High Resolution Mapping of Morphologic Features and Seafloor Sediments of the New Hampshire and Vicinity Continental Shelf, Western Gulf of Maine

Larry Ward

Zachery McAvoy

Giuseppe Masetti

Rachel Morrison

University of New Hampshire

Center for Coastal and Ocean Mapping

Integrated Research on the NH Shelf and Coast

- Map the Surficial Geology of the NH Continental Shelf and Vicinity
 - Morphologic Features (Geoforms)
 - Surficial Sediments
- Assess Potential Sand/Gravel Resources
- Assess the Technical Characteristics of the New Hampshire Beaches
- Assess Sand Resource Needs for the New Hampshire Coast
 - Beach Nourishment
- Develop New Models and Techniques for Exploration of Sand and Gravel Deposits Using Acoustics and Ground Truth

Mapping the Surficial Geology of the NH Continental Shelf

- Over the Last Five Years Completed
 - High Resolution Surficial Geology Maps
 - Sand and Gravel Isopach Maps
- Based on an Extensive Database
 - WGOM Bathymetry and Backscatter Synthesis
 - Archived Sediment Database
 - 1400 Surface Sediment Analyses
 - 23 Vibracores (from the 80s)
 - ~1300 km of subbottom seismics (analog)
- Segmented in ArcGIS
 - Bathymetry and Backscatter
 - Bathymetric Derivatives
- Extremely Labor Intensive and Expensive

WGOM Bathymetry Synthesis - MBES @ 2m Grid (UNH CCOM: Paul Johnson)

- Shows Bathymetry at Best Possible Gridding
- New Bathymetry Added as it Becomes Available
- Frequently Being Updated and Upgraded
- Available via CCOM/JHC Web Site

https://maps.ccom.unh.edu/portal/apps/webappviewer/index.html

WGOM Backscatter Synthesis (UNH CCOM: Paul Johnson)

- Backscatter at 1.5 m Grid
- Based on 14 Surveys with Different Systems and Frequencies (300 and 400 kHz)
- Individual Surveys Re Processed and Merged Into a
 Mosaic for General Mapping
 Purposes (Qualitative)

http://ccom.unh.edu/gis/maps/WGOM_4m/

Substrate	Substrate	Substrate	Substrate	Substrate
Origin	Class	Subclass	Group	Subgroup
Geologic Substrate	Rock Substrate	Bedrock		
	Unconsolidated Mineral Substrate	Coarse Unconsolidated Substrate	Gravel	Boulder
				Cobble
				Pebble
				Granule
			Gravel Mixes	Sandy Gravel
				Muddy Sandy Gravel
				Muddy Gravel
			Gravelly	Gravelly Sand
				Gravelly Muddy Sand
				Gravelly Mud
		Fine Unconsolidated Substrate	Slightly Gravelly	Slightly Gravelly Sand
				Slightly Gravelly Muddy Sand
				Slightly Gravelly Sandy Mud
				Slightly Gravelly Mud
			Sand	Very Coarse Sand
				Coarse Sand
				Medium Sand
				Fine Sand
				Very Fine Sand
			Muddy Sand	Silty Sand
				Silty-Clayey Sand
				Clayey Sand
			Sandy Mud	Sandy Silt
				Sandy Silt-Clay
				Sandy Clay
			Mud	Silt
				Silt-Clay
				Clay

Adopted CMECS for Surficial Sediment Maps

Advantages: Groups Sediment Sizes

Helpful When Incomplete Data Coverage

Physiographic Characteristics of the Outer NH Shelf

Physiographic Characteristics of the NH Shelf

Legend

|Marine Modified Glacial Feature

Moraine

Ridge

_ Iceberg Scours

Bedrock Outcrop

Bedrock Border

Sediment Draped Bedrock

MegaclastaField Bedrock

Subaqueous Fan

Inlet

Marine Formed Feature

Ebb Tidal Delta

Shoal

Tombolo

Nearshore Ramp

Seafloor-Plain

Slope or Slope

Bedforms

Channel

Depression

///// Unverified

Jeffreys Ledge Iceberg Scours

Oriented NE-SW
1 to 5 m deep
Kms in length

Approximate
Position of Shoreline
During Lowstand
(-60 m)

Physiographic Characteristics of the Outer NH Shelf

Channel

Depression

Unverified

Physiographic Characteristics of the Inner NH Shelf

Legend

Examples of Modified Glacial Deposit and Associated Marine Shoals

Model for Development of Sand and Gravel Deposits (With Positive Relief)

CMECS Classification Substrate Group

Many of the Features
Found on the Inner Shelf
Can Be Traced Onshore

Nearshore
Ramp (Sandy)

Modified Glacial Deposits

Lessons Learned and the Way Forward

- Over the Last Five Years Completed
 - High Resolution Surficial Geology Maps
 - Sand and Gravel Isopach Maps
 - Provided Major Advance in Our Understanding of the NH Shelf
 - And Sand and Gravel Resources
- Extremely Labor Intensive and Expensive
- Most Work Done Via "Expert Opinion"
- Therefore, Need Different Approach to Map Complex Paraglacial Seafloor

Lessons Learned and the Way Forward

- Need Remote Sensing and Automated Approaches
 - Tried Before Using ArcGIS and Geocoder
 - Problems With Complexity of Seafloor
- Need Better Way to Identify Landforms and Segment Seafloor
- Presently, Conducting an Evaluation of the Utility of a New Algorithm Developed at UNH CCOM: BRESS

BRESS: Bathymetric and Reflectivity-Based Estimator of Seafloor Segments

- Preliminary Segmentation from Co-Located DEMs and Backscatter Mosaics
- Based on Principles of:
 - Topographic Openness
 - Pattern Recognition
 - Texture Classification

Ref.: G. Masetti, Mayer, L. A., and Ward, L. G., "A Bathymetry- and Reflectivity-Based Approach for Seafloor Segmentation", Geosciences, vol. 8(1). MDPI, 2018.

INPUTS: DEM and Backscatter Mosaic

Output: Landforms Output: Segments (Landforms With Similar

Textures)

BRESS Evaluation

- Assessing the Potential of BRESS to Help Define and Map Geoforms, and
- Identify Areas With Similar Sediments Based on Morphology and Reflectivity
- Using High Resolution MBES Surveys Conducted by CCOM
- Over 10 Surveys Conducted in a Variety of Seafloor Settings
- Conducted Extensive Field Campaign to Serve as Ground Truth
 - 85 Stations with Video and Bottom Sediments
 - 66 Stations with Video (Too Coarse to Sample)

Input to BRESS

- CCOM Summer Hydro: 2015
- MBES
 System:EM2040
- 300 kHz
- Gridding: 1meter

Initial Results

Geoforms Identified Relatively Well

Joined Segments
Agree with the Ground
Truth Very Well

Input to BRESS

- CCOM Summer Hydro: 2012
- MBES System: EM2040
- 300 kHz
- Gridding: 1meter

Initial Results

Geoforms Identified Relatively Well

But Impossible to Segment

Poor Agreement Between Joined Segments and Ground Truth

Input to BRESS

- CCOM Summer Hydro: 2003
- MBES System: EM3000
- 300 kHz
- Gridding: 1meter

Results of Initial BRESS Assessment

- Promising Results on Less Complex Seafloors
- Poor Results on Very Complex Seafloors
- Landform Analysis May Provide
 Automated Approach for Segmenting
 Geoforms (e.g., Bedrock Outcrops)
- By Merging Similar Landforms (e.g., Footslopes – See Arrors)

What's Next

- Improve Our Ability to Identify Geoforms and Surficial Sediments Using Acoustics
 - Bathymetry, Backscatter and Derivatives to Identify Form and Surficial Sediments
 - Continue Assessment of BRESS to Segment Seafloor
 - Assess ARA Analysis Using Theme Base
 - Along With Ground Truth
- Develop Conceptual Models of Features Likely to Contains Sand and Gravel (Marine Modified Glacial Deposits)

Acknowledgements

- UNH/NOAA Joint Hydrographic Center
 - (Award NA10NOS4000073)
- BOEM New Hampshire Cooperative Agreement
- University of New Hampshire Department of Earth Sciences
- New Hampshire Geological Survey
- New Hampshire Coastal Program