PROC. U.S. HYDRO. CONF.,, GALVESTON, TX, 21-23 MARCH, 2017

On Testing of Complex Hydrographic Data
Processing Algorithms

B.R. Calder and M.D. Plumlee

Abstract—Modern hydrography relies, more and more, on
complex algorithms to resolve the soundings generated by remote
sensing modalities, and to process those soundings into chartable
products. Algorithm quality assurance is therefore critical to the
integrity of the hydrographic effort.

At best, the algorithms used might be described in a published
paper, or possibly be available as a research code-base. More
often, however, they are integrated deep in proprietary code and
cannot be tested or verified without great effort. For algorithms
transitioned from research in one organization to operations in
another, there is no guarantee that the algorithm implemented is
the algorithm that was designed. And each new software release
demands effectively ab initio testing effort.

Using the CHRT algorithm as an example, a testing structure
is proposed. The structure consists of an XML-based definition
which packages the required data with the desired tests, and
allows for exact or approximate matching of results, with control
over tolerances. The XML-based output provides hierarchically
aggregated summaries of test success to assist in reporting with
level-of-detail control. Although intended for end user testing, the
structure has obvious benefits for developers, and acts, effectively,
as the algorithm’s definition: any implementation that passes the
conformance suite.

Index Terms—Algorithm Reliability, Testability, XML, CHRT

I. INTRODUCTION

OR at least the last decade, hydrographic practice has
become more and more reliant on complex algorithms
that are used to prepare the data for processing (e.g., motion
sensor trajectory estimation), assist with the data inspection
and quality control (e.g., depth estimation algorithms), or to
assist in chart product construction (e.g., automated contouring
and sounding selection). Given the safety requirement and
liability concerns that are attendant on hydrographic practice,
making sure that these algorithms operate appropriately is of
utmost import. Unfortunately, although these algorithms may
have been tested to some extent when they were being de-
veloped in a research environment or during implementation,
it is often difficult or impossible for the end user to be sure
that the software that they are delivered does what the original
inventor or developer intended. And with each new software
release each end user (or their organization) must individually
organize a repeated testing effort. This can be inefficient since
they cannot readily learn from each other, so the process can
be time consuming, resource hungry, or both.
In part this problem is a function of the complexity of the
algorithms used, but in part it is also engendered by the closed-
source ecosystem of hydrographic software. Although open-

B.R. Calder and M.D. Plumlee are with the Center for Coastal and Ocean
Mapping and NOAA-UNH Joint Hydrographic Center, University of New
Hampshire, Durham, NH 03824, U.S.A. (Contact: brc@ccom.unh.edu,
+1 603 862 0526)

source hydrographic software exists (notably the venerable, but
still actively developed, MBSystem! [1], although HydrOffice?
provides smaller tools for hydrographic practice [2], [3]) and
can be very powerful in tackling obscure and rare problems, it
is rarely used for production hydrographic practice. Similarly,
although it might be strongly encouraged, it is unlikely that
an end user or user group demanding that all algorithms be
published openly will meet with much success in the current
environment. For better or worse, most hydrographic data
processing algorithms are going to remain closed-source for
the foreseeable future.

Without the visibility of an open-source code-base, end
users must essentially take on trust that the algorithm is
operating correctly. While most, if not all, software vendors
conduct some level of testing of their source code during
development, this testing is very rarely demonstrated, reported,
or disclosed to the end user unless under restrictive agreements
with very large customers. In the special case of algorithm
developers that provide source for inclusion in a commercial
product, there is also very limited ability to probe, test, and
diagnose issues with the implementation after incorporation.
Any ability to guarantee correctness of the “as implemented”
algorithm is thereby compromised.

In addition, even when testing is done there is no guarantee
that all conditions of interest to a particular end user are
tested. For example, it might be time prohibitive to test with a
very large dataset, which means that bugs that only manifest
with large data volumes will be missed—which bugs are
particularly troublesome to surveys at plausibly useful scale.
Similarly, end users with more obscure sensors, or different
base working environments might find that their situation
is not in the software vendor’s testing scheme, leading to
discrepancies in behavior.

For the end user, there is a need to rapidly and easily test
algorithms in a standard manner, against agreed datasets and
test results, in the field. That is, that the software vendor
builds in the means for the user to run standard tests outwith a
GUI environment, with automated methods to capture, process,
sort, and report the results, verifying correct completion, or
assisting in diagnosing the location of any fault.

Such a method is proposed here. Based on the CHRT algo-
rithm [4], a method is outlined that takes an XML description of
the tests to be conducted, runs the algorithm under test through
a standard set of steps, and then compares the output against
the results from a reference system. The tests are structured
hierarchically so that groups of tests can have their results

Uhttp://www.ldeo.columbia.edu/res/pi/MB-System
Zhttp://www.hydroffice.org

aggregated, which allows detected faults to be rolled-up to
the highest level, providing an overview of the results while
still allowing the interested user to drill down for diagnostic
purposes. The algorithms used are by design suitable for large
datasets, and allow the results to be collapsed into a well-
controlled summary list when many faults appear, resulting in
reasonable behavior when there are numerous faults observed.
The test comparison algorithm also allows the test designer to
require exact matching of results between the implementation
under test and the reference implementation, or to allow for
small variations; warnings are issued for small differences,
and faults for those over the defined threshold. The result is a
scheme that allows the end user to confirm that the algorithm
as implemented is equivalent to the algorithm as intended.

This paper outlines the requirements for this method, and
then provides a specific example with CHRT, illustrating the
benefits of the proposed method with a specific fault discov-
ered during the development of the conformance test suite.
Some implications of adopting the proposed method are then
explored, in particular what it means to be a “conforming
implementation” under this regime.

II. REQUIREMENTS FOR TESTABLE ALGORITHMS

In order for an algorithm to be testable in the sense
described above, several conditions must exist; there are also
some requirements that support efficiency in testing. First and
foremost, the algorithm developer and software implementor
must agree that testability is a goal. It would be very difficult
to extend any test regime to the end user without support
within the application, for example by arranging the code so
that the algorithm can be driven directly (i.e., can be scripted)
rather than through a GUI interface, and that all of its inputs
can be exercised. Similarly, the software vendor must make
available the results of any processing in a useable format, for
example by writing the outputs in a standard format, even
if that is not the format normally used. In this regard, de
facto standards such as BAG? files [5] (or official standards
such as S-100 [7], or S-102 [8]) are to be preferred, but any
well-documented open file format could be used. Since this
requirement necessitates commitment of resources and dictates
part of the software architecture, its significance should not be
underestimated.

The algorithm designer must also provide for a testable
design: for the implementation to exposure the algorithm’s
control interfaces, they must first be exposable. Ideally, the
algorithm design would also provide for sub-modules to be
tested separately, although it might be difficult to expose sub-
components of the algorithm without requiring that the test
environment prepare a great deal of context. Most fundamen-
tally, however, there must be a reference implementation of
the “algorithm as intended” to which the final implementation
can be compared. How this is provisioned will depend on
whether the algorithm is developed internally or by an external
designer, and the particular form is not vital so long as it is
capable of providing an example set of results for given data

3http://www.opennavsurf.org

PROC. U.S. HYDRO. CONF., GALVESTON, TX, 21-23 MARCH, 2017

inputs, control parameters, and run script. Thus, a Python*
or MATLAB? reference implementation would be a functional,
if potentially inefficient, solution so long as the outputs can
be captured and distributed. The algorithm designer’s obliga-
tion is then to provide the test script, inputs, and expected
outputs for the desired tests, appropriately version controlled
if required so that conformance to a particular version of
the algorithm can be assessed. Making these results available
through a website or other electronic distribution medium is
preferred, since it allows end users to access them and run
their own verifications.

Simple provision of the test script, inputs, and outputs is
necessary but not sufficient for a functioning test suite: there
is a requirement for some software to run the tests, accumulate
the results, and report them to the end user in usable fashion.
Unit testing for software is a common industry practice, and
many frameworks (both open source and commercial) exist.
Tools such as CppTest®, GoogleTest’, and Boost.Test?
for specific languages (in this case C++) are available, while
some languages have “preferred” solutions such as unittest’
for Python. In most cases, however, these are designed to
provide detailed tests that are specific to developers and which
rarely have meaning to end users. Consequently, such testing
frameworks are not well suited to the end user-scale testing
envisioned here.

For end users, building the software required to conduct
the test would be difficult. It is possible to require that
end users install a development environment, but doing so
increases the perceived difficulty of conducting the tests and
therefore lessens the likelihood that they will be conducted.
A general requirement is therefore to provide pre-built tools
to conduct the test, and to ensure that input and outputs are
both human and machine readable. The scheme must also
provide for flexible specification of tests, for example by
allowing both strict checking of outputs (i.e., outputs that must
be bit-wise identical in reference and test implementations)
and approximate comparisons (i.e., outputs that may suffer
from numerical noise, but which are required to be within
some narrow range of difference between reference and test
implementations).

A defining characteristic of tests conducted for hydrographic
data is that they generally involve considerable data volumes.
Many algorithms are therefore the same computations applied
at many data points. Hydrographic data is also inherently
geospatial, and a geospatially-aware testing environment al-
lows for the test results to be summarized by area, leading to
better insight into possible causes of faults when they occur.
A useful end user test environment must therefore be able to
provide spatial context in the results, and to cope with large
numbers of near-identical output results without the reporting
becoming too voluminous to be useful. It must also aggregate
results in logical groups so that an overall summary can be

“https://www.python.org

Shttps://www.mathworks.com

Shttp://cpptest.sourceforge.net
https://github.com/google/googletest
8http://www.boost.org/doc/libs/1_63_0/libs/test/doc/html/index.html
9https://docs.python.org/3.6/library/unittest.html

CALDER & PLUMLEE: TESTING OF HYDRO. ALGORITHMS

presented to the end user that gives pass/fail status, but still
allows for more detailed analysis. This last, particularly, allows
the end user to communicate observed faults to the developer,
supporting diagnosis as well as detection.

Given these requirements, a separate, end user-distributable
test environment is necessary.

III. THE CHRT CONFORMANCE TEST SUITE

CHRT [4] is a computer-assisted depth estimation algorithm
that is a successor to CUBE [9]. CHRT augments CUBE
with large-scale data-adaptive variable resolution grids, and
incorporates lessons learned from more than a decade of using
CUBE in production environments.

A particular lesson from CUBE was the requirement for
testability after it was incorporated into commercial software
products. CUBE, first released to implementation in 2003, has
been licensed by over a dozen hydrographic data processing
software vendors. To spur adoption, the license for CUBE was
intentionally generous: licensees gain full access to the source
code without ongoing royalty costs, and can manipulate,
incorporate, adapt, adopt, and derive products from it without
restriction. While flexible, this model for technology transfer
resulted in a number of different implementation styles from
organizations that lightly wrapped the CUBE source code and
provided it to their customers, to those who essentially re-
implemented the algorithm fully.

A consequence of this model was that different implementa-
tions of the algorithm could, and did, provide different results
over the same data. As well as being frustrating and time
consuming for end users, this situation made it difficult to
determine whether observed issues with a particular dataset
were due to the algorithm itself, or the implementation. This
made it difficult to diagnose problems, and to offer concrete
advice on best practices.

To avoid this situation with CHRT, the algorithm was de-
signed to allow for better testability and algorithm visibility af-
ter incorporation into other code, in particular through the use
of a client-server design [10]. The licensing terms also ensure
that vendors are restrained from labelling their implementation
“CHRT” until and unless they are able to satisfy the testing
requirements for a particular version. Conformance with the
test suite does not guarantee that the algorithm is correct,
but it does guarantee that the algorithm-as-implemented is the
same as the algorithm-as-intended, at least to within the test
coverage of the conformance suite. The CHRT Conformance
Test Suite (CTS) was therefore designed to exercise the core
elements of the algorithm while following the general design
principles outlined in Section II. The basic outline of the
process is shown in the flow-chart of Fig. 1.

In Fig. 1, the left-hand column represents tasks undertaken
by the algorithm designer, while the right-hand column are
tasks that are run automatically by the CTS when the end
user starts a conformance test. When preparing the CTS, the
algorithm designer specifies the tests to be run by providing a
simple XML document, Fig. 2, which lists the tests required,
and any modifications of their default behaviors. (The tests
conducted and their relationship to the requirements outlined

Test Suite Reference Datasets
Manifest and CHRT scripts

Reference CHRT Vendor CHRT
implementation

implementation
I

Reference Analysis Vendor
outputs Configurations outputs
CHRT CTS CHRT CTS poir
analyze analyze
] T
Reference Vendor output Analysis |_|J

output Analysis

,| CHRTCTS

Key compare
O Distributed with CHRT CTS . |

O Created by vendor product at paint of use

O Created by CHRT CTS at point of use

Conformance Reports l_IJ

Fig. 1. Flow-chart for the CHRT Conformance Test Suite. Analysis of the
reference implementation is used to prepare the tests; the end user only runs
analysis on the test implementation, and then compares against the outputs
from the reference implementation.

<CHRT_CTS>
<AnalysisConfiguration>
<Setup>
<Testname>H11825</Testname>
<Description>CHRT Conformance Test for small Pacific dataset H11825</Description>
<Version>1.6.0</Version>
</Setup>
<Analysis>
<Scope type="Global"/>
<AnalysisComponents>
<Statistics>
<0rigin reference="SW" x="?" y="?" units="m">
<FieldTest field="x" tolerance_amt=".01"/>
<FieldTest field="y" tolerance_amt=".01"/>
</0rigin>
</Statistics>
<Mask/>
<DataDensity tolerance_amt="1.001e-5"/>
<ResolutionEstimate tolerance_amt="1.001e-5"/>
<AuxiliaryDetails/>
<DepthDetails>
<DepthEstimate tolerance_amt=".01"/>
<DepthUncertainty tolerance_amt=".01"/>
</DepthDetails>
</AnalysisComponents>
</Analysis>
</AnalysisConfiguration>
</CHRT_CTS>

Fig. 2. Example analysis configuration XML file for a particular dataset in
the CTS.

are considered following.) The reference implementation is
then executed, and the outputs are sent through the analysis
code to provide another XML file, Fig. 3, which specifies in
detail the results of the various tests. This XML analysis file is
then cached (this is the “Reference Output Analysis” in Fig. 1)
and made available to all end users through the CTS as the
standard to which all test implementations must demonstrate
conformance.

For the end user, the CTS contains two executables (which
are the same as those used by the CTS designer), one to analyze
algorithm outputs according to the XML definition file and
the other to compare two analysis XML files, the reference
analysis file (e.g., Fig. 3) for the chosen test dataset(s), and the

control files for the algorithm, which include a configuration
file for CHRT, a CHRT-language command list to control the
execution of the algorithm, an 0S command script to run the
test, and the source data. Given these, the software vendor
must make it possible to run their version of the algorithm
with the same inputs, generating another XML analysis file.
The CTS code then compares the two results, generating a final
XML document, Fig. 4, which details for each test specified
whether the two analyses agree or disagree. As can be seen in
Fig. 4, each entry has a binary “success” attribute indicating
whether the overall test was successful (the test is considered
successful if and only if all sub-tests were successful); sub-
entries then provide further detail. As suggested in Section II,
this allows the end user to verify a simple pass/fail for the test,
but allows the developers to investigate further the details of
any faults in order to diagnose the problem.

The analysis specification of Fig. 2 demonstrates a num-
ber of the outlined requirements for an end user testing
system. To allow for consistency of testing, the Setup
element provides simple versioning information, while the
AnalysisComponents element specifies the types of tests
that are to be conducted on the outputs of CHRT. Each sub-
element specifies a separate set of tests, so that for example the
Statistics test causes the code to compute basic statistics
of the outputs such as the origin location, size of output,
and spacing of the lowest-resolution cells in the output (in
CHRT, these are known as “SuperCells”), and so on. These
are very basic tests, but they are very easy to get wrong with,
for example, bad georeferencing information, or a mistake
in the implementation of CHRT’s georeferencing model. Sub-
elements can be simple, such as the Mask test, which simply
indicates that the default testing is to be done. Alternatively,
they can include modifications for the test to be done, as
seen in the DataDensity test. This specification indicates
that the data density computed in each SuperCell for the
test implementation must match the reference implementation
to within 107°m~2 (essentially the floating point accuracy),
but does not have to be exactly the same, as would be the
default case. Similarly, the Origin test specifies that particular
fields of the data element have to be tested separately, in this
case requiring that the georeferencing location has to match
to within 0.01 m. Tolerances and special conditions can be
specified generally in all of the tests, allowing the algorithm
designer the flexibility required to set up more nuanced test
conditions.

The analysis of Fig. 3 shows both capture of new informa-
tion and the ability of the algorithm to compactly represent
large-scale data, as required. After the analysis code runs,
information on what was done (Fileset and Producer ele-
ments) is gathered and preserved, allowing for better diagnos-
tics; the statistics ordered in the analysis configuration of Fig. 2
are also present. For the locations of SuperCell activity (Mask
element), estimated data density per SuperCell (DataDensity
element), and computation resolution (ResolutionEstimate
element), the algorithm computes a Base64!® representation
for each row of the respective 2D field in turn. In the case of

10https://tools.ietf.org/html/rfc4648

PROC. U.S. HYDRO. CONF., GALVESTON, TX, 21-23 MARCH, 2017

<CHRT_CTS>
<AnalysisSummary>
<Setup>
<Testname>H11825</Testname>
<Description>CHRT Conformance Test for small Pacific dataset H11825</Description>
<Version>1.6.0</Version>
<Fileset>
<Bag>serial_full_depth.bag</Bag>
<EarlyResolution>output_win_H11825_firstpass_res.txt</EarlyResolution>
<EarlyDepth>output_win_H11825_firstpass_depth.txt</EarlyDepth>
</Fileset>
<Producer>
<ImageName>analyze_d.exe</ImageName>
<Version>1.6.0</Version>
<CommandLine>analyze.exe AnalysisConfig_H11825.xml serial_full_depth.bag
output_win_H11825_firstpass_res.txt
output_win_H11825_firstpass_depth.txt</CommandLine>
</Producer>
</Setup>
<Analysis>
<Scope type="Global"/>
<AnalysisComponents>
<Statistics>
<0rigin reference="SW" x="673168.0" y="6181648.0" units="m">
<FieldTest field="x" tolerance_amt=".01"/>
<FieldTest field="y" tolerance_amt=".01"/>
</0rigin>
<Dimensions cols="113" rows="201"/>
<Spacing units="m" x="32" y="32"/>
<DatasetManifest>
<Dataset type="Node_Auxiliary" present="true"/>
<Dataset type="VR_Metadata" present="true"/>
<Dataset type="VR_Refinement" present="true"/>
<Dataset type="VR_Node" present="true"/>
<Dataset type="VR_Tracking_List" present="true"/>
</DatasetManifest>
<RefinementData>
<Finest>
<Spacing units="m" x="0.25" y="0.25"/>
<CellCount cols="128" rows="128"/>
</Finest>
<Coarsest>
<Spacing units="m" x="31.36" y="31.36"/>
<CellCount cols="2" rows="2"/>
</Coarsest>
<Cells total="3748391"/>
<DepthRange units="m" min="-979.73" max="3.56"/>
<UncertaintyRange units="m" min="0.00" max="10.75"/>
<HypothesisCountRange min="1" max="21"/>
<SampleCountRange min="1" max="755"/>
<HypothesisStrengthRange units="" min="0.000" max="3.947"/>
</RefinementData>
</Statistics>
<Mask format="Base64">""</Mask>
<DataDensity format="Base64SHA256"> " </DataDensity>
<ResolutionEstimate format="Base64SHA256">
<Base64SHA256 cols="113" rows="201">
<r>440W3NCFcUcIoHCmB89XDByo0DS/IpgUAdn819eNypk</r>
<r>1DwRYo+H4vwABUSCe@ENHFdZnzb2ZwCI0iQCMF8TOTA</r>
<r>DUqZYjql9P/0P8r87TaAogj5f2xIMPCKWEOwztrzrql</r>
<r>xDy7CtPRUHrMBd+yGVk3kICZSSCyqIPnQQEd3IBj/Ge</r>
<r>j08WluG0Xa91Yp+rGluuIidMOFIawl4FLB3UUyPpGfI</r>
<r>bEZ/9xDbILsWBiyUzFsdGhrBW6Lh8v1tz8fAKjGAFjY</r>
<r>/GvQimGo@hrPguuUmYKv87e+7DToNtKeh0tqpTYFrnGk</r>
<r>A8gGuUrfT4MMhFIQ2/2G7EVZshdfS17p@/s67GLWInU</r>
<r>fbc5+EwRSdJI1xMZp8w@BHbfuo2F fe/8+W3RUB5088bQ</r>
<r>7MRQ2H1vV63Ct8CH12cscPrMgwkymcoAlW3dj7aA6fM</r>
<r>/t2omb7DtwwNZfn8B884rdLCnCPNOre/nKe3bqDUc70</r>
<r>91cAG3F7 WWrhpNwWVou3PvepV1ReFUINILulfzGRc2gw</r>
<r>negQ9dzqc2DkAagLNy+QP+qtZYpP1I1XdREU1FOAHgM</r>
<r>vMQ9BeM7CcTMGpKwajdfWC1qdCCPpZdYhj z6/uaXK9w</r>
<r>Ldf1Q3bZyU7LtCkvfA2RV3ADMwsb63q11YMOGY r4dwd</r>
<r>adEBerpy8S5HVyYD rHNbFRGJ j 7MNVWL5Z5004YZNNgC</ r>
<r>Rly+GtUPQp/0v175Jp0qqpUCwm84sh] jIGK35ZXFVec</r>
<r>fq3L4ddAK+]j fTvpBFP/TzMOnU1Lg3rYWdeeWCk500s0</r>
<r>kCauPxWAPygQ4T41gn@7XJZ5idg+HQj JhRQSZOO2ROwW</r>
<r>8aZilc9T1dPtKSP8K0OgoQof54mAcHI1zZhpHYDf lvbg</r>

Fig. 3. Example (partial) analysis results from the CHRT reference implemen-
tation for the configuration in Figure 2. Note that many of the entries have
been collapsed, shown as a horizontal grey box with white ellipses, hiding
much of the detail here in order to show more of the entries.

the Mask element this is sufficiently small to simply store, but
for the other fields, an SHA256 cryptographic hash [11] of the
encoded data is generated, and then stored per row. This allows
the algorithm to test for differences between implementations
on a row-by-row basis, although in the case of the hashes it
does not allow for identification of which column in the row
differs if a fault is detected. Use of a hash limits the space
required to store the results from a row of the grid to a fixed
size, irrespective of the size of the grid.

Finally, Fig. 4 illustrates how the results of the CTS are

CALDER & PLUMLEE: TESTING OF HYDRO. ALGORITHMS

<CHRT_CTS>
<ConformanceSummary faults="22987" warnings="0" success="false">
<Setup>
<Testname>H11825</Testname>
<Description>CHRT Conformance Test for small Pacific dataset H11825</Description>
<Version>1.6.0</Version>
<Fileset>
<Bag>serial_full_depth.bag</Bag>
<EarlyResolution>output_win_H11825_firstpass_res.txt</EarlyResolution>
<EarlyDepth>output_win_H11825_firstpass_depth.txt</EarlyDepth>
</Fileset>
</Setup>
<Analysis faults="22987" success="false">
<Scope type="Global" success="true">
<FieldTest field="type" success="true"/>
</Scope>
<AnalysisComponents faults="22987" success="false">
<Statistics faults="4" success="false">
<Origin reference="SW" x="673168.0" y="6181648.0" units="m" success="true">
<FieldTest field="reference" success="true"/>
<FieldTest field="units" success="true"/>
<FieldTest field=" tolerance_amt=".01" success="true"/>
<FieldTest field="y" tolerance_amt=".01" success="true"/>
</0rigin>
<Dimensions cols="113" rows="201" success="true">
<FieldTest field="cols" success="true"/>
<FieldTest field="rows" success="true"/>
</Dimensions>
<Spacing units="m" x="32" y="32" success="true">
<FieldTest field="units" success="true"/>
<FieldTest fiel success="true"/>
<FieldTest field="y" success="true"/>
</Spacing>
<DatasetManifest success="true">
<SubElementTest check="Dataset" copy_field="type" success="true"/>
</DatasetManifest>
<RefinementData faults="4" success="false">
<Finest success="true">("</Finest>
<Coarsest success="true">(" </Coarsest>
<Cells total="3695518" faults="1" success="false">
<FieldTest field="total" success="false'"/>
</Cells>
<DepthRange units="m" min="-979.73" max="3.56" success="true">
<FieldTest field="units" success="true"/>
<FieldTest field="min" success="true"/>
<FieldTest field="max" success="true"/>
</DepthRange>
<UncertaintyRange units="m" min="0.00" max="8.86" faults="1" success="false">
</UncertaintyRange>
<HypothesisCountRange min="1" max="21" success="true">
</HypothesisCountRange>
<SampleCountRange min="1" max="677" faults="1" success="false">
</SampleCountRange>
<HypothesisStrengthRange units="" min="0.000" max="3.962" faults="1" success="false">
</HypothesisStrengthRange>
</RefinementData>
</Statistics>
<Mask success="true"> " </Mask>
<DataDensity tolerance_amt="1.00le-5" faults="925" success="false">
<Data cols="113" rows="201" faults="925" success="false">
<Details count="500" discarded="425">"</Details>
</Data>
</DataDensity>
<ResolutionEstimate tolerance_amt="1.00le-5" faults="824" success="false">
<Data cols="113" rows="201" faults="824" success="false">
<Details count="500" discarded="324">("</Details>
</Data>
</ResolutionEstimate>
<AuxiliaryDetails faults="8533" success="false">
<CellShape faults="24464" success="false" discarded="277">
<SuperCell row="0" col="61" faults="2" success="false">
<Details count="2">
<xResolutionFault value="20.185059" expected="20.133297"/>
<yResolutionFault value="20.185059" expected="20.133297"/>
</Details>
</SuperCell>
<SuperCell row="0" col="62" faults="4" success="false">

Fig. 4. Example (partial) comparison result from two implementations of
CHRT for the configuration in Figure 2. Note that many of the entries have
been collapsed, shown as a horizontal grey box with white ellipses, hiding
much of the detail here in order to show more of the entries.

reported. First, consider the ConformanceSummary element
at the top level. This provides the overall summary for the run,
clearly indicating that the test failed, and the total number of
faults to be addressed. This information is repeated from the
AnalysisComponents element, which in turns aggregates
the results of all of the sub-tests, as outlined previously.
In this case, it is clear that the basic statistics for the test
implementation match (e.g., the Origin is in the right place,
and the Dimensions—the overall size of the output—are
correct, etc.) However, there are a number of faults detected
with the details of the refinements of the SuperCells: the total
number of refinements is incorrect (RefinementData/Cells
element), suggesting that the component of the algorithm that
determines how to compute the refinements is not operating
as expected. This is further bolstered by the faults detected

Fig. 5. Example of reported differences in computed data density between
reference and test implementations of CHRT on macOS and Windows, respec-
tively. Subtle differences in an allegedly “standard” system library cause small
differences in data density computation in areas on the edge of the covered
area where only noise data exists. Here, black cells indicate agreement on data
density, while increasing levels of yellow indicate differences; green indicates
“no information”.

in the data density computed (DataDensity element). Note,
however, that although DataDensity detects a total of 925
faults, only a (user defined) total of 500 are reported in detail
(DataDensity/Data/Details element), and the remaining
425 are marked as “discarded”, keeping the size of the file in
check, as required.

The issue in this case was that the algorithm component
that computes the data density within each SuperCell was not
operating correctly in the test implementation due to subtle
differences between different operating systems in an other-
wise standard system library used by the code to accelerate
computations. This can be seen, given some knowledge of the
data, from the Cel1lshape element. These can be seen starting
at the bottom of the excerpt in Fig. 4, but are much more
readily observed in Fig. 5 where the differences reported in
this section have been displayed spatially, using the SuperCell
references provided in the comparison XML document. Clearly,
the majority of the problems occur at the edges of the area
covered, or in the areas to the northeast, which are in fact
islands where there is no other data. The issue here is over-
spill (noise) data outside of the planned survey area, where
there is no good data to counteract it. In this case, CHRT does
its best to report what is observed, but the behavior of the
data precludes reliable estimates of data density. Fig. 4 readily
illustrates the ability of testing schemes like this to find subtle
differences in implementations, and for this type of reporting
to allow for further investigation of the problem, highlighting
clearly where, and therefore why, the problem occurs.

IV. DISCUSSION

The examples shown here clearly demonstrate that it is
relatively simple to provide for end user testing of even
complex algorithms, although it does require commitment of

some effort and resources on the part of both the algorithm
designer and the software vendor. (In some cases, these might
be different parts of the same organization, but that does not
preclude using this method.) It is clear that even at the current
level of algorithmic complexity in hydrographic practice, the
ability to adequately test algorithms, and therefore provide
some measure of confidence to the end user that the algorithm
is as intended, is essential.

One potential concern with a scheme that tests only on the
final outputs of a complex algorithm is the subtlety with which
the method can identify issues in the test implementation, and
therefore the precision with which these issues can be targeted.
To the end user, this is irrelevant: the algorithm is either as
intended, or it is not, and further subtlety is not required.
To allow for debugging and development, however, this is a
significant issue.

The experience with the CTS, although clearly not exploring
all eventualities, seems to suggest that this may not be as
significant a concern as might at first be thought. For example,
although the estimation resolution predicted by CHRT is based
directly on the data density estimated, by testing separately on
the two outputs the CTS is able to distinguish between cases
where the density is computed incorrectly and those where the
translation to resolution failed, which is a subtle difference in
small components of the algorithm. Similarly, the CTS counts
and compares separately the number of soundings that are
used to estimate the depth in the interior of each SuperCell
and those on the edge between SuperCells. Although this is es-
sentially the same comparison, separately assessing the interior
estimation nodes allows the CTS to verify that the fundamental
data propagation algorithms are working correctly, while com-
parisons of the edge estimation nodes allows for verification
of the correct inter-SuperCell propagation of data. These are
related, but separate components that appear at a different
levels of CHRT (at least in the reference implementation).
Again, this is a subtle difference that can be detected by careful
control of the tests, along with some fundamental knowledge
of the algorithm’s implementation details. Problems in this
area can be difficult to diagnose, since they may only appear
in a very limited number of depth estimates, and might not be
particularly evident even then, depending on the type of data.

An interesting consequence of testing in this fashion is that
it might change the way that implementations of algorithms
are judged. With a strong test suite, continuity of source code
from reference to test implementation is not required for the
test implementation to be considered “correct”. In the strongest
case of this paradigm, anything that meets the test suite is,
ipso facto, a valid implementation of the algorithm. If this
paradigm is adopted, however, then the design of the test
suite is essential: if it does not test important behaviors of
the algorithm, then they are not captured in the “definition”
and variant implementations may differ significantly but still
pass the test suite.

V. CONCLUSIONS

Assurances of the reliability of complex computer-assisted
hydrography algorithms are very important to the end user

PROC. U.S. HYDRO. CONF., GALVESTON, TX, 21-23 MARCH, 2017

of hydrographic software. At present, however, they are very
difficult to obtain. In practice, it is difficult to test complex
algorithms, particularly once they become part of a larger
whole, unless there is cooperation between algorithm designer
and software vendor to allow for testability. This includes
designing in algorithm features to support this ideal, and
implementation such that these features are maintained all the
way to the end user.

The method proposed here highlights the importance of
flexible human and machine readable specification for the tests
required, along with the means to leverage the tests to support
debugging of non-conformant implementations. In particular,
the use of XML as a description medium allows for the tests
specified, the analyses recorded, and the comparison against
the reference implementation all to be structured in the same
form. The experience with developing a test suite for CHRT has
illustrated that even when simply testing the final outputs of
the algorithm, relatively subtle tests on component parts of the
algorithm are possible given some support from the algorithm
design.

In the face of present and increasing complexity of the
algorithms used to support safety of navigation hydrography,
algorithm reliability and end user confidence in the same
should be an urgent concern for the community.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the support of NOAA
grant NA15NOS4000200.

REFERENCES

[1] D. W. Caress and D. N. Chayes, “New software for processing sidescan
data from sidescan-capable multibeam sonars,” Proc. IEEE, vol. 2, pp.
997-1000, 1995.

[2] M. Wilson, G. Masetti, and B. R. Calder, “NOAA QC Tools: Origin, de-
velopment, and future,” in Proc. Canadian Hydro. Conf. 2016. Halifax,
Nova Scotia: Canadian Hydro. Soc., Ottawa, Canada, May 2016.

, “Automated tools to improve the ping-to-chart workflow,” Int.
Hydro. Review, [Submitted, 2017].

[4] B. R. Calder and G. Rice, “Computationally efficient variable resoution
depth estimation,” Computers and Geosciences, [Submitted, 2016].

[5] B. R. Calder, S. Byrne, B. Lamey, R. T. Brennan, J. D. Case, D. Fabre,
B. Gallagher, R. W. Ladner, F. Moggert, and M. Paton, “The open
navigation surface project,” Int. Hydro. Review, vol. 6, no. 2, pp. 9-
18, 2005.

[6] Int. Hydro. Org., “Transfer standard for digital hydrographic data (3.1),”
International Hydrographic Bureau, 4, quai Antoine ler, B.P. 445-MC
98011 MONACO Cedex, Tech. Rep. S-57, November 2000.

[71 ——, “Universal hydrographic data model (2.0.0),” International Hy-
drographic Bureau, 4, quai Antoine ler, B.P. 445-MC 98011 MONACO
Cedex, Tech. Rep. S-100, June 2015.

, “Bathymetric surface product specification,” International Hydro-
graphic Bureau, 4, quai Antoine ler, B.P. 445-MC 98011 MONACO
Cedex, Tech. Rep. S-102, April 2012.

[9] B. R. Calder and L. A. Mayer, “Automatic processing of high-rate,

high-density multibeam echosounder data,” Geochem., Geophys. and

Geosystems (G3) DID 10.1029/2002GC000486, vol. 4, no. 6, 2003.

B. R. Calder and G. Rice, “Design and implementation of an extensible

variable resolution bathymetric estimator,” in Proc. US Hydro. Conf.

Hydro. Soc. Am., April 2011.

Information Technology Laboratory, “Secure hash standard (SHS),”

National Institute of Standards and Technology, Tech. Rep. 180-4,

August 2015.

[3]

[8]

[10]

[11]

