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Abstract 
 
Two experiments were conducted to test the hypothesis that 
animated representations of vector fields are more effective than 
common static representations even for steady flow.  We compared 
four flow visualization methods: animated streamlets, animated 
orthogonal line segments (where short lines were elongated 
orthogonal to the flow direction but animated in the direction of 
flow), static equally spaced streamlines, and static arrow grids. The 
first experiment involved a pattern detection task in which the 
participant searched for an anomalous flow pattern in a field of 
similar patterns.  The results showed that both the animation 
methods produced more accurate and faster responses. The second 
experiment involved mentally tracing an advection path from a 
central dot in the flow field and marking where the path would cross 
the boundary of a surrounding circle.  For this task the animated 
streamlets resulted in better performance than the other methods, 
but the animated orthogonal particles resulted in the worst 
performance.  We conclude with recommendations for the 
representation of steady flow patterns. 
 
Keywords: Flow visualization, animated flow, vector field 
visualization. 
 
Concepts: • Human-centered computing ~ Empirical studies 
in visualization; 
 

1   Introduction 
 
The visualization of 2D vector fields has applications including 
surface ocean currents, surface wind patterns as well as slices 
through electromagnetic fields.  Significant effort has gone into 
determining the most effective method for statically representing 
these patterns, but the use of animation to show flows and other 
vector fields has not been previously evaluated despite the fact that 
this is also a common practice.  There would seem to be no obvious 
reason to use animation to represent 2D steady flow patterns since 
there is no change over time; animation, is generally more costly to 
generate in terms of computation and more difficult to deliver to 
the viewer.  Nevertheless, the fact that flow patterns inherently 
involve movement suggests that animation should be an intuitive 
mode of representation for such data.  Also, it is possible that an 
animated version of a pattern may be easier to perceive than a 
statically represented version of the same pattern. Another possible  
advantage of animated streamlets is that they will perceptually 

interfere less with other background information compared to static 
visualization methods. The basis of this argument is that moving 
pattern processing and static pattern processing occurs in separate 
visual “channels” in the primary visual cortex of the human brain  
[Newsome and Pare, 1988; Livingstone and Hubel, 1987]. This 
paper reports on an empirical comparison of static and animated 
representation of simulated flow patterns.  
 

1.1   Effective display of vector fields 

 
Methods developed to represent two dimensional vector fields, 

include arrow grids, line integral convolution (LIC) and 

streamlines.  Arrow grids have been used extensively for decades 

and are still the most common method used in practice despite 

studies suggesting that they are ineffective. Laidlaw et al. [2005] 

compared six different vector field display methods for a number 

of different tasks. For example, one task involved advection 

pathway tracing and for this they found that a method using fat 

headed arrows arranged along equally spaced streamlines was the 

most effective.  Liu et al [2012] also found streamlines to be far 

better than arrows for a pattern recognition task; oriented line 

integral convolution also worked well. Ware [2008] proposed a 

perceptual theory of flow visualization, based on the idea that an 

effective flow visualization should selectively excite visual cortex 

neurons sensitive to patterns tangential to the direction of flow.  

Based on the theory he suggested that streamline based 

representations should be most effective for showing flow 

orientation. Pineo and Ware [2008] developed a computation 

model of the human visual system to evaluate this theory and the 

results broadly agreed with the empirical findings.  In other work, 

a comparison of streamlines to a grid of wind barbs (glyphs used in 

meteorology) showed the streamline representation to be superior 

in enabling people to see flow patterns [Pilar and Ware 2013]. 

 

All of the evaluations we have discovered are of static 

representations suitable for print media.  Yet many authors have 

proposed that animation should provide an effective method for 

flow visualization.  Animation techniques include color table 

animation [Jobard and Lefer, 1997; Lefer et al. 2004; Laramee et 

al. 2004] where cycling through a color look up table causes a 

visual pattern to move over a field. The line integral convolution 

(LIC) method has also frequently been animated (e.g. [Berger and 

Groller, 2000; Telea and van Wijk, 1999].  Bachthaler and 

Weiskopf [2008] constructed an argument based on human 

perception that the spatial frequencies of the patterns animated 

using LIC are lower than optimal in the direction of flow. In order 

to remedy this they developed textures that were elongated 

orthogonally to the flow direction but which were animated in the 

direction of flow. In this way they were able to control the spatial 

and temporal frequency of the moving patterns. Other animation 

methods include the animation of conventional arrows, textures 

[Max and Becker 1996] and the animation of traces or points along 

streamlines or pathlines [Laramee, 2002; Sobel et al, 2004; Huber 

and Healey, 2005].  
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Figure 1: Four representations of the circular flow pattern. A) Animated streamlets. B) Animated orthogonal particles. 

C) A jittered grid of arrows. D) Equally spaced streamlines. 

 

Ware and Plumlee [2013] evaluated randomly placed animated 

streamlines against static versions of the same streamlines and a 

glyph-based visualization. The task involved judging the 

perception of speed and direction (not pattern perception). They 

found the animated view better for the wind direction.   They also 

obtained subjective assessments of the ability of animated flows to 

represent patterns using Likert scales. Animated streamlines were 

generally rated highly.  However, the tested alternatives did not 

include equally spaced streamlines (probably the best static 

method), nor did they include an arrow grid.   

 

1.2   Vector field components 
 

 In considering why motion might be more effective at revealing 

patterns in vector fields it is useful to decompose vectors into three 

parts:  the magnitude (speed), the orientation, and the vector sign.  

A streamline can show orientation, but it will be ambiguous without 

an arrow head or other graphical device to show direction along the 

streamline, this is the vector sign. Animation can be used to show 

all of these components.  The speed can be mapped to the speed of 

motion, the direction motion can show both the orientation and the 

vector sign.  If streamlines are used to show orientation, color or 

line thickness can be used to show speed, and arrow heads, or 

animation can be used to show the vector sign. In the case of arrow 

grids, the length of the arrows is commonly used to represent the 

speed or vector magnitude. For static representations, various 

authors [Bertin, 1983; Ware, 2008] have suggested that heavy 

headed arrows or teardrop shapes may be better than conventional 

arrowhead for showing the vector sign. 

 

1.3   Perception of moving patterns 
 

We are aware of no prior empirical work, either in the vision  

science literature, or in the applied literature that directly compares  

78



 
Figure 2: The rows show the four different test patterns: Circular rotations, linear flow, spirals and shear. The columns show the four 

rendering methods used: animated streamlets, animated orthogonal, arrow grid, equally spaced streamlines. 

perception of static flow patterns to similar moving patterns.  

However, there are some lines of research that are relevant, albeit 

somewhat indirectly. There has been work in the area of visual 

search comparing motion to other cues, such as color or shape. 

Motion has been found to be preattentive allowing for increased 

accuracy and faster reaction times [Nothdurft, 1993; Triesman, 

1985].  However, studies that have evaluated difference between 

motion and static stimuli have done so for specific features (i.e. 

color and line orientation).  The stimuli themselves often differ 

greatly from one another.  There is also evidence to suggest that 

motion is more effective at directing and capturing attention 

compared to non-moving stimuli [Bartram et al. 2003].  However, 

there are also search asymmetries; for example, moving targets are 

more readily found among static targets than the reverse case 

[Royden et al, 2001] and this suggests that if flow data are animated 

some patterns will be easier to perceive than others. Also relevant 

is work by McLeod et al [McLeod et al. 1988] who investigated 

visual search for target items defined by a conjunction of 

movement and form.  They found that sometimes such a 

conjunction search could be fast.  This and other studies have been 

taken as evidence operation of a movement filter in the visual 

system [Wolfe and Horowitz, 2004].  Gestalt theory of perceptual 

grouping states that objects of a common fate are group together 

[Wertheimer, 1938; McLeod et al. 1988]. Based on this theory it is 

expected that all stimuli moving in the same direction will be seen 

as one unit making the detection of a target moving opposite the 

group easier.  This suggests that moving stimuli will activate the 

motion filter allowing for a more efficient visual search and faster 

recognition of anomalous targets moving in a different direction. 

 

A number of researchers have compared visual search for different 

patterns of moving targets. Expanding patterns of dots are 

perceived more readily than contracting patterns [Franconeri and 

Simons, 2003].  Also, it is easier to see patterns against coherent 

motion, rather than random motion [Royden et al, 2001]. The size 

of patterns moving in groups can be estimated more accurately than 

if the same patterns are distributed randomly in space.  It is 

possible, under certain conditions, to perceive animated flow in 

separate layers [Langer et al. 2005] but if the motion in the two 

layers is similar, the layers become perceptually fused [Masson et 

al, 1999]. 

 
Our study evaluates the effects of moving patterns compared to 

stimuli that are static representations of the same patterns.  This 

allows for a direct comparison and an increased understanding of 

the advantages and disadvantages of incorporating motion into 

visualizations of vector field data.  We conducted two experiments 

with different tasks, but the same set of representation methods, 

both static and animated. In the first, the participant's task was to 

detect a target pattern in a simple simulated flow field. This is 

similar to study by Pilar and Ware [2013] to evaluate alternative 

static representation methods. The second was based on Laidlaw et 

al's [2005] advection pathway tracing task where participants had 

to estimate the path of an imaginary particle deposited in a flow 

field. Our hypothesis was that animated flow patterns would speed 

up visual search for anomalous patterns and would improve 

advection pathway tracing. 

 
2  Experiment 1: Pattern Detection 
 
The approach we took was to generate simplified artificial vector 

fields in which various patterns were artificially constructed.  The 

task of the study participant was to find an exceptional pattern in a 
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set of similar patterns.  In all cases the key differences lay in the 

vector sign. For example, a participant might be asked if there is a 

clockwise rotation in a set of patterns having counter-clockwise 

rotation. 

 

 We compared four flow visualization methods (Figure 1). 

 

Animated streamlets (AS).  Animated streamlets are short 

streamlines that advect through the flow field. We gave ours 

opaque heads and transparent tails. Animation speed and the 

streamlet length showed velocity. To maintain continuity, 

individual traces fade after a certain interval and are replaced by a 

new trace at a randomly determined location.  The effect is similar 

to oriented line integral convolution (Wegenkittl, 1997).  

 

Animated orthogonal particles (AO). Particles in motion that are 

elongated orthogonally to the direction of movement through a 

vector field direction may provide stronger motion cues than 

traces that are aligned tangentially to the flow [Bachthaler and 

Weiskopf, 2008] We therefore included this as a condition, 

representing advected particles using short line segments 

orthogonal to the flow direction. Animation speed and line length 

showed velocity. 

 

Static Arrow Grid (AG). Although there is now substantial 

evidence suggesting that gridded arrows are not a good way of 

representing vector fields, this is still the most common method 

used in practice as any scan of the scientific and technical 

literature will show. Arrow length represented velocity. 

 

Static Equally spaced streamlines (JL).  Studies suggest that this 

may be the most effective method for visualization 2D flow 

patterns [Laidlaw et al, 2005; Pineo and Ware, 2008] .  We used 

the Jobard and Lefer [1997] algorithm to generate the streamlines 

and created tear drop patterns along the streamlines to show the 

directionality. The teardrop shapes were scaled according to 

velocity. 

 

2.1   Test patterns 
There were four test patterns always in a 4x4 grid. Examples are 

given in Figure 2. In all cases a smooth random background vector 

field was first constructed by summing five Gaussian blended 

randomly oriented and positioned vector patterns. Superimposed 

on this was one of four test patterns. Each of these was generated 

by multiplying a simple pattern by a Gaussian and adding the result 

to the background flow. Note that all speeds are arbitrary, because 

the patterns were artificial. The parameters defining the following 

patterns are given in units of screen pixels.  Targets appeared on 

50% or the trials. 

 
Circular rotations. The patterns showed counter clockwise 

rotation, except that on half the trials one of the patterns (the target) 

was a clockwise rotation. The position of this was randomly 

determined. The patterns had a tangential speed given by 𝑟𝑒−𝑟
2/576 

 

Linear flow. The patterns showed leftward motion, except on half 

the trials, one of the patterns (the target) was rightward. A direction 

was selected randomly between +/- 45 deg of horizontal. Speed was 

calculated using 𝑟𝑒−𝑟
2/576 

 

Spirals. The patterns were inward spirals, except on half the trials 

one of the patterns (the target) was an outward spiral. Motion was 

computed as the sum of circular and radial components.  The 

circular component was given by 𝑟𝑒−𝑟
2/384   and the radial 

component was computed using the same expression 𝑟𝑒−𝑟
2/384 

 

Shear.  The upper half of each pattern showed leftward motion and 

the lower half of each pattern showed rightward motion, except on 

half the trials one of the patterns (the target) had the reverse pattern. 

Horizontal speed was given by 𝑟𝑒−𝑟
2/288 . Above the midpoint 

flow was the left and below the midpoint flow was to the right, 

unless it was a target pattern in which case this was reversed. In 

addition, the vertical flow of the background was reduced by being 

multiplied by 1 − 𝑟𝑒−𝑟
2/576 

 
The test pattern was rendered in a 600x600 pixel window. This 

measured 16.25 cm in width and height. An attempt was made to 

seat subjects such that the viewing distance was 57 cm (meaning 

that one cm subtended approximately one degree of visual angle).  

 

2.2   Rendering details 
Because we were specifically interested in whether motion was 

responsible for any results we were careful to remove aspects of the 

rendering methods that might make the task easier independent of 

motion. For example, animated particles tend to cluster in sink 

regions of a flow and be sparse in source regions.  So simple visual 

density could be used to distinguish sources from sinks and motion 

might be irrelevant. To remove this effect we first computed 

random starting points for streamlets, then we backed them up 

using reverse advection for a number of steps equal to half the life 

of a streamlet. These backed up points were used for the actual 

starting points. 

 

Streamlets: 6000 streamlets were rendered as animated polylines 

opaque at the head and transparent at the tail (Ware and Plumlee, 

2013). In the fastest parts of the patterns the streamlets advanced 

by 30 pixels/s. The length of the streamlets provided an additional 

cue to flow speed (maximum length was 60 pixels).  To avoid 

popping effects, streamlets were faded in when they were born and 

faded out at the end of their lives. 

Orthogonal animated particles: 1000 animated particles were 

rendered. In the fastest parts of the patterns the particles advanced 

by 30 pixels/s. The maximum line length (orthogonal to the flow) 

was 8 pixels. The length of the particles provided an additional cue 

for flow speed to make this comparable to streamlets. However, 

lengths were necessarily shorter. 

Arrow grid: A 50 x50 jittered grid of arrows was drawn (12 pixel 

spacing on average). The arrow length was proportional to the 

speed with a maximum length of 20.0 pixels.  The width of the 

arrow head was one third of the length. The shaft of the arrow was 

centered on the jittered grid point. 

Equally spaced streamlines: The Jobard and Lefer (1997) 

algorithm was used to compute streamlined. Line spacing varied 

between 8 and 16 pixels. Teardrop shapes along the streamlines 

were used to show speed and direction. These were scaled with 

speed. 

 

2.3   Task 
 

On each trial the participant's task was to determine if there was an 

anomalous pattern (as described in the test patterns section). They 

responded using one of two specially marked keys on the keyboard. 

[Yes] (overlaid on the V-key) if the pattern was present and [No] 

(overlaid on the N-key) if it was not. Participants normally kept 

their left index finger on the [No] key and their right index finger 
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on the [Yes] key. If they made an error responding they heard an 

auditory beep through headphones. 

 

2.4   Participants 

 
There were 14 participants (12 female and 2 male). They were all 

paid for participating. 

 

3.5   Procedure 

 
There were 16 conditions (4 representations x 4 test patterns). 

Trials were given in blocks of 8 for each condition. On half of the 

trials within a given block (randomly determined) the target was 

present and on half the target was absent. The entire set of 

conditions was given in a different random order for each 

participant and there was one replication of the entire set, yielding 

16 trials per condition per participant. Prior to the experiment 

proper, a training session was given where participants ran through 

the conditions in a random order with two trials per condition. In 

this phase participants were given directions on what to look for 

and corrected when they made an error. 

 
Figure 3. Mean error rates for Experiment 1. AS: Animated 

streamlets. AO: Animated orthogonal particles. AG: Arrow 

Grid. JL: Equally spaced streamlines using the Jobard and 

Lefer algorithm. 

 

 

2.6   Results from Experiment 1 
 

The main results are summarized in Figures 3 and 4. To evaluate 

possible differences between moving and static stimuli a repeated-

measures ANOVA with factors of pattern (circle, linear flow, 

shear, and spiral), representation (animated streamlets, animated 

orthogonal particles, arrows, and equally spaced streamlines) and 

target (absent or present) was conducted using the average number 

of errors made and average response time as dependent variables.  

For number of errors there were significant main effects of 

representation (Greenhouse-Geisser corrected F[1.589,19.07] = 

14.302, p < .0001, 2 = .544), pattern (F[3, 36] = 17.223, p < .0001, 

2 = .589),  and target (F[1, 12] = 17.906, p < .001, 2 = .599).   

 

Pairwise comparisons using the Bonferroni correction for multiple 

comparisons showed that the two animated representations yielded 

significantly greater accuracy than both static representations 

(Figure 3).  The animated representation did not differ significantly 

from one another, neither did the static representations.  

Specifically: Animated streamlets was significantly better than 

arrow (p < .003) and equally spaced streamlines (p < .002), 

animated orthogonal particles was better than arrow (p < .001), and 

equally spaced streamlines (p < .006). 

 

 
Figure 4. Mean response times for Experiment 1. AS: Animated 

streamlets. AO: Animated orthogonal particles. AG: Arrow 

Grid. JL: Equally spaced streamlines using the Jobard and 

Lefer algorithm. 

 

Pairwise comparisons of pattern using Bonferroni correction found 

the percent of errors made for the pattern shear was significantly 

greater than circle (p < .001), linear flow (p < .002), and spiral (p < 

.027).     Pairwise comparisons of target found that the numbers of 

errors made for the target absent condition (M=0.046) was 

significantly different from the target present condition (p= 0.001, 

M=0.129).  In addition, a two-way interaction of pattern by 

representation was found (Greenhouse-Geisser corrected F[3.519, 

42.232] = 2.795, p < .044, 2 = .189).  An analysis of simple main 

effects found that although the representation of shear produced the 

highest number of errors this is dependent on the combined 

representation.  The combination of shear and animated streamlets 

(M=0.083) significantly different from the combination of shear 

and arrows (p=0.016, M=0.184) and the combination of shear and 

equally spaced streamlines (p=0.012, M=0.259) but not different 

from the combination of shear and animated orthogonal particles 

(M=0.089).  This further supports our hypothesis that the animated 

representations produce fewer errors than the static representations.  

The pattern of shear only increased errors for the static 

representations but had no significant effect on the animated 

representations.  

 

Evaluation of response time showed significant main effects of 

pattern (Greenhouse-Geisser corrected F[1.607, 19.286] = 37.751, 

p < .0001, 2 = .759), representation (F[3, 36] = 11.237, p < .0001, 

2 = .484), and target (F[1, 12] = 63.498, p < .0001, 2  = .841).   

 

Pairwise comparisons found that the two animated representations 

yielded significantly faster responses than both static 

representations (Figure 4).  The animated representation did not 

differ significantly from one another, neither did the static 

representations. Specifically: animated streamlets was significantly 

faster than arrow (p < .001) and equally spaced streamlines (p < 

.015).  Animated orthogonal particles was significantly different 

from arrow (p < .044) and equally spaced streamlines (p < .047).   
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Pairwise comparisons of pattern found the response time for linear 

flow was significantly faster than circle (p < .0001), shear (p = 

.0001), and spiral (p< .0001).  Shear responses were significantly 

slower than circle (p < .008), and spiral (p < .001) responses.  As 

seen in figure 6 the pattern of linear flow displayed the fastest 

response time whereas shear displays the slowest response time.  

The same is true for the static representations.   

 

Overall, response times were significantly longer for the target 

absent condition than the target present condition.  Pairwise 

comparisons of target using Bonferroni correction found that the 

response times for the target absent condition (M=6.736) was 

significantly longer than the target present condition (p= 0.0001, 

M=4.920).  This is in agreement with theories of visual search since 

a search can be terminated when a target is found, but if the target 

is absent all the potential targets must be examined.  

 

 
Figure 5. A screen from Experiment 2. The participant has 

placed the dot on the circumference of the circle to indicate 

where a particle dropped at the center would exit the circle. 

 

 

3  Experiment 2: Advection Pathway Tracing 
 
The second experiment used advection pathway tracing as a task. 

This was developed by Laidlaw et al [Laidlaw et al, 2005] for the 

experimental comparison of static vector fields.  In this method, a 

dot is placed in the center of the vector field, with a circle 

surrounding it.  The participant's task is to estimate where a particle 

dropped at the center would exit the circle.  They indicate this with 

a mouse click.   

 

3.1   Display patterns 
An example of a test screen is given in Figure 5.  The vector field 

was constructed by first selecting a random direction and filling all 

cells in the grid with that value. Added to this were 20 Gaussian 

blended randomly oriented and positioned patterns. Note that all 

speeds are arbitrary, because the patterns were artificial.  The final 

pattern was tested using a second order Runge-Kutta method to 

determine that an advection pathway existed from the center to the 

circle. If none existed a new pattern was generated until a viable 

one was found. The test pattern was rendered in a 600x600 pixel 

window. This measured 16.25 cm in width and height. The radius 

of the circle was 5.8 cm.  In the animated condition, the average 

speed was such that a particle crossing the center point took 3.5 

seconds on average to cross the circle boundary (about 1.6 deg/s). 

 

3.2   Participants 
There were 15 participants, 12 female, and 3 male all of whom were 

paid for participating in the experiment. 

 

3.3   Conditions and trials 
There were four conditions consisting of the same set of 

representations as the first experiment. Trials were given in blocks 

of 15 for each condition. The entire set of conditions was given in 

a different random order for each participant. Prior to the 

experiment proper, a training session was given where participants 

ran through the conditions in a random order with two trials per 

condition. In this phase participants were given directions how to 

use the interface. 

 
Figure 6: Mean log errors for Experiment 2 Anti-log values are 

provided above each bar. AO: Animated orthogonal particles. 

AG: Arrow Grid. JL: Equally spaced streamlines using the 

Jobard and Lefer algorithm 

 

 

3.4   Results from Experiment 2 
To evaluate the possible differences between moving and static 

stimuli a repeated-measures ANOVA with the factors of 

representation (animated streamlets, animated orthogonal particles, 

arrows, and equally spaced streamlines) and number of repetitions  

(15 repetitions of each representation) was conducted using the 

log10 of the degrees of error and response time in seconds as 

dependent variables.  The log transform was used to create more 

uniform variance. 

  

The results are summarized in Figures 6 and 7. For error a 

significant main effects of representation (F[3, 42] = 33.862, p < 

.0001, 2 = .707) was found.  Pairwise comparisons of 

representation using Bonferroni correction found the error for 

animated streamlets was significantly lower than for animated 

orthogonal particles (p < .0001), arrows (p < .0001) and equally 

spaced streamlines (p = .006).  Equally space streamlines produced 

fewer errors than animated orthogonal particles (p < .0001) and the 

arrow grid (p< 0.0001). In other words, the representation of 

animated streamlets had the smallest error compared to the other 

three representations.  Performance for the animated orthogonal 

particles was poorest but not significantly different from arrows.  
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These results suggest that animated streamlets are the best 

representation for this task; with equally spaced streamlines being 

the next best option.  

 

For response time a significant main effects of representation (F[3, 

42] = 40.340, p < .0001, 2 = .742) was found.  Pairwise 

comparisons of representation using Bonferroni correction found 

the response times for animated streamlets was significantly faster 

than for animated orthogonal particles (p < .0001) but slower than 

equally spaced streamlines (p = .006) but not significantly different 

from arrows.  Responses with Animated orthogonal particles were 

significantly slower than with equally spaced streamlines (p < 

.0001) and the arrow grid (p < .0001).  Arrows were also slower 

than equally spaced streamlines (p = .015). 

 

 
Figure 7: Mean response times for Experiment 2.  

 

4  Discussion 
In the pattern search task (Experiment 1) errors for both of the 

animated representations were approximately half those for the 

static representations. This provides strong support for our 

hypothesis that animation is the most effective way of showing 

flow direction. Responses were also faster for the animated views. 

There were no significant differences between the two animated 

methods and no significant differences between the two static 

methods.   

 

For the advection task the animated streamlet method was the clear 

winner overall. It resulted in average errors approximately one third 

as large as for the arrow grid.  The next best method was the static 

equally spaced streamlines representation. The arrows and the 

animated orthogonal particles produced equally poor performance. 

Our finding that equally spaced streamlines produces lower errors 

than an arrow grid is in agreement with Laidlaw et al's [2005] prior 

finding and theory [Ware, 2008; Pineo and Ware, 2008].  We have 

not, of course, tested all possible animated representations against 

all static ones, but the size of the effects suggests that the advantage 

of animated representations is robust, especially for animated 

streamlets. 

 

As noted in our introduction, there are asymmetries in visual search 

for moving patterns; for example expanding (looming) patterns are 

seen more readily than contracting (receding) patterns [Franconeri 

and Simons, 2003].  In the first experiment one of the patterns, a 

clockwise expanding spiral was compared to a counter-clockwise 

expanding spiral and results may have been different for 

contraction spirals.  The other three patterns, however, were neither 

expanding nor contracting, and the results in all cases showed the 

moving patterns generate fewer errors than the static patterns. As a 

more general point certain kinds of patterns in animated flow will 

undoubtedly stand out more clearly than others. But this is certainly 

also the case for static flow visualizations, as the results show, and 

currently there is no evidence that animation is worse in this respect 

than static views. 

 

There are, of course, disadvantages to using animated vector fields. 

The principal of these is the computational cost of generating 

moving patterns.  In addition the method is not suitable for print 

media and this may lead to the use of different representations for 

print and for screen.  A third disadvantage may relate to the 

representation of speed of flow.  Some vector fields have a large 

dynamic range. For example, in the case of winds we may care 

about both about the 200 kph winds of a hurricane and the pattern 

of light 5 kph winds in other parts of the globe.  If animation speed 

is made proportional to wind speed, some particles may be moving 

too fast or two slow for the movement patterns to be readily 

perceived.  This problem is also common to other representation 

methods, such as using arrow length to show speed.  One solution 

is to use a non-linear transformation of speed, such as a square root 

function [Ware and Plumlee, 2013] This means that it will be 

difficult to judge relative speed from the speed of streamlet motion, 

but we believe that judgements of motion speed are generally poor 

and that methods such as color coding, or custom glyphs [Pilar and 

Ware, 2013] will be the best way of representing flow speed. 

 

It was remarked by one of the study participants that they could  

perform the advection pathway task in the animated condition by 

picking a streamlet passing through the center dot of the target 

region and visually tracking it to the edge of the circle.  This can 

perhaps explain the superior accuracy in this condition.  But this 

method could also have been applied with the orthogonal particles 

but errors were much greater in that condition, so clearly other 

factors were involved.  

 

There are other advantages of animated streamlets that have 

previously been remarked, in particular that animation employs a 

separate visual “channel” meaning that when animation is used 

there is less visual interference between an animated overlay and 

other background information. In addition, research shows that 

under certain circumstances multiple animated layers can be 

perceived, albeit with limitations [Langer et al., 2006]. Because our 

ability to perceive relative speed is a function of average speed 

[Masson et al 2005] having only a single moving layer is likely to 

result clear visual separation between a background static layer and 

the animated layer,  although slower speeds may be less distinct 

than faster speeds. This can be useful in complex multi-layered 

displays where wind speeds and direction are overlaid on other 

information such as atmospheric pressure or temperature [Ware 

and Plumlee, 2013].  For dynamic vector fields, animated 

streamlets, or pathlets are becoming quite common, our results 

suggest that they can also be a good choice for steady vector fields. 
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