predictions from inclusion model showing magnitude shift due to variation in sediment 

acoustic properties, density and sound speed.  The shift in amplitude between the two curves is due to an increase of 

sediment and particle densities of 500 kg/m3 and sound speeds of 500 m/s, respectively.    

 

The slope of the curve remains of significance in comparison to acoustic backscatter 

observations and is ultimately controlled by the volume size distribution function.  The presence 

of discrete inclusions, such as shells and coarse sand particles, are the critical scatterers within 

the distribution which control the shape of the backscatter response due to their relative size to 

the corresponding wavelengths of acoustic operating frequencies [Ivakin, 2004]. 

Evolution of scattering strength as predicted by the discrete inclusion scattering model 

from various volume size distribution functions is shown in Figure 3-29.  As larger particle 

diameter sizes are removed from the volume size distribution, the magnitude of the slope 

evaluated at both frequency bands converges.  Convergence of slope occurred for both frequency 

bands after the volume size distribution function was reduced to grain sizes between 1.4 mm to 
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0.25 mm.  This behavior suggests that the larger particles of the grain size distribution control the 

response of the discrete inclusion scattering model.  As particles larger than 1.4 mm are added to 

the volume size distribution, the magnitude of the slope related to the response of the discrete 

inclusion scattering model begins to diverge. 

 

Figure 3-29. Comparison of predicted scattering strength of inclusion model with variable volume size distribution. 

  

To make comparisons to acoustic backscatter data collected during the SBES survey, the 

slope of the theoretical backscatter curve produced from the discrete inclusion model, utilizing 

the full volume size distribution indicated by the dark blue line in Figure 3-29, was evaluated at 

the upper and lower frequency bands where acoustic data was collected.  Resultant slopes 

estimated at the two frequency bands were evaluated with a polynomial fit in log-log space to 

develop a relationship between the expected rate of increase in backscatter with increasing 

frequency.   This analysis suggested backscatter would increase proportional to 10 log10 𝑓2.21 for 

the lower frequency band and 10 log10 𝑓1.49 for the upper frequency band.  Graphical results of 

the theoretical backscatter response and the linear regression of the upper and lower frequency 

bands is shown in Figure 3-30. 
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Figure 3-30. Inclusion model scattering backscatter response with line of best fit on upper and lower frequency 

bands. 
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 CHAPTER 4 

 

4 ACOUSTIC DATA COLLECTION AND RESULTS 

 

4.1 Logistics of Acoustic Measurements 

A SBES survey was conducted between the hours of 6:34 PM UTC and 10:14 PM UTC 

on 1 October 2014.  Seafloor backscatter measurements were collected at a grazing angle of 45° 

perpendicular to the direction of vessel travel.  Two unique Kongsberg SBES models, an ES120-

C and an ES200-CD, were utilized in collection of seafloor backscatter.  The ES120-C and 

ES200-CD were circular ‘piston’ transducers each with a 1-way beamwidth of 7°, evenly divided 

into four quadrants.  Each transducer was interfaced to a prototype Simrad wideband transceiver 

(WBT), allowing for collection of broadband seafloor backscatter.  A 2.05 ms linear frequency-

moduluated (LFM) pulse was utilized for each transducers’ transmit signal.  The transmit signal 

associated with the ES120-C model covered a frequency range of frequencies from 95-160 kHz, 

while the signal associated with the ES200-CD model covered a frequency range of 160-260 

kHz.  Frequencies from ~100 kHz - 150 kHz and ~170 kHz - 250 kHz were analyzed for this 

work.  The range of useable frequency per each transducer was limited by distortion at the ends 

of each broadband signal. 

4.2 Acoustic Processing Methods 

Acoustic processing methods were separated into two different processes, calibration and 

field processing, with the addition of common split-beam processing techniques applied to each 

method.  The results from the calibration process were used to apply to the field data to account 
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for any offset in measurements observed by either SBES system.  Split-beam processing 

techniques were applied to each acoustic processing method to accurately determine the location 

of respective targets within the beam of the transducers. 

Split-Beam Processing 

 For any given return signal from a target within the water column, the location of that 

target within the beam of the transducer must be accounted for to truly determine the strength of 

the return signal.  If a desired discrete target is off the center of the beam i.e. the beam’s 

maximum response axis (MRA), the acoustic response from the target will appear weaker 

because less sound is returned to the transducer when outside of this axis.  The same applies to 

an extended target, such as the seafloor, where only part of the returned seafloor response is 

coincident with the transducer’s MRA.  Therefore, determination of the along-track and across-

track phase angles associated with a return signal is required to either predict a target’s angle 

within the beam of the transducer or determine the section of a return signal located on the MRA.  

Burdic [1991] provides split-aperture processing techniques which can be directly applied to 

either situation.  

Four separate quadrants within each SBES system are recorded separately during data 

acquisition, and summed coherently to form the receive signal described in Equation 23.  The 

electrical phase difference between pairs of the quadrants can then be used to estimate the angle.  

Pairs of quadrants are defined by the transducers’ roll and pitch planes.  Utilizing the match 

filtered outputs of Equation 23, which are defined as 𝑠𝑚𝑓,𝑖(𝑡) =  𝑠𝑖(𝑡)⨂𝑠𝑜
∗(−𝑡), where the 

subscript 𝑖 represents quadrants one through four of the transducers.  The electrical phase angles 

for each system can then be computed as, 
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𝜓𝑎𝑙𝑜𝑛𝑔 =  𝑡𝑎𝑛−1

𝐼𝑚{(𝑠𝑚𝑓,1 + 𝑠𝑚𝑓,2)(𝑠𝑚𝑓,3 + 𝑠𝑚𝑓,4)
∗
}

𝑅𝑒{(𝑠𝑚𝑓,1 + 𝑠𝑚𝑓,2)(𝑠𝑚𝑓,3 + 𝑠𝑚𝑓,4)
∗
}
, Equation 19 

  
 

 
𝜓𝑎𝑐𝑟𝑜𝑠𝑠 =  𝑡𝑎𝑛−1

𝐼𝑚{(𝑠𝑚𝑓,1 + 𝑠𝑚𝑓,4)(𝑠𝑚𝑓,2 + 𝑠𝑚𝑓,3)
∗
}

𝑅𝑒{(𝑠𝑚𝑓,1 + 𝑠𝑚𝑓,4)(𝑠𝑚𝑓,2 + 𝑠𝑚𝑓,3)
∗
}
. Equation 20 

The combined phase angle is then calculated by, 

 
𝜓 = √𝜓𝑎𝑙𝑜𝑛𝑔

2 + 𝜓𝑎𝑐𝑟𝑜𝑠𝑠
2  . Equation 21 

The combined phase angle was used to sort the calibration data necessary to determine the 

overall calibration coefficient as a function of frequency for each SBES system.  The across ship 

phase angle was used in bottom detect methods associated with the acoustic filed data discussed 

later in this chapters.  

Scattering from a Single Discrete Target: Sonar Calibration 

Prior to use in the field, each SBES system was calibrated aboard the UNH R/V Coastal 

Surveyor utilizing the same transducer mount and, WBT configuration used during collection of 

the field data.  The objective of the at-sea calibration was to understand the frequency response 

of each transducer system necessary to estimate target strength (TS) of the seafloor, which is 

then converted to seafloor backscattering strength, 𝑆𝑏.  The calibration process consisted of 

swinging a 38.1 mm tungsten carbide sphere through each systems’ four quadrants while 

recording data for a standard sphere calibration as described by Foote, et al [1987].  The 

scattered pressure response, 𝑝𝑠 from the sphere, received by a transducer is treated as the 

response from a single discrete target at a range 𝑟, as a function of time, 𝑡.  This can be written as 

the convolution of the ideal transmit signal, 𝑠𝑜, the impulse response from the transmit 
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transducer, ℎ𝑡𝑟𝑥, the impulse response of the medium of travel, ℎ𝑝 , and the impulse response of 

the discrete target, ℎ𝑡𝑟𝑔; 

 𝑝𝑠(𝑡) =  𝑠𝑜(𝑡 − 𝑡𝑜)⨂ ℎ𝑡𝑟𝑥⨂ℎ𝑝⨂ℎ𝑡𝑟𝑔 , Equation 22 

   

where 𝑡𝑜 is the arrival time of the transmit signal from the target [Weber, 2015].  The scattered 

pressure response from Equation 22 is then received by a receive transducer and converted to a 

receive signal by the additional convolution of the impulse response from the receive transducer, 

ℎ𝑡𝑟𝑟; 

 𝑠(𝑡) =  𝑠𝑜(𝑡 − 𝑡𝑜)⨂ ℎ𝑡𝑟𝑥⨂ℎ𝑝⨂ℎ𝑡𝑟𝑔⨂ℎ𝑡𝑟𝑟 . Equation 23 

The convolution of ℎ𝑡𝑟𝑥 and ℎ𝑡𝑟𝑟 can be combined to ℎ𝑡𝑟 =  ℎ𝑡𝑟𝑥⨂ℎ𝑡𝑟𝑟 due to the fact that the 

receive and transmit transducer are the same.  Because of the broadband frequency nature of this 

work, the Fourier transform of Equation 23, is computed and described as Equation 24, 

 
𝑆(𝑓) =  ∫ 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 = 𝑆𝑜(𝑓)𝐻𝑡𝑟

𝑒−2𝑎𝑟

𝑟2
𝐻𝑡𝑟𝑔

𝑇
2⁄

−𝑇
2⁄

 
Equation 24 

 

where  𝑆𝑜(𝑓) is the Fourier transform of the ideal transmit signal, 𝐻𝑡𝑟 is the Fourier transform of 

the combined impulse responses of the transmit and receive transducer, and 𝐻𝑡𝑟𝑔 is the Fourier 

transform of the impulse response of the target.  The limits of the integral in Equation 24 are 

equal to the length of 𝑠𝑜(𝑡), in time, 𝑇.  Integration over the entire length of the transmit signal 

ensures that the analysis covers the complete scattered response of the target.  Propagation losses 

due to spherical spreading and absorption are calculated by 
𝑒−2𝑎𝑟

𝑟2 , where 𝑎 is the absorption 

coefficient in nepers/m and 𝑟 is the range to the target in meters. 
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 The frequency dependent backscattering cross section of a discrete, deterministic target is 

defined by, 

 𝜎𝑏𝑠(𝑓) =  |𝐻𝑡𝑟𝑔(𝑓)| 2. Equation 25 

 

Together, the measured response, 𝑆(𝑓), of a target with a known frequency dependent 

backscatter response, 𝜎𝑏𝑠(𝑓),  can then be used to calculate a calibration offset for the system; 

  
𝐶(𝑓) =

|𝑆(𝑓)|2

𝜎𝑏𝑠(𝑓)

𝑟4

𝑒−4𝑎𝑟
. Equation 26 

To increase the signal to noise ratio of the received signal, a match filter can be applied utilizing 

the ideal transmit signal, 𝑠𝑜.  This is done by multiplying Equation 24 by the complex conjugate 

of the Fourier transform of the ideal signal, 𝑆𝑜
∗(𝑓), 

 
𝑆𝑚𝑓(𝑓) =  𝑆𝑜(𝑓)𝑆𝑜

∗(𝑓)𝐻𝑡𝑟

𝑒−2𝑎𝑟

𝑟2
𝐻𝑡𝑟𝑔. Equation 27 

The frequency dependent calibration factor then becomes, 

 

𝐶(𝑓) =
|𝑆𝑚𝑓(𝑓)|

2

𝜎𝑏𝑠(𝑓)

𝑟4

𝑒−4𝑎𝑟
. Equation 28 

Equation 28 is then sorted as a function of combined phase angle, 𝜓, and fit to a 3rd  order 

polynomial.  Phase angles were normalized by  𝜓𝑛𝑜𝑟𝑚 =  
𝜓𝑓𝑐

𝑓⁄  , where 𝑓𝑐 is the center 

frequency of the system, and 𝑓 is the frequency.  This normalization was made under the 

assumption that the beamwidth was inversely proportional to frequency.  The 3rd degree 

polynomial fit was applied to the data for 𝜓𝑛𝑜𝑟𝑚 ≤ 1.6 radians.  The resultant 3rd order 

coefficient, that represents the intercept of the polynomial fit at 𝜓 = 0, was applied as to the 

field data as the frequency dependent calibration coefficient.  A return signal associated with a 
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phase angle equal to zero corresponds to the section of the return on the transducer’s MRA.  The 

offset related to each SBES is shown in Figure 4-1.  The difference between the two curves, the 

dashed being the modeled response of the sphere and the solid being the raw sonar response from 

the sphere, represents the calibration offset. 

 

Figure 4-1. Results of 3rd order polynomial fit to 38.1 mm tungsten carbide calibration sphere (solid black lines).  

The dashed lines are the estimated target strength of the 38.1 mm tungsten carbide calibration sphere. 

 

Scattering from an Extended Target: Seafloor Response 

When examining the response of the seafloor received by the transducer, it is important 

to note that the response is now considered random.  Equation 22 directly applies to this scenario 

with the exception that ℎ𝑡𝑟𝑔 is no longer the impulse response of a single deterministic target, but 

a random extended target.  The received scattered pressure from an extended target is recorded 

identical to that of a discrete target signal, but post processing techniques are altered to account 

for the random extended nature of the target [Weber, 2015].  

When applying the Fourier transform to the received signal, similar to Equation 24, the 

scattered pressure must first be multiplied by a window function, 𝑤(𝑡).  The window function is 

non-zero over the time duration for which the received scattered pressure will be analyzed.  The 
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duration of the window function can be found by dividing the length of the receive signal by the 

sampling frequency.  Applying this in the frequency domain results in the convolution of the 

extended target version of Equation 24 with the Fourier transform of the window function 𝑊(𝑓), 

 𝑆(𝑓) =  𝑆𝑜(𝑓)𝐻𝑡𝑟
𝑒−2𝑎𝑟

𝑟2 𝐻𝑡𝑟𝑔⨂𝑊(𝑓). Equation 29 

 According to Harris [1978], the addition of the convolution term can be treated as the 

incoherent processing gain for an extended target, such as the seafloor.  It is equivalent to 

multiplying by √𝑇, where 𝑇 remains the length of the ideal signal in seconds.  Equation 29 can 

then be written as, 

 
〈|𝑆(𝑓)|2〉 = 𝐶(𝑓)

𝑒−4𝑎𝑟

𝑟4
〈|𝐻𝑡𝑟𝑔(𝑓)|

2
〉 𝑇, Equation 30 

where the brackets 〈    〉 indicate an ensemble average, and 〈|𝐻𝑡𝑟𝑔(𝑓)|
2

〉 𝑇 is the target strength 

(TS) of the seafloor.  TS is computed by the product of the backscattering cross section, 𝜎(𝑓), 

and the ensonified area, 𝐴.  Equation 30 is then re-written as Equation 31,  

 

𝜎(𝑓) =  
〈|𝐻𝑡𝑟𝑔(𝑓)|

2
〉 𝑇

𝐴
=  

〈|𝑆(𝑓)|2〉

𝐶(𝑓)

𝑟4

𝑒−4𝑎𝑟

2𝑠𝑖𝑛𝜃𝑖

𝑐𝑇𝜃𝑒𝑞𝑟
 Equation 31 

where 𝜃𝑖 is the grazing angle, 𝑐 is the sound speed in m/s, and 𝜃𝑒𝑞 is the equivalent beamwidth.  

The ensonified area 𝐴, which applies to measurements taken at grazing angles beyond normal 

incidence, is quantified as a rectangular area of the seafloor encompassed by the beam, where 

𝜃𝑒𝑞𝑟 accounts for one side of the rectangle and 
𝑐𝑇

2𝑠𝑖𝑛𝜃𝑖
 accounts for the other [Lurton, 2010].  

Similar to the previous section, a matched filter can also be applied to the receive signal in which 

Equation 31 becomes, 



62 

 

 

𝜎(𝑓) =   
〈|𝑆𝑚𝑓(𝑓)|

2
〉

𝐶(𝑓)

𝑟4

𝑒−4𝑎𝑟

2𝑠𝑖𝑛𝜃𝑖

𝑐𝑇𝜃𝑒𝑞𝑟
. Equation 32 

Equation 32 is converted to backscatter strength in units of decibels by Equation 33, 

 𝑆𝑏(𝑓) = 10𝑙𝑜𝑔10(𝜎(𝑓)). Equation 33 

 

4.3 Observations of Seafloor Backscatter 

Backscatter observations were collected over the sand wave field and gravel field 

following the survey transect outlined in Figure 4-2. 

 

Figure 4-2. Survey transect through sand wave and gravel field. 
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Both SBES systems operated at a ping rate of 1 ping per second.  Over the 4-hour survey 

period, coincident with a flood tide event, the vessel made a total of 43 passes over the sand 

wave and gravel fields. 

Sand Wave Field 

  Data collected over a ~100 m stretch along the survey line, centered over the location of 

the tripod system (50 m stretch on either side of the tripod), were used to evaluate the response 

of the seafloor as a function of time and frequency.  Each 100 m pass contained approximately 

30 pings from each SBES system.  The seafloor was assumed to be relatively uniform over this 

section of the transect by inspection of bathymetry data provided by Felzenburg [2009].  

Verification of this assumption was done by calculating the average scattering strength of 25 m 

sections along the 100 m stretch (Figure 4-3).     
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Figure 4-3.  Stability check of acoustic data across the 100 m transect centered about the tripod.  Each colored line 

represents a 25 m section of the 100 m line. 

 

Results from each 25 m section proved to be nearly identical, verifying the assumption 

that the seafloor was relatively uniform in the sense of an acoustic backscatter response over the 

100 m stretch. 

In calculating the backscatter response in Figure 4-3 as well as subsequent results, 

amplitude and phase bottom detect methods were used for each data ping of the raw match 

filtered output to determine the section of the received signal needed to calculate the bottom 

backscatter strength along each transducers’ MRA.  A maximum amplitude detect was first 

performed to locate the general position of the seabed return.  A zero-crossing phase detect 

described by Lurton [2010] was then used to accurately determine the exact range to the seabed 

coincident with the transducers’ MRA, needed to calculate 𝑆𝑏(𝑓).  In reference to Figure 4-4, the 
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top plot represents one ping of the raw match filtered output needed for a maximum amplitude 

detect.  The portion of the signal outlined in black identifies the area of the signal used to locate 

the local maximum, which is assumed to be the return from the seabed.  The middle plot 

represents the across ship phase angle.  The magenta dot marks the location of the zero crossing 

point and the location of the seabed within the received signal along the MRA.  The bottom plot 

is the corresponding along ship phase angle. 

 

Figure 4-4. Graphical representation of the bottom detect methods used in determining the range to the seabed and 

section of received signal coincident on the MRA. 

 

Figure 4-5 presents example results of bottom detects over a small section of the survey 

line.  The magenta dots common to each plot mark the seafloor coincident with the MRA of the 

transducer in the top plot and a zero-value across ship phase angle in the bottom plot. 
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Figure 4-5. Echogram and across ship phase angle response over a small section of seafloor from the acoustic 

survey.  Magenta dots represent phase angle bottom detect results outlining the seafloor in the top plot and 𝜓𝑎𝑐𝑟𝑜𝑠𝑠 = 

0 in the bottom plot. 

 

Seafloor backscattering strength was then calculated using Equation 32 and Equation 33 

and its amplitude was evaluated as a function of time to analyze the stability of the backscatter 

response over the survey period.  The stability of the measurements was analyzed because of the 

dynamic nature of the survey environment.  Sediment transport analysis indicated incipient 

motion of the sediment occurred during periods of high current velocity.  A single frequency 

from both upper and lower frequency bands was examined for temporal stability.   

Figure 4-6 shows that the backscatter was relatively stable over the course of the survey 

period for both upper and lower frequency bands.  At either frequency, the observed scattering 

strength varied minimally by only 1 dB – 2 dB. 
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Figure 4-6. Backscatter data as a function of time over the sand wave field showing stability of scattering strength 

throughout the duration of the survey.  Magnitude of the current is shown in the bottom plot to emphasize the 

dynamic environment of the survey area. 

 

Stability in the backscatter response throughout the survey period mirrored that of the 

roughness spectrum discussed in Chapter 3.2.  Therefore, backscatter was averaged in time, over 

all survey passes and analyzed as only a function of frequency (Figure 4-7).  At the lower 

frequencies, the scattering strength increases proportional to frequency according to 

10 log10 𝑓1.03.  At the upper frequency band, this relationship changes to an increase in 

scattering strength proportional to 10 log10 𝑓0.33.   The decrease in the slope of the backscatter 

response by frequency occurs between the gap in data and suggests a change in the seafloor 

scattering mechanism controlling the scattering. 
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Figure 4-7. Average bottom backscattering strength over each survey pass as a function of frequency.  Dashed black 

lines indicate the linear regression of each frequency band. 

 

In comparison to both scattering models described in Chapter 2.1, the acoustic 

observations showed no relationship to either presumed scattering mechanism.  The linear 

regression of each theoretical prediction of backscatter overlaid on the acoustic data from the 

scattering model results outlined in Chapter 3.2 revealed that neither model was a good 

descriptor of the backscatter response observed over the sand wave field (Figure 4-8). 
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Figure 4-8. Acoustic backscatter results compared to theoretical predictions of backscatter from roughness and 

inclusion scattering models. 

 

Gravel Field 

 Acoustic backscatter observations of the gravel field were also compared to the 

roughness scattering model described in Chapter 2.1.  Results from 43 survey passes along a 

~325 meter section (90 pings) over the gravel field were used to compare the frequency response 

of the acoustic data to the frequency response of the theoretical prediction of backscatter.  A 

stability check of the backscatter results from the gravel field over the length survey period 

revealed that the backscatter remained relatively consistent in time varying by 1 dB – 2 dB 

(Figure 4-9). 
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Figure 4-9. Backscatter data as a function of time over the gravel field showing stability of scattering strength 

throughout the duration of the survey.  Magnitude of the current is shown in the bottom plot to emphasize the 

dynamic environment of the survey area. 

 

 Similar to that of the acoustic data, the backscatter observations from the gravel filed 

were averaged in time and evaluated as only a function of frequency in comparison to the 

roughness scattering model. 
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Figure 4-10.  Data to model comparison of backscatter observations from the gravel field compared to the roughness 

scattering model. 

 

 Data to model comparisons showed that the roughness model, similar to that of the sand 

wave field data, was not consistent with the backscatter observations recorded over the gravel 

field. 
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 CHAPTER 5 

 

5 DISCUSSION 

 

The goal of this work was to identify the seafloor scattering mechanism that was the main 

contributor to calibrated acoustic backscatter observations collected in Portsmouth Harbor, New 

Hampshire, USA.  The acoustic backscatter observations were collected over a sand wave field 

and a gravel field at a broad range of frequencies between 100 kHz to 250 kHz.  The study was 

driven by the lack of a basic understanding to what seafloor scattering mechanisms control 

acoustic backscatter at high frequencies, which ultimately limits our ability to accurately classify 

the seafloor using common acoustic remote sensing tools (e.g., shallow-water multibeam 

echosounders.)   

Given the nature and environmental characteristics of the survey site, the two seafloor 

scattering mechanisms studied in correlation to the variability of acoustic backscatter 

observations were surficial roughness of the seabed and the presence of discrete inclusions.  Both 

sand wave and gravel field sites were of interest in relationship to the surficial roughness of the 

seafloor inherent at each location.  Roughness features were expected to correlate in physical 

size to the wavelength’s of acoustic operating frequencies (6 mm – 15 mm) being utilized in 

collection of acoustic backscatter.  The sand wave field was also of particular interest in support 

of the assumption that the presence of discrete inclusions was the possible driving mechanism 

behind acoustic backscatter observations at this location.  The sedimentary composition of the 
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sand wave field was predominantly medium sand with high shell hash content providing an ideal 

environment under this assumption. 

Independent data sets related to each seafloor scattering mechanism described, were 

collected and utilized as input to surficial roughness and discrete inclusion scattering models 

used to directly compare frequency dependent theoretical predictions of backscatter obtained 

from each model, to empirically observed acoustic backscatter.  Analysis of the comparison 

between the frequency response of theoretical predictions of backscatter and empirically 

collected observations was implemented under the assumption that it would best indicate the 

underlying seafloor scattering mechanism (i.e. surficial roughness, discrete inclusions) 

controlling the acoustic backscatter response.  Stereo imagery data sets were collected in both 

sand wave and gravel fields to quantitatively describe the surficial roughness of each site by way 

of the 2D roughness spectrum.  Parameters derived from the roughness spectrum were used as 

input to the roughness scattering model to generate a theoretical prediction of backscatter unique 

to the sand wave and gravel fields.   

A sediment sample data set was also collected within the sand wave field and subject to 

grain size analysis to provide the grain size distribution of the samples as input to the discrete 

inclusion scattering model.  Estimates of acoustic parameters (i.e., sound speed and density) 

related to the overall sediment sample and individual grains were made as necessary inputs to the 

model.  Estimates of such parameters effected the model in terms of its overall magnitude but not 

the frequency response, resulting in an accurate comparison of the theoretical prediction of 

backscatter to the acoustic observations as a function of frequency. 

Despite the dynamic nature of the survey environment, acoustic observations from both 

sand wave and gravel fields were relatively stable over the duration of the survey period, varying 
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slightly by only 1 dB to 2 dB.  Such a result was expected in the gravel field due to the large 

grain size distribution (4 mm to 33 mm) and static behavior of the sediment.  However, this 

result was unexpected within the sand wave field where current magnitude recorded during the 

survey period exceeded the threshold for incipient motion of the sediment.  Movement of the 

sediment bottom would infer a change in the roughness spectrum, which would alter the result of 

backscatter observations if they were indeed controlled by surficial roughness of the seafloor.  

Conversely, inspection of the individual roughness spectra computed from corresponding stereo 

image pairs over the course of the survey period were also relatively stable in time.  Sediment 

samples collected from the sand wave field also displayed temporally consistent behavior when 

compared to historically collected samples from the same area.  Grain size distribution mirrored 

the consistency of all other data sets in time. 

Upon inspection of the temporal stability of acoustic backscatter observations, roughness 

spectra in both gravel and sand wave fields, and sediment samples, comparison between the 

frequency response of acoustic backscatter observations and theoretical predictions of 

backscatter was made.  Roughness spectra, and acoustic backscatter observations from each site 

were averaged in time and analyzed solely as a function of frequency.  Results of time averaged 

acoustic backscatter overlaid by frequency dependent theoretical predictions of backscatter, 

derived from roughness and inclusion scattering models, is shown in Figure 5-1 for data 

collected over the sand wave field. 
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Figure 5-1. Acoustic backscatter results compared to theoretical predictions of backscatter from roughness and 

inclusion scattering models. 

 

 Comparison of the theoretical predictions of backscatter to empirical observations 

suggested that surficial roughness nor the presence of discrete inclusions were individually 

controlling the acoustic backscatter.  Similar results were seen related to the acoustic backscatter 

observations collected over the gravel field in comparison to theoretical predictions from the 

roughness scattering model as shown in Figure 5-2.  Acoustic backscatter results did not agree 

with the theoretical prediction of backscatter derived from the roughness scattering model.  This 

result suggested that the acoustic backscatter response from the gravel field was not 

independently controlled by the surficial roughness of the seafloor environment. 
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Figure 5-2.  Data to model comparison of backscatter observations from the gravel field compared to the roughness 

scattering model. 

  

Disagreement between acoustic backscatter results and acoustic scattering models was 

potentially caused by the limitation of data collection related to the stereo photography and 

sediment sample data sets.  In terms of the sediment sample data set, the discrete inclusion 

scattering model was shown to be sensitive to the presence of larger grain sizes, outlined by 

Figure 3-29.  As larger grain sizes were added to the volume size distribution, the slope of the 

theoretical backscatter response decreased at each frequency band.  The lack of convergence of 

the model with the addition of larger grain sizes suggests an uncertainty of the result.  If the 

sampling techniques utilized in the collection of the samples emitted larger grain sizes inherent 

to the sand wave field, the result of the theoretical prediction was potentially inaccurate.  Finer 

sampling techniques can be implemented to reduce uncertainty of the model. 
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Data to model discrepancies related to theoretical predictions of backscatter derived from 

stereo photography results and acoustic backscatter observations were potentially due to 

measurement noise inherent to the stereo photography system.  The slope of individual 

roughness spectra depicted in Figure 3-16 relative to the sand wave field, and Figure 3-21 

relative to the gravel field, were consistently noisy.  Noisy behavior suggested reduced accuracy 

of the results, specifically over the gravel field, where no change in the surficial roughness was 

expected.  The same assumption was true for the sand wave field at the end of the survey, when 

the current magnitude was reduced and the sediment became stationary.  Results of the 

roughness spectrum should have remained consistent in areas where the surficial roughness was 

expected to be unchanging.   

Future research aimed at improving upon the understanding of the driving seafloor 

scattering mechanisms behind acoustic backscatter observations should include considerations 

related to additional seafloor scattering mechanisms believed to effect the overall response of 

empirically observed acoustic backscatter.  The focus of this work was related to seafloor 

scattering mechanisms considered inhomogeneities at the water-sediment interface.  However, it 

has also been suggested that inhomogeneities within the sediment volume also contribute to 

variability in acoustic backscatter observations.  Such inhomogeneities include bioturbation 

[Pouliquen and Lyons, 2002], gas bubbles [Anderson and Hampton, 1980], and variations in 

porosity [Hines, 1990].  In addition, consideration directed towards analysis of the combination 

of seafloor scattering mechanisms related to the variability in acoustic backscatter should also be 

explored.  Further examination of the combination of the roughness scattering model and the 

discrete inclusion scattering model may potentially reveal that a combination of seafloor 

roughness and the presence of discrete inclusions were the controlling mechanisms of the 



78 

 

acoustic backscatter response over the sand wave field.  Additional analysis of multiple seafloor 

scattering mechanisms related to data collected over the gravel field may also reveal that the 

backscatter response was controlled by more than one seafloor scattering mechanism. 
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INTRODUCTION: 

 

The HackHD Stereo Camera System (HSCS) consists of three HackHD cameras and two 

LED light sources.  Two cameras are used as part of the stereo camera system and one is used as 

an observation camera.  The system is mounted to a sea tripod when used for deployment with a 

fixed focal length of 1 meter; ~1m x 1m field of view (FOV) in water.  The baseline of the stereo 

cameras is 40 cm and each is tilted inward at an angle of 10° from the horizontal.  All three 

cameras are programmed with an Arduino Uno controller to record images simultaneously. 
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SYSTEM OVERVIEW: 

 

Camera Specifications: 

Resolution: 1080P HD Video / 5MP or 9MP Still Photo 

Frame Rate: 30 FPS (frames per second) Video 

Coding: H.264 

Aspect Ratio: 16:9 

File Format: AVI Video / JPG Photo 

Storage: External microSD or microSDXC card (Supports SDHC cards with adapter) 

Lens: Interchangeable M12 Lens. Includes 2.5mm (EFL), F2.8, 160 degree (diagonal) wide 

angle lens 

Control Input: Single contact monetarily switch 

Video Output: Composite video 480P resolution 

Status Indicator Output: Single color LED driver 

Dimensions: 65mm x 40mm x 25mm LxWxH 

Power Supply: External 3.7V, 1100mAH minimum. 5V safe. 

Low battery procedure: 3.6V indicates low battery by faster LED blinking, 3.4V stops 

recording/turns off 

Power Output: 3.7V DC, 500mAH 

Working Temperature: -10degC to +45degC 

Storage Temperature: -20degC to +70degC 

 

Sensor:  
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Manufacture: Omnivision 

Sensor Size Format: 1/2.3 inch 

Number of Pixels : 9 mega pixels 

Pixel size: 1.75um x 1.75um 

Sensitivity: 960mV/lux-sec 

 

Figure 3.  HackHD camera dimensions. 

Stereo Camera Lens Specifications: 

4.0mm 80° F2.0 Lens HACKHD-LENS-018 

Focal Length: 4.0mm 

Back Focal Length: 6.26mm 

Format: 1/3", 1/4" 

Aperture: F2.0 

Angle of View: 80° , 64° 

Dimension: 14.0 x 15.5mm 

Weight: 5.5g 

Lens Construction: 4_4 
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Figure 4.  Lens used for each stereo camera. 

LED Light Specifications: 

White 30HP-LED Tectangle G4 Lamp 

Dimensions: 4.22cm(1.66") x 3.164cm(1.25") x 3.164cm(1.25") 
Base G4 Beam Angle 120 degree 

Comparable Wattage 20~25 Watts Current Draw @ Operating Voltage 115mA 

Dimmable Yes Efficacy 86 lm/w 

IP Rating Non-Weatherproof LED Quantity 30 LEDs 

LED Type 3528 SMD Lens Clear 

Lifetime 50000 Hours Lumen 120 Lumen 

Lumen Per LED 4 MCD Per LED 1300 

Millicandela 39000mcd Operating Temperature -30~+80 °C 

Oversize Yes Polarity Sensitive No 

Standards And 

Certifications 

CE/FCC/ROHS 

Compliant 
Storage Temperature -40~+90 °C 

Total Power 

Consumption 

1.4 Watts Type Bi-Pin 

Operating Voltage 

Range 

12V AC/DC 
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Figure 5. LED lights use with HSCS. 

Power Consumption: 

 

Figure 6.  Power Consumption of HSCS. 

 

Number of Pictures in SD Card (~7200 max.): 
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Figure 7.  SD Card memory estimation for HSCS. 
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POST PROCESSING METHODS: 

 

Calibration Process: 

*The calibration process can occur before or after imagery data collection but the cameras must 

remain in the same orientation during each process; calibration and data collection. 

1. Set stereo cameras in final resting position.  The back of the stereo camera’s case should 

be parallel with angle aluminum mounting hardware.  Stereo cameras must remain in the 

same position for both the calibration process and data collection. 

2. Take 10-12 pictures of 1m x 1m black and white checkerboard calibration target.   

 Stereo calibration images should be taken in the same medium as intended data 

collection medium.  To obtain images, place the calibration target underneath the 

HSCS with the numbered side up.  (This becomes important in calibration post 

processing)  Tilt the target in different orientations for each image to obtain 

suitable calibration images. 

3. Load images onto PC into separate folders for left and right calibration images. 

 Ex. Left Calibration Images | Right Calibration Images   

4. Run stereo calibration software that can be downloaded here: TOOLBOX_calib -   

http://www.vision.caltech.edu/bouguetj/calib_doc/  *It is important to calibrate each 

camera’s images separately but to remain consistent when selecting grid corners on 

image pairs. 

 Start two Matlab windows and open calib_gui.m from the TOOLBOX_calib 

library in each window. 

 Each window’s working directory should be the location of either the left or right 

calibration images.  When you run calib_gui.m, add its path to the Matlab path 

instead of changing directories.  

*THE FOLLOWING STEPS PERTAIN TO EACH MATLAB WINDOW AND 

SHOULD BE DONE SIMULTANEOUSLY!!! 

 After running calib_gui.m a GUI appears on the screen: 

 

 

 

http://www.vision.caltech.edu/bouguetj/calib_doc/
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 Select ‘Standard (all images are stored in memory)’ 

 A second GUI will appear on the screen: 

 

 Select the option ‘Read images’ and follow the steps that appear in the Matlab 

Command Window.  When complete a figure containing all calibration images 

should appear:   

 

*If a black space appears, that is because Matlab reads in the images chronologically based on 

their file name.  If one is missing, it replaces it with a black square and will be ignored for the 

remainder of the process. 

 

 Select the option ‘Extract grid corners’ from the GUI.  Follow the instructions in 

the Matlab Command Window. 

o wintx and winty  should be set to 38 for this system. 

o Enter ‘1’ to manually enter the number of squares. 

 SELECT THE SAME FOUR EXTREME CORNERS FOR BOTH LEFT AND 

RIGHT IMAGES. 

 Enter number of squares in X and Y directions. 
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 Enter 50mm for square size in dX and dY directions. 

 Enter ‘y’ to enter in initial guess for radial distortion.  For this system, start with -

0.25 and work from there.  The figure title will be ‘The red crosses should be 

close to the image corners’.  Entering an initial guess should achieve this. 

 

 Resulting red cross hairs should all be on intersecting black and white squares. 

 When all images have been process, a file called calib_data.mat will be created in 

the directory where the images are stored. 

 Return to the GUI and select the ‘Calibration’ option (calibration will occur and 

you should see something show up in the Matlab Command Window) then the 

‘Save’ option, which will create two files: Calib_Results.m and Calib_Results.mat 

 Rename each Calib_Results.mat file, Calib_Results_left.mat and 

Calib_Results_right.mat in each respective folder. 

 

5. Close one of the Matlab windows and open stereo.gui.m in the remaining window.  Run 

the script.  Be sure to add the path of each Calib_Results_* before selecting on options on 

the GUI that appears on the screen. 

 Select ‘Load left and right calibration files’ from the gui.  The Matlab Command 

Window will suggest file names for left and right calibration result files which 

were renamed in the last step. 

 Load the two files and then select ‘Run stereo calibration’ from the GUI. 

 Copy and paste results that appear in the command window to a text file and save 

for later use.  Save with the file extension *.slcp 

 Select ‘Exit’ from GUI. 

6. The calibration process is now complete. 

  



94 

 

Image Correction Process: 

The image correction process in done using the calibration file produced in the previous section 

in conjunction with the program LensCorrect.exe. (Yuri Rzhanov) 

1. Open the program LensCorrect.exe. 

2. On the top tab bar, select the option ‘Folder’ 

3. Browse your directory for the folder that contains the images you wish to correct. 

4. Drag and drop the *.slcp file created in the previous section into the LensCorrect.exe 

program. 

5. A window will pop up asking which set of parameters to use for the correction.  Select 

the option that correlates to the folder of images selected in Step 3; left or right. 

6. Click ‘Correct’.  Depending on the number of images you wish to correct, this may take a 

while.  The program will save the new corrected images in the same folder with an added 

–c at the end of the file name (e.g. Original filename: Picture1.JPG | Corrected filename: 

Picture1-c.JPG 

7. Close the LensCorrect.exe program. 
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Stereo Imagery 3D Reconstruction: 

This section will provide insight into creating 3D images and 3D point files from stereo image 

pairs.  First it will discuss creating *.las files from stereo image pairs, which contain x,y,z values, 

RGB values, etc. (see latest LAS Specification document for all data within *.las file.  It will 

then go over creating 3D images from the *.las and how to extract the data of interest from *.las 

files to *.txt files. 

Create *.las files from stereo image pairs using SURE.exe: (Yuri Rzhanov/ Han Hu) 

This process will be an outline for preparing a pair of stereo images.  When working with 

numerous stereo image pairs, writing a windows batch file to automate the process is highly 

suggested. 

1. Using both the left and right camera calibration parameters (*.slcp file), call the 

function prdori.m (by Han Hu) 

a. Input parameters: fx1 - left camera focal length x  

                fy1 - left camera focal length y 

              px1 - left camera principal point x 

              py1 - left camera principal point y 

              fx2 - right camera focal length x 

                                fy2 - right camera focal length y 

              px2 - right camera principal point x 

                py2 - right camera principal point y 

                                om - rotation column vector 

                                t - translation column vector 

 

2. Two 3 x 3 projection matrices will appear in the Matlab Command Window.  The 

first will be the left camera projection parameters and the second will be the right 
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camera projection parameters.  Copy each matrix into a separate text file and name 

them left.txt and right.txt, respectively. 

3. Create two folders called image and ori in a new directory. 

4. Put a pair of stereo images into the image folder.  Make sure they are corrected 

images (*-c.JPG) 

5. Copy and paste left.txt and right.txt into the ori folder and rename them the same 

name as their corresponding image. 

6. In a Windows Explorer window open in the directory of the image and ori folders, 

hold shift and right click to select ‘Open command window here’ 

7. Run SURE.exe in Windows Command Line: 

Sure.exe -img ./image -ori ./ori 

Note: To run SURE from any directory you want, you need to add the bin directory to 

your system path. 

8. A folder SURE is generated and the 3D point clouds are saved in SURE/3D_Points 

with *.las file extensions. 
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Extracting XYZ and RGB values from *.las using CloudCompare.exe: 

CloudCompare.exe is a free software that can be found on the world wide web and is used to 

reproduce 3D imagery from *.las files.  For this purpose, it will be used to convert *.las files 

to *.txt files containg XYZ and RGB values.  This method is useful for a small amount of 

images. 

1. Open CloudCompare.exe 

2. Drag and drop *.las file into program. 

3. Highlight cloud file in DB Tree.  The cloud file will be named pts_originalFilename - 

Cloud. 

4. Click file and save with *.txt file extension.  

5. Close CloudCompare.exe 

Extracting XYZ and RGB values from *.las using C++ programming API LASlib: 

LASlib is a C++ programming API that can be used to read *.las files and can be 

downloaded here: http://www.cs.unc.edu/~isenburg/lastools/  For this application we will use 

las2txt.exe. 

The website also provides README files for each one of its programs which can be helpful 

in understanding how to extract what is needed from each *.las file. 

This method is explained for a single *.las file but can be applied to a Windows batch file for 

batch processing of many images. 

1. Open a Windows Command Line window in the same directory as las2txt.exe by 

holding shift and right clicking.  Select the option ‘Open command window here’ 

2. Copy and paste *.las file of interest into the directory where las2txt.exe exists. 

(Similar to SURE.exe, adding this directory to your system path will allow you to run 

las2txt.exe from any directory.) 

3. On the Windows Command Line and run las2txt.exe. 

                            last2txt -i inputFILE.las -o outputFILE.txt -parse xyzRGB 

4. A text file is generated and places x,y,and z coordinates at the 1st, 2nd, and 3rd entry 

and the r, g, and b value of the RGB color as the 4th, 5th, and 6th entry of each line. 

  

http://www.cs.unc.edu/~isenburg/lastools/
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HSCS WIRING DIAGRAM: 

 

 

Figure 8.  HSCS wiring diagram. 
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PICTURE DETAIL: 
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