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ABSTRACT 

GEOLOGICAL INTERPRETATIONS OF A LOW-BACKSCATTER ANOMALY 

FOUND IN 12-KHZ MULTIBEAM DATA ON THE NEW JERSEY 

CONTINENTAL MARGIN 

by 

Edward M. Sweeney, Jr. 

University of New Hampshire, December, 2008 

A low-backscatter acoustic anomaly was recently mapped on the New Jersey 

continental margin between Hudson and Wilmington channels using a 12-kHz 

multibeam echo-sounder (MBES). The presence of the low-backscatter anomaly 

indicates a change in the physical properties of the seafloor or near sub-surface. 

Analyses of seafloor and sub-surface acoustic data with previously collected sediment 

cores suggest three hypotheses as possible geological causes for the anomalously 

low-backscatter strength: (1) a sediment deposit, (2) an outcrop of sediment strata due 

to sediment removal and non-deposition, or (3) the presence of gas in the sub-surface 

sediments. Multibeam bathymetry and backscatter data, high-resolution 3.5-kHz chirp 

sonar profiles, airgun single-channel seismic-reflection profiles, and sediment cores 

collected nearby the low-backscatter anomaly most strongly support the hypothesis 

that the low-backscatter anomaly is an outcrop of older sediments that have been 
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exposed by Western Boundary Undercurrent (WBUC) erosion and non-deposition 

induced by local seafloor morphology. 



CHAPTER 1 

INTRODUCTION 

1.1 Study Background 

Bathymetric surveys conducted in 2004 and 2005 by the Center for Coastal 

and Ocean Mapping (CCOM), National Oceanic and Atmospheric Administration 

(NOAA) and the U.S. Naval Oceanographic Office (NAVOCEANO) mapped part of 

the U.S. Atlantic continental margin using a 12-kHz multibeam echo-sounder 

(MBES) (Gardner, 2004; Cartwright and Gardner, 2005; Gardner et al. 2006). This 

mapping effort collected 403,000 km2 of MBES data. These MBES data were used to 

create 100-m bathymetry and co-registered acoustic-backscatter grids of the seafloor. 

Along with the MBES data, approximately 38,474 km of 3.5-kHz chirp seismic-

reflection profiles were collected to image the shallow sub-surface sediment structure. 

The chirp subbottom profiles provide high-resolution acoustic images Of the sub­

surface stratigraphy up to -60 m beneath the seafloor. 

The MBES data and subbottom profiles provide an extensive data set for 

evaluating geological processes along the U.S. Atlantic continental margin. 

Multibeam bathymetry data can be combined with co-registered acoustic backscatter 

strength to identify morphological seafloor features and their acoustic seafloor 

response. Additionally, the sub-surface chirp sonar profiles show the nature of 
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acoustic horizons beneath the seafloor and can be used to interpret previous or 

ongoing sedimentary processes. 

The data collected during the 2004 to 2005 MBES survey show an anomalous, 

low-backscatter region 350 km offshore New Jersey (Figure 1.1). The low-

backscatter anomaly is located between Hudson and Wilmington channels, 

downslope from several small channels on the continental rise near Knauss Knoll 

(Figure 1.2). The anomalous feature covers a seafloor area of 2,750 km2 and has a 

relative decrease of 10 dB in backscatter strength from the surrounding seafloor. This 

low-backscatter anomaly occurs in four separate survey lines collected over a span of 

several days and has boundaries that are not consistent with the edges of the survey 

line swaths. Although less distinct, the low-backscatter anomaly can also be identified 

in U.S. Geological Survey 6.5-kHz GLORIA sidescan-sonar data (Figure 1.3). 
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Figure 1.1 Multibeam backscatter data collected on the U.S. Atlantic continental margin in 2004 
and 2005 showing location of the low-backscatter anomaly study area offshore New Jersey. 
Backdrop is National Geophysical Data Center (NGDC) NOAA ETOP02 bathymetry data. Data 
were collected and processed within U.S. Navy restricted zone, but are not presented due to U.S. 
Navy regulations. MBES data are available at http://www.ccom.unh.edu and ETOP02 data can 
be found at http ://www.ngdc.noaa.gov/. 
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Figure 1.2 Map showing low-backscatter anomaly in 12-kHz MBES backscatter data and nearby 
bathymetric features. Low-backscatter anomaly outlined in white-dashed line. Bathymetric 
contours are at 500-m intervals. Backscatter range is from -25 dB (high-backscatter strength) to 
-51 dB (low-backscatter strength). 
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Figure 1.3 USGS 6.5-kHz GLORIA sidescan-sonar backscatter data near the low -backscatter 
anomaly. Location of the low-backscatter anomaly is outlined by the white-dash id line. 
Bathymetric contours are shown at 500-m intervals. 

1.2 Research Problem 

The presence of the low backscatter in several survey lines of the 2004 and 

2005 multibeam sonar backscatter data and its occurrence in the USGS GLORIA data 

set provides evidence that the low-backscatter anomaly is a true seafloor feature and 

not a data artifact. However, the cause of the low-backscatter anomaly is not 
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immediately evident from the backscatter data alone because backscatter is controlled 

by several parameters that are dependent upon the frequency of the sonar being used 

and the angle of incidence between the acoustic transmission and the seafloor 

(Jackson et al. 1986; de Moustier and Alexandrou, 1991; Gardner et al. 1991; Fonseca 

et al. 2002). The parameters that control the seafloor backscatter are interface 

backscatter due to seafloor surface characteristics and volume backscatter due to 

inhomogeneities found in the upper few meters of the sediment volume (Hamilton, 

1972; Jackson et al. 1986; de Moustier and Alexandrou, 1991; Gardner et al. 1991; 

Schlee and Robb 1991; Fonseca et al. 2002). Interface backscatter accounts for the 

spectrum of seafloor roughness (relative to the acoustic wavelength of the sonar 

transmission) and the acoustic impedance contrast between the seafloor surface and 

water medium (Jackson et al. 1986; de Moustier and Alexandrou, 1991; Fonseca et al. 

2002). Interface backscatter increases when the seafloor is rough relative to the 

wavelength and when there is a high acoustic impedance contrast between the 

seafloor and the water medium. Discrete objects within the sediment column such as 

shells, gas bubbles, burrows and subsurface sediment layers can result in 

inhomogeneities if the frequency and angle of incidence of the sonar pulse allow 

penetration into the seafloor (Jackson et al. 1986; Gardner et al. 1991; Fonseca et al. 

2002). These features form acoustic impedance contrasts in the sub-surface and can 

cause increases in the volume backscatter component. 

A previous ground-truth investigation of 6.5-kHz sidescan-sonar data shows a 

complex correlation between lithostratigraphy and backscatter intensity that result 

from these mechanisms. Gardner et al. (1991) found that areas with low -backscatter 
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returns were composed of sands with a thin surface layer of clay, whereas seafloor 

with high-backscatter strength was found to be composed of silty clay with thin 

interbeds of sand within the study area. These findings proved counter-intuitive to the 

conventional interpretation that backscatter strength has a direct correlation with 

sediment grain size at the seafloor surface. 

These complexities make it difficult to interpret the geoacoustic cause of the 

low-backscatter anomaly. However, local geological processes may provide clues to 

its origins. Previous studies have suggested that sediment-gravity processes and deep-

sea contour-current sediment processes have been the dominant factors in shaping the 

middle U.S. Atlantic margin continental slope and rise (Embley, 1980; Mountain and 

Tucholke, 1985; Poag, 1985; Mountain and Poag, 1987; Pratson and Laine, 1989; 

Poag, 1992; Mountain et al., 1994; McHugh et al. 2002). In addition, studies have 

also shown the presence of sub-surface gas (Tucholke et al., 1977; Mountain and 

Tucholke, 1985; Dillon and Max, 2000; Dillon et al., 1995). 

Downslope sediment-gravity processes have occurred in the form of turbidity 

currents, debris flows, slumps and slides on the continental margin (Heezen and 

Ewing, 1952; Dietz, 1963; Rona and Clay; 1967; Emery et al., 1970; Embley, 1980; 

Tucholke and Laine, 1982; Embley and Jacobi, 1986; Pilkey and Geary, 1986; 

Schlee and Robb, 1991; Fulthorpe et al, 1996; Fulthorpe et al, 2000; McHugh et al. 

2002; Chaytor et al., 2007). A slump occurs when a block of seafloor moves along a 

rotational, concave-up shear plane with little internal deformation (McHugh et al., 

2002). Slumps are typically identified by deep-seated rotational blocks that have 

experienced minimum translation and deformation (Embley and Jacobi, 1986). Slides 
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occur when a block of seafloor moves downslope along a planar glide plane with little 

internal deformation (McHugh et al., 2002). Deposits formed by slides are typically 

shallow failures that translate over large distances (Embley and Jacobi, 1986). Debris 

flows are sediment-gravity flows dominated by plastic behavior. Sediment is 

transported downslope by a debris flow as an incoherent viscous mass and deposited 

by sediment freezing (Shanmugam, 2000; McHugh et al., 2002). Deposits that result 

from debris flows typically contain sharp upper and lower contacts, floating clasts, 

planar clast fabric, inverse grading of clasts, a basal shear zone and moderate to high 

matrix content (McHugh et al, 2002). Shanmugam (2000) has defined turbidity 

currents as sediment-gravity flows with Newtonian rheology (meaning that it has no 

inherent strength) and turbulent state, where sediment is held in suspension by fluid 

turbulence. Deposits from turbidity currents (known as turbidites) are identified by 

normal size grading, sharp basal contacts, gradational upper contacts, and Bouma 

sequences (Bouma, 1962; McHugh et al., 2002). Pratson and Laine (1989) have 

estimated that these gravity-driven processes have been the depositional agents across 

60% of the continental slope and rise and have therefore played an important role in 

the downslope distribution of sediment on the continental margin. 

Evidence of downslope sediment transport processes on the Atlantic 

continental margin is shown by submarine canyons and channels found on the 

continental margin (Figure 1.4). Frequent sediment failures have initiated and 

maintained submarine canyon and channel systems (Twitchell and Roberts, 1982; 

Farre et al. 1983; Pratson and Coakley, 1996). These features have acted as conduits 

for sediments that traverse to the outer continental margin by downslope sediment 
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transport (Ayers and Geary, 1980; Pilkey and Geary, 1986). Suspended sediments 

that spill over channel walls have formed channel levees and have been distributed 

across the continental rise between channels (Robb et al., 1981; Tucholke and Laine, 

1982; Locker, 1989; McMaster et al., 1989; Pratson and Laine, 1989; Schlee and 

Robb, 1991; Locker and Laine, 1992). In addition, sediments that reach the terminus 

of channels have been deposited on the outer continental margin to form abyssal fan 

systems (Tucholke and Laine, 1982; Locker, 1989; McMaster et al., 1989; Locker and 

Laine, 1992). 
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Figure 1.4 Bathymetry map offshore New Jersey showing numerous submarine canyons and 
channels. 

Major slide complexes have also been mapped on the U.S. Atlantic 

continental slope and rise (Embley, 1980; Embley and Jacobi, 1986; Chaytor et al., 

2007). Embley and Jacobi (1986) mapped several large slide complexes along the 

margin (i.e. near Blake Bahama Outer Ridge and off Georges Bank) that extend 

across the continental rise, reaching as far as the 5400 m isobath. Their research 

shows that the upper continental rise offshore New Jersey is characterized by 
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numerous small slides (Embley and Jacobi, 1986). These small slides have either 

failed to generate large slide complexes or the large slide complexes have been buried 

(Embley and Jacobi, 1986). 

In addition to downslope sediment processes, contour-parallel sediment 

transport has occurred on the margin as the result of the Western Boundary 

Undercurrent (WBUC). The WBUC is a deep-sea geostrophic western boundary 

current that flows towards the south along the continental margin contours. Current 

flow is made up of North Atlantic Deep Water that originates from the Norwegian, 

Mediterranean and Labrador Seas and flows to the south beyond the Blake-Bahama 

Outer Ridge (Bulfmch et al. 1982; McCave and Hollister, 1985; McCave and 

Tucholke, 1986). Wtist (1933) first suggested the presence of intensified deep-sea 

western boundary geostrophic currents in the North Atlantic. However, the geological 

effects of the Western Boundary Undercurrent were not given significant recognition 

until many years later when studies by Wtist (1955) and by Stommel (1956) 

reaffirmed the likelihood of strong western deep-sea currents in the Atlantic. 

A study known as the High Energy Benthic Boundary Layer Experiment 

(HEBBLE) conducted extensive quantitative analysis on the WBUC to understand its 

flow dynamics and its interaction with sediments at the seabed. These studies show 

that velocities steadily increase from near-tranquil conditions at seafloor depths of 

4000 m to approximately 40 cm/s between 4900 and 5100 m on the Nova Scotian rise 

(Tucholke et al., 1985). During the study, flows deviated less than 15° from local 

bathymetric contours on average (Tucholke et al., 1985). The HEBBLE study also 

measured a high-velocity flow region known as the "core" of the WBUC. Average 
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current speeds within the core of the WBUC at 5022 m were measured at 32 cm/s, but 

also reached up to 73 cm/s (Richardson et al., 1981; Bulfinch and Ledbetter, 1984; 

Driscoll et al. 1985). 

Another study known as the SYNoptic Ocean Prediction (SYNOP) Central 

Array experiment also made measurements on geostrophic flow rates in the 

Northwest Atlantic Ocean. The SYNOP field program found that mean currents at 

3500-m water depth near 68°W and 38°N (offshore the Grand Banks) flowed towards 

the southwest along bathymetric contours. Measurements of the average speed of 

these currents were 6 cm/s, with events up to 40 cm/s (Shay et al., 1995). 

The depositional influence of the WBUC is evident by the numerous large-

and small-scale bathymetric features that have been observed in the western North 

Atlantic (Stow and Holbrook, 1982; McCave and Tucholke, 1986). Sediment drifts 

are examples of large-scale bathymetric features formed by the WBUC. These 

sediment deposits typically have elongate or ridge morphologies and form as the 

result of sediment accumulation over millions of years (McCave and Tucholke, 

1986). Sediment drifts are also recognized by unconformable reflectors in seismic-

reflection profiles, thick deposits relative to adjacent sediment cover, thick bedding at 

the drift axis and thin bedding at the drift margins, weak internal seismic reflectors, 

and the presence of mud waves and/or undulating reflectors (McCave and Tucholke, 

1986). Small-scale features such as sediment waves, ripples and furrows have also 

been associated with the presence of the deep-sea currents and have been found 

superimposed on larger sediment drift bodies (Flood, 1983; McCave and Tucholke, 

1986). Geological investigations that have used compass-oriented bottom 
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photography show sedimentary structures such as ripples and sediment streamers in 

locations of the predicted WBUC (Heezen and Hollister, 1964; Heezen et al., 1966; 

Schneider etal., 1967). 

Further evidence for the presence of deep-sea geostrophic currents is the 

amount of suspended particulate in the water near the seafloor. This has typically 

been assessed by the water "cloudiness" or "muddiness." The content of suspended 

sediment is though to be higher with increased current speeds (McCave and 

Tucholke, 1986). Bottom photographs that show very cloudy bottom waters have 

been associated with swift deep-sea currents (Schneider et al., 1967). 

Sediments that are associated with geostrophic-current controlled deposition 

are known as contourites (Hollister and Heezen, 1972; Stow and Holbrook, 1982). 

The two main contourite facies identified by Stow and Holbrook (1982) are muddy 

and sandy contourites. Muddy contourites are typically homogenous with irregular 

laminations, layering and lenses and are highly bioturbated (Stow and Holbrook, 

1982). Sandy contourites occur in relatively thin layers (1 to 5 cm) or thicker beds (5 

to 25 cm) (Stow and Holbrook, 1982). These deposits are bioturbated and featureless 

or contain horizontal and cross-laminations (Stow and Holbrook, 1982). The 

stratigraphic composition of contourite sediments varies greatly due to the variability 

of contour current strength, sediment input and the effects of sediment winnowing 

and reworking (Stow and Holbrook, 1982). 

In addition to downslope and contour-parallel processes, geological processes 

that result from the presence of gas have also occurred on the Atlantic margin 

(Tucholke et al., 1977; Mountain and Tucholke, 1985; Dillon et al., 1995; Dillon and 
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Max, 2000). The presence of gas in margin sediments has resulted in the formation of 

gas-hydrates, an ice-like crystalline compound composed of methane gas trapped 

within a lattice of water molecules (Dillon et al., 1995; Dillon and Max, 2000; 

Bohrmann and Torres, 2006). Gas-hydrates form in marine sediments when water and 

methane gas are available under the appropriate pressure and temperature conditions 

(Bohrmann and Torres, 2006). 

Seismic evidence for the presence of sub-surface sediment gas and gas-

hydrate has been shown by an acoustic horizon known as the bottom-simulating 

reflector (BSR) (Tucholke et al. 1977; Dillon et al., 1995; Dillon and Max, 2000). 

The BSR is thought to be an acoustic surface generated by the phase boundary 

between free gas and gas-hydrate charged sediments (Hovland and Judd, 1988; 

Kvenvolden, 2000). The interface is caused by fast sound speed in gas-hydrate-rich 

sediment and slow sound speed in the underlying sediment containing free gas 

(Kvenvolden, 2000). The BSR is typically distinguishable from other seismic 

horizons because it cuts across acoustic reflectors and mimics the seafloor (Tucholke 

et al. 1977; Kvenvolden, 2000). 

Mountain and Tucholke (1985) and Mountain (1987) have suggested that the 

moderately high organic-carbon accumulation rates that formed the buried feature 

known as the Chesapeake Drift (Figure 1.5) have resulted in the presence of gas on 

the New Jersey margin. The sediments that form the Chesapeake Drift were derived 

from the adjacent prograding shelf delta active during the Miocene-Pliocene time 

(Tucholke and Mountain, 1986). High sediment accumulation rates thought to have 

been present during the construction of the Chesapeake Drift were likely able to bury 
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organic material before it could be consumed by benthic organisms (Mountain, 

personal comm., 2008). These factors may have led to a significant gas reservoir 

beneath the upper continental rise and the presence of sub-surface gas in the 

sediments. 
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Figure 1.5 Map showing the location of the buried Chesapeake Drift on the U.S. Atlantic margin. 
Map modified from Tucholke and Mountain (1986) and Pratson and Laine (1989). Bathymetric 
contours are at 500-m intervals 
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1.3 Previous Research in the Region of the Low-Backscatter Anomaly 

Previous studies have suggested that bottom currents have heavily influenced 

the seafloor region corresponding to the location of the low-backscatter anomaly 

(Schneider et al., 1967; Mountain and Tucholke, 1985; Stapleton, 1987; Locker 1989; 

Pratson and Laine, 1989). Pratson and Laine (1989) suggested the morphology of the 

seafloor near the low-backscatter anomaly has resulted in accelerated speeds of the 

WBUC. These locally intensified current speeds have caused erosion and non-

deposition of sediments, resulting in an erosion scar where seismic reflectors shown 

by seismic-reflection profiles outcrop at the surface (Locker, 1989; Pratson and 

Laine, 1989). Locker (1989) also designated this seafloor region as a "bypass" area. 

Sediment gravity flows that passed across the region that corresponds to the low-

backscatter anomaly are thought to have bypassed it with little deposition due to 

relatively steeper slopes. Additionally, Locker (1989) suggested that confinement of 

downslope sediment flows within Hudson and Wilmington channels (Figure 1.2) has 

caused sediment to bypass around the region corresponding to the low-backscatter 

anomaly. 

Interpretations of 6.5-kHz GLORIA sidescan sonar mosaics have suggested 

that the areas of uniform low-backscatter between Hudson and Wilmington channels 

were largely composed of hemipelagic drape (Schlee and Robb, 1991). Schlee and 

Robb (1991) indicated that down-slope sediment input and pelagic sedimentation 

processes were dominant on the continental margin near the location corresponding to 

the low-backscatter anomaly. Although evidence of bottom scouring due to the 
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WBUC was seen in other regions of GLORIA data, the presence of the WBUC was 

not apparent in the area near Knauss Knoll (Figure 1.2) (Schlee and Robb, 1991). 

1.4 Study Objective 

The objective of this study is to investigate the origin of the low-backscatter 

anomaly on the New Jersey continental margin using the surface and sub-surface 

MBES data and chirp sonar profiles, along with previously collected seismic 

reflection data and sediment cores. Several hypotheses for the geological origin of the 

low-backscatter anomaly are presented based on the 2004 to 2005 bathymetric survey 

data and previously collected seafloor data. 
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CHAPTER 2 

METHODS 

2.1 Seafloor Mapping Survey 

Multibeam echosounder (MBES) and 3.5-kHz chirp seismic-reflection data 

used in this study were collected on 5 cruises conducted in 2004 and 2005 (Gardner, 

2004; Cartwright and Gardner, 2005). Three 30-day cruises took place in 2004 aboard 

the USNS Henson and two 30-day cruises in 2005 aboard the USNS Pathfinder. A 

MBES backscatter mosaic was later created for this study and added to the data set. 

Cruise and post-cruise methods are summarized in the following section. Data sets 

are available at http://www.ccom.unh.edu. 

2.1.1 Data Aquisition 

MBES data were acquired using a Kongsberg-Simrad EMI21A 12-kHz 

multibeam echosounder. The EM121A is hull-mounted MBES system that creates a 

fixed 120° swath by forming 121 l °x 1° beams. This geometry provides swath width 

coverage of 3.4x water depth in the across-track direction. Across-swath bottom 

coverage was attained using an equiangular beam spacing configuration. Forming 

acoustic beams spaced by equal angles across the receive sector provides denser 

spacing for near-nadir beam soundings than an equidistant configuration, reducing 

sounding gaps between beam footprints. The MBES was operated using a 15-ms 
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transmit pulse, which achieves a vertical resolution of- 0.3 to 0.5% of the water 

depth or about 12 to 20 m resolution in 4000 m of water (Kongsberg-Simrad system 

specifications). 

Static biases for the EMI21A MBES were measured by conducting patch tests 

before each survey cruise. Offsets in roll, pitch, yaw and timing were corrected during 

the patch tests to remove static offset biases from the MBES data. Cross-check 

analyses were also used to determine the statistical difference between depth 

soundings from crossing lines. These analyses were used to compute the vertical 

accuracy of the MBES. For further details on the patch test and cross-check analysis 

procedures used for this MBES data set, refer to Gardner (2004) and Cartwright and 

Gardner (2005), which can be found at http://www.ccom.unh.edu. 

Vessel attitude and positioning measurements were collected for vessel 

motion compensation during the survey. Positioning data were referenced to the 

WGS84 ellipsoid as the horizontal datum and instantaneous sea level for the vertical 

reference. Motion data were collected by an interfaced Applanix POS/MV 320 

version 3 inertial motion unit (IMU) with a Wide Area Differential-Aided Global 

Positioning System (DGPS). Fugro SkyFix differential signals provided position 

fixes within better than 5 m horizontal accuracy (Gardner, 2004; Cartwright and 

Gardner, 2005). A Hippy motion reference unit (MRU) was used to measure pitch 

and a Sperry Model Mark 39 gyro was used to monitor yaw. Integration of these 

sensors provided vessel attitude measurements for real-time motion-compensated 

beam steering by the EM121A multibeam system. 
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Sippican model T-10 (maximum depth ~200 m) and Deep Blue (maximum 

depth -760 m) expendable bathythermograph's (XBT's) were used during the 

mapping surveys to calculate the sound-speed profile in the water column. The 

XBT's measured temperature as a function of water depth. Sound-speed was 

calculated from the measured water temperature to accurately trace each receive-

beam path through the water column. Casts were taken every 6 hours as well as 

whenever it was found necessary to calculate a new sound-speed profile. The XBT's 

were calibrated during each patch test by comparing their sound-speed profiles to a 

sound-speed profile calculated from a SeaBird model SBE-19 CTD. 

A hull-mounted ODEC Bathy2000 3.5-kHz chirp subbottom profiler was used 

to acquire high-resolution shallow seismic-reflection profiles during the MBES 

surveys. The 3.5-kHz chirp subbottom profiler provides shallow sub-surface images 

of marine sediments. The chirp system transmits a frequency-modulated (FM) swept 

pulse over a broad bandwidth instead of a continuous waveform and also creates a 

beam pattern with minimal side lobes (Leblanc et al. 1992). This results in high 

signal-to-noise ratio and the ability to detect small acoustic impedance contrasts in 

sediments (Shock et al., 1988). 

2.1.2 Data Processing 

The University of New Brunswick - Ocean Mapping Group's SwathEd 

software was used to flag data points in the raw multibeam data that were considered 

'bad' soundings. The cleaned data were merged with navigation to produce ASCII 

grids for both bathymetry and backscatter. ASCII grids of longitude, latitude, and 
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depth and longitude, latitude and 8-bit digital number value of backscatter were 

created at 100-m cell-resolution. For more details, see Gardner (2004) and Cartwright 

and Gardner (2005). 

Digital terrain models (DTM's) were created from the processed multibeam 

bathymetry and backscatter ASCII grids using Fledermaus software (see Mayer et al., 

2000 for details). Shading and color maps were applied to the gridded data and 

assembled into Fledermaus files to created sun-illuminated color-shaded DTM's. A 

DTM was created for multibeam bathymetry and another one was created by draping 

the co-registered backscatter intensity values over the bathymetry. 

A multibeam sonar backscatter mosaic was created using Geocoder version 

3.2 level 2 software to further analyze the EM121A backscatter data for this study. 

Geocoder was developed at CCOM for multibeam sonar backscatter data processing 

(Fonseca and Calder, 2005). Multibeam sonar data were imported as generic sensor 

format (.gsf) files. Radiometric and geometric corrections were applied to the 

backscatter data to account for acoustic losses through the water column, the position 

of acoustic beams on the seafloor and the effects of the local seafloor slope (Fonseca 

and Mayer, 2007). Although Geocoder is also capable of correcting backscatter data 

for the sonar beam pattern, these corrections were not made for this study. 

The Geocoder corrected backscatter data were mosaicked to produce a 100 m 

cell resolution image projected in Universal Transverse Mercator (UTM) coordinate 

system (zone 19N). Beam averages were used to compute Geocoder backscatter 

intensity. The corrected backscatter mosaic was used in Geocoder to quantitatively 

measure the average backscatter values in decibels (dB) within seafloor areas. A geo-
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referenced backscatter mosaic was also exported for spatial analysis in ESRIArcMap 

9 Geographic Information Systems (GIS) software. 

Chirp seismic-reflection profile data were processed using Sonar Web 

software. Raw chirp sonar data were imported as DAT files (.dat) into SonarWeb and 

chirp sonar lines were exported as viewable hypertext (.html) and image (.jpg) files. 

The seismic-reflection profiles were not corrected for changes in sound speed that 

were incurred within the water column and upon seafloor penetration of the chirp 

sonar pulse. Therefore, exported HTML and JPEG files also showed chirp sonar data 

using a constant (1500 m s'l) sound speed. 

2.2 Data Visualization and Analysis 

The bathymetry data were compiled with pre-existing U.S. Geological Survey 

(USGS) 6.5-kHz GLORIA sidescan-sonar data, Lamont-Doherty Earth Observatory 

(LDEO) single-channel seismic-reflection profiles and sediment cores descriptions 

from the National Geophysical Data Center (NGDC). A GIS project was created 

using ESRI ArcMap GIS software to make spatial comparisons of backscatter 

intensities between the multibeam data, the GLORIA sidescan-sonar mosaic and 

collection locations of NGDC cores descriptions within a spatially referenced data 

frame. Three-dimensional visualization scenes were created using Fledermaus 

software to view seismic reflection profiles within a geo-referenced 3-D data space 

with multibeam backscatter and bathymetry data. 

Fledermaus software was used for viewing the 12-kHz multibeam data and 

seismic-reflection profiles collected near the low-backscatter anomaly. Data were 
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viewed as a Fledermaus scene in WGS84 geographic projection. Chirp seismic-

reflection profiles collected during the 2004 and 2005 bathymetric surveys were 

imported as geo-referenced vertical image files into Fledermaus scenes by entering 

latitude and longitude coordinates for the start and end control points for each profile 

line. 

A search was also conducted for previously collected single-channel seismic-

reflection profiles using the GeoMapApp seafloor data archive developed by Lamont-

Doherty Earth Observatory. Airgun (25-in3) single-channel seismic-reflection line 

V2114 collected by LDEO in 1965 was found to cross the low-backscatter anomaly. 

The digitized section of LDEO profile V2114 crossing the low-backscatter anomaly 

was extracted from the GeoMapApp database as an image (.jpg) file. These data were 

imported into the Fledermaus scene containing multibeam backscatter and 

bathymetry as a geo-referenced vertical image using start and end control points. 

Comparative analysis between backscatter data and seismic-reflection profiles 

was not made within the Fledermaus scene because of the spatial inaccuracies and 

misalignments that result from using too few control points. The inaccuracies result 

from along track changes in survey speed. 

A GIS map was created using ESRJArcMap 9 GIS software to compile the 

2004 and 2005 multibeam data sets with 6.5-kHz GLORIA sidescan-sonar data and 

previously collected sediment cores using the WGS84 geographic coordinate system. 

A 250-m cell-resolution composite mosaic of the full U.S. Atlantic GLORIA data was 

downloaded from the U.S. Geological Survey map server website 

(http://coastalmap.marine.usgs.gov) as a TIF image (.tif) with a geo-referencing 
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world file (.tfw). The horizontal reference datum of the downloaded image was 

NAD27 - Clarke 1866 referenced geographic coordinate system. The mosaic image 

was reprojected into WGS84 geographic coordinate system using the ArcToolbox 

"Projections and Transformations" function in ArcGIS. This conversion was used to 

display the GLORIA data within the GIS map in the same projection as the MBES 

data and sediment core information. The backscatter mosaics were examined together 

to determine if the low-backscatter anomaly was resolved in both the 6.5-kHz 

sidescan-sonar data the 12-kHz multibeam backscatter (Figure 2.1). 
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Figure 2.1 Map showing view of 6.5-kHz GLORIA sidescan-sonar mosaic with other layers in 
ArcGIS. GLORIA data were viewed to compare backscatter intensity near the low-backscatter 
anomaly found in the multibeam data. 
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Collection locations of sediment cores previously collected on the U.S. 

Atlantic margin archived at the NGDC database were also plotted in the GIS map 

with MBES and sidescan-sonar data. Collection locations of core samples from all 

available core repositories participating in the NGDC data archive were extracted 

from the NGDC ArcIMS map interface and exported as an ArcGIS compatible shape 

file in the WGS84 geographic coordinate system. The exported shape file was plotted 

as a point shape file in ArcMap to identify the spatial location of existing core 

samples in reference to the low-backscatter anomaly seen in the multibeam data 

(Figure 2.2). 
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Figure 2.2 Map showing collection locations of all NGDC archived cores (yellow dots) over 
backdrop of multibeam backscatter data and NGDC/NOAA ETOP02 and Coastal Relief Model 
bathymetry (sun-illuminated hillshade). The low-backscatter anomaly is outlined by the white-
dashed line. 

Latitude and longitude coordinates for the pixel locations of MBES 

backscatter intensity changes along survey tracklines were found in geo-referenced 

multibeam backscatter imagery within the GIS map. The coordinates of backscatter 

strength transitions were then found in the chirp data files created in SonarWeb, 

which provide a latitude and longitude coordinate for each data pixel in the seismic-
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reflection profile imagery. This pixel-matching method was used to compare MBES 

backscatter strength measured at the seafloor with corresponding subbottom structure 

shown by high-resolution chirp sonar profiles. 

Pixel matching was also used to determine correlations between multibeam 

backscatter data and LDEO single-channel seismic-reflection profile line V2114. 

Digitized versions of airgun single-channel seismic-reflection profiles within the 

GeoMapApp database provide latitude and longitude coordinates for each pixel within 

the seismic-reflection line imagery. Locations of backscatter transitions were 

determined along the survey trackline within the geo-referenced multibeam data and 

then found within the LDEO airgun single-channel seismic-reflection profile. 

2.3 Backscatter Classification 

Areas of backscatter strength and "texture" were characterized in the 

backscatter data into a classification scheme developed for this study. Backscatter 

strength values were separated into high (-25 to -33 dB), medium (-34 to -42 dB) and 

low (-43 to -51 dB). Visual patterns identifiable in the acoustic backscatter data were 

used to characterize the backscatter texture of seafloor regions. Textural 

characterizations were determined based on the qualitative nature of the backscatter 

variability and are referred to as "homogenous" where little backscatter variability 

can be visually identified or as "mottled, rilled, or streaky" where variable backscatter 

patterns are seen. 
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2.4 Chirp Sonar Profile Interpretation 

Previous studies have interpreted sedimentation processes on the U.S. Atlantic 

continental margin from 3.5-kHz seismic-reflections profiles (Damuth, 1980; 

Embley, 1980; Pratson and Laine 1989). These studies have made qualitative 

correlations between the physical appearance of acoustic stratigraphy found in 3.5-

kHz subbottom profiles and sedimentary processes such as sediment drape, mass-

wasting, and contour-current reworking. The seismic-reflection profiles for this study 

were collected using a 3.5-kHz subbottom profiler, however, the Bathy2000 

subbottom profiler uses a frequency modulated chirp waveform as its transmit pulse. 

As a result, higher-resolution and perhaps slightly different physical appearance 

would be expected from the chirp seismic-reflection data than the continuous wave 

pulse 3.5-kHz subbottom profiler used by Damuth (1980), Embley (1980) and 

Pratson and Laine (1989). However, the correlations between sediment processes and 

reflectors shown by 3.5-kHz subbotom profiles observed in previous studies by 

Damuth (1980), Embley (1980) and Pratson and Laine (1989) were considered 

comparable when making interpretations. 

2.5 Sediment Core Analysis 

The compiled GIS map shows that sediment cores EN101-PC01, EN084-

GC02, and RC10-PC01 were collected near the low-backscatter anomaly (Figure 

2.3). Cores EN101-PC1 and EN084-GC2 were collected in the 1980's by the 

University of Rhode Island - Graduate School of Oceanography (URI-GSO) from the 

R/V Endeavor and RC10-PC1 was collected by LDEO from the R/V Robert Conrad 
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in 1965. Cores EN101-PC01 and RC10-PC01 were collected with a piston corer and 

EN084-GC02 was collected using a gravity corer. Core information is summarized in 

Table 2.1. 

Cores EN101-PC01 and EN084-GC02 were photographed (Figure 2.4 and 

Figure 2.5) and visually described at the URI-GSO core repository. An original visual 

core description was also acquired from the URI-GSO core repository for core 

EN101-PC01. However, no documentation was found for core EN084-GC02. A 2-

cm3 sample was collected from both cores every 5 cm down the length of the core and 

at noticeable facies boundaries for grain-size and smear-slide analyses (Figure 2.4 and 

Figure 2.5). Sampling intervals were not always constant because of previously 

sampled and unavailable core sections. Core EN101-PC01 contains numerous voids 

and sections of previous sample removal. Core EN084-GC02 is nearly complete with 

the exception of the unavailable section from 120 to 165 cm and was previously 

unsampled. 

Core RC10-PC01 was photographed (Figure 2.6) and visually described at the 

LDEO core repository. Original photographs (Figure 2.7) and stratagraphic 

descriptions were also acquired from the LDEO core repository. Two-cm3 samples 

were collected at 10 cm intervals from the core top to 100 cm and at depths 298 cm 

and 725 cm by core curators at LDEO for grain-size and smear-slide analyses (Figure 

2.6 and Figure 2.7). 
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Figure 2.3 Core locations mapped with multibeam backscatter backdrop. 

Table 2.1 Summary table of core samples analyzed for this study. 

Core ID 
EN084 GCOi 
EN101 PC01 
RC10 PC01 

Institution 
URI-GSO 
URI-GSO 

LDEO 

Date 
5/20/1982 
6/00/1983 
12/3/1965 

Length (cm) 
280 
800 
1059 

Core Type 
Gravity 
Piston 
Piston 

Latitude 
36.270000 
37.075000 
37.683000 

Longitude 
-71.868333 
-71.713330 
-70.850000 

Water Depth (m) 
4052 
3817 
3911 
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Figure 2.4 Recent photographs of core EN101-PC01 showing sample depths. White spaces 
indicate missing core sections. 
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Core Photos EN084-GC02 

0-150cm 1SC-300cm 

• 2 5 -

.QQmi 

? o 
~ 75-
SZ 
£L a 

100— 

125-

i*5n. 

^^nl^^H* 

* Br 

* HfHf* 
* 91 * * H i 
* WSm 
* H B 
* HB 

* B l 
* BH 
* IB 
* mi 
* mgm 
* H 

I* 
!* 
* 

^ 

* 
g 

* 

* 

A 

* US* 
* 9HBP* 
* IB* 
* MSB* 

* H B * 

* HH* 

^ - sample 
depths 

Figure 2.5 Recent photographs of core EN084-GC01 with sample depths. White space indicates 
missing core sections. 
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Figure 2.6 Recent photographs of core RC10-PC01 showing sample depths. 
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Original Core Photos RC10-PC01 
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Figure 2.7 Black and white photographs of core RC10-PC01 showing sample depths. 
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2.5,1 Grain-Size Analysis 

Grain-size analyses were performed on each of the sediment core sub-samples 

at the URI - GSO using a Malvern Mastersizer Hydro 2000G. The Malvern 

Mastersizer measures the distribution of grain size using laser diffraction and is 

capable of measuring particle diameters from 0.02 urn to 2000 urn with low 

uncertainties (Malvern manufacturer specifications). Sperazza et al. (2004) 

determined that the overall uncertainty for particle size analysis at a 95% confidence 

interval is - 1 % using the Malvern Mastersizer 2000. Particle-size distributions are 

calculated by passing a parallel laser beam through a sediment sample in suspension 

and measuring the angles of the diffracted light on the instrument's light detector 

(McCave et al. 1986; Wen et al., 2002; Sperazza et al., 2004). The angular 

distribution and intensity of the diffracted light are measured and fit to a theoretical 

model for grain-size distribution and particle properties (Sperazza et al., 2004). 

Fraunhofer and Mie are the two theories commonly applied in particle-size analysis 

using laser diffraction (McCave et al. 1986; Wen et al, 2002; Sperazza et al., 2004). 

Both theories express the relationship between the angular distribution of light 

intensity and particle radius as a function of the scattering angle and assume that 

particles are spherical in shape (Wen et al., 2002). The Fraunhofer theoretical 

diffraction model was used for the sediment analyzed in this study because the 

refractive index of the analyzed sediment was unknown. 

Samples were prepared for grain-size analysis at the University of New 

Hampshire using a mixed solution of sodium hexametaphosphate (NaPOs)6 

dispersing agent and hydrogen peroxide (H2O2). The mixed solution contained 10 ml 
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of 4.0 g/1 (NaP03)6 and 10 ml of 3% H202. The (NaP03)6 was used to break 

electrostatic forces between clay particles and prevent flocculation during grain-size 

analysis and H2O2 was used to digest organic carbon within the sediment. Sediment 

samples weighing 0.2 to 0.25 g (wet weight) were added to a solution of (NaPC^ 

and H2O2 and soaked for 24 hrs or longer. The mixture of sediment, (NaP03)6 and 

H2O2 were immersed in a sonication bath for 10 min prior to grain-size analysis to 

further disaggregate particles as described in methods by Sperazza et al. (2004). This 

mixture was poured into the basin of the Malvern Mastersizer Hydro 2000G 

dispersion unit immediately after sonication for grain-size analysis. 

Grain-size data were reported from the Malvern Mastersizer as percent 

volume of the sample. Percentages were binned using grains sizes for particle 

diameter in both microns and phi {(/>) units. The phi scale is a logarithmic function of 

particle diameter (d) where: 

</> = -\og2{d) 

The reported percent volume distributions were used to compute the mean grain size 

for each sediment sample. Average grain sizes were computed using the statistical 

software package JMP version 6 and plotted as a function of the sub-sample depth for 

each core. Plots were used to show the variability of mean grain size throughout each 

core and to identify discrete events of grain-size change. Mean grain sizes from the 

grain-size analysis results are presented in the Results section (Chapter 3). 
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2.5.2 Smear-Slide Analysis 

Sediment composition for cores RC10-PC01, EN101-PC01, and EN084-

GC02 was examined by creating smear slides from each sediment sample. A small 

amount of sediment (scooped using the end of a toothpick) and several drops of 

deionized water were spread uniformly on a glass slide using a rounded toothpick. 

The slide was placed on a hot plate (-120° C) to evaporate the water from the 

sediment. A cover slip was glued over the sediment using several drops of optical 

adhesive and cured under ultraviolet light. Smear slides were viewed using a light-

polarizing microscope under plain and cross-polarized light (Figure 2.8 and Figure 

2.9). 

Visual estimates of mineral-grain types, biogenic components, and grain sizes 

were recorded using the visual chart for volume percentage by Terry and Chilingar 

(1955). Relative abundances of sand, silt and clay were estimated using the grain-size 

definitions by Wentworth (1922). Sediments composed of >60% siliciclastic 

components were classified using the textural name (i.e. silt or clay). Sediments 

containing 40% to 60% biogenic components were classified using the Ocean 

Drilling Project (ODP) scheme for "mixed sediments" derived by Mazzullo and 

Graham (1988). The mixed sediment classification scheme names sediments using a 

fossil modifier followed by the principal siliciclastic component. The fossil modifier 

is ordered as the minor biogenic constituent followed by the major constituent. The 

suffix "bearing" was used to describe modifier components with abundances 

measuring 5% to 10% of the sediment sample and "rich" was used for describing 

components in the 11% to 40% range. For example, a sample containing 15% 
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foraminifera, 35% nannofossils and 55% clay would be classified as a foraminifera-

rich nannofossil clay. 
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Figure 2.8 Exampe of a smear slide sample showing nannoplankton-rich silty clay sediment from 
core EN101-PC01 (10 cm) under lOOx magnification in plain polarized light. Cross-polarized 
light (shown in the next figure) shows many of the small grains are calcareous coccoliths. 
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Figure 2.9 Example of a smear slide sample of core EN101-PC01 (10 cm) under lOOx 
magnification in cross-polarized light. 

2.5.3 AMS-Radiocarbon Dating 

Four sediment samples from depths of 10, 300, 345 and 355 cm from core 

EN101-PC01 were sieved using a 63-um mesh and a mixed species of planktonic 

foraminifera consisting of Globorotalia menardii, Globoquandrina dutertrei, 

Globigerinoides ruber, Globigerinoidersacculifer, Sphaeroidinella dehiscens and 

Orbulina universa were selected for accelerated mass spectrometry (AMS)-

radiocarbon dating at the National Ocean Science Accelerated Mass Spectrometry 

(NOSAMS) facility at Woods Hole Oceanographic Institution. Samples were freeze-

dried before sieving using a Labconco Freezezone 2.5 freeze drier for 24 hrs to 

remove water from the sediment. Freeze-dried sediment samples were then 



disaggregated using 5g/l solution of (NaPC^ and shaken for 3 to 4 hrs. Samples 

were washed through a 63-uni size sieve to separate the coarse-grain sediment 

fractions at the sand-silt boundary. Planktonic foraminifera were identified and 

picked using taxonomic species descriptions and photographs by Be (1977). 

Samples were selected from the upper core section as a precaution to remain 

within the bounds of 14C dating (-60,000 yrs) (Plastino et al., 2001) based on 

estimated sedimentation rates of 1 to 10 cm/1000 yr for the outer New Jersey margin 

(Mountain et al., 2007). Additionally, foraminifera were not picked from core 

sections containing evidence of turbidites to avoid misleading ages due to sediment 

reworking. 

Radiocarbon ages were determined at the NOSAMS facility using 5568 yrs as 

the half-life of radiocarbon following the convention outlined by Stuiver and Polach 

(1977) and Stuiver (1980). Reservoir corrections were applied to these sample ages 

using the calibration data set provided by CALIB version 5.0 (Stuiver and Reimer, 

1993; Reimer et al. 2004). These corrections account for the regional 14C variations in 

the marine reservoir that deviate from the atmospheric 14C record. The CALIB 

program converts radiocarbon age to calibrated calendar years by calculating the 

probability distribution of the sample's true age. The calibrated calendar age 

distribution is calculated using a global marine calibration curve known as Marine04 

and a user input local correction (AR) and local correction error (AR error), which 

adjusts for differences between the global ocean curve and regional 14C activity that 

result from local oceanic processes (Stuiver and Braxiunas 1993; Reimer et al. 2004). 
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Values for AR were found for the region near the collection location of core 

EN101-PC01 using the global data set provided at the website 

http://www.calib.qub.ac.uk/marine. The locations of the regional reservoir corrections 

were plotted in ArcMap GIS software to determine the distances from the location 

collection of core EN101-PC01 (Figure 2.10). A distance-weighted average was 

calculated for observed AR and AR error values located along the New Jersey and 

Massachusetts coasts and Georges Bank provided by the data set (Table 2.2). The 

distance-weighted average of these values was used because the data set provided 

multiple AR correction values that were not equidistant from the offshore collection 

location of core EN101-PC01. The distance-weighted average AR and AR error 

values were then implemented in CALIB version 5.0 to calculate the calibrated 

calendar age for the sample from 10 cm depth. Corrections were not applied to 

samples 300, 345 and 355 cm because the measured radiocarbon ages for these 

samples were outside the bounds of the CALIB program calibration curve, which only 

exists for samples younger than 26,000 yr. 
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Figure 2.10 Locations of the observed AR and AR error corrections used to compute a distance-
weighted average regional reservoir correction for radiocarbon ages in core EN101-PC01. 
Station site numbers are shown in parentheses. Station information is shown in Table 2.2. 

Table 2.2 Station information used for reservoir corrections applied to radiocarbon age 
measured for sample 10 cm in core EN101-PC01. 

Location 
Georges Bank, Nova Scotia 
Vineyard Sound, MA 
Vineyard Sound, MA 
Vineyard Sound, MA 
Atlantic City, NJ 
Shark River, NJ 
Gay Head, MA 

Site 
32 

768 
769 
772 
774 
775 
777 

Distance (km) Distance Weights 
500 0.13 
480 0.13 
480 0.13 
480 0.13 
350 0.18 
400 0.16 
480 0.13 

AR 
94 

120 
120 
230 
170 
130 
140 

Arithmetic Avg 119 
Distance Weighted Avg 145 

AR error 

22 
40 
60 
70 
50 
60 
60 
44 
52 
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CHAPTER 3 

RESULTS 

3.1 Introduction 

The geological characteristics of the seafloor near the low-backscatter 

anomaly are described in the following section using multiple types of seafloor data. 

Multibeam sonar bathymetry data are presented to describe the regional seafloor 

morphology near the low-backscatter anomaly. Slope gradients and seafloor features 

are identified to determine bathymetric indications for margin sediment processes. 

Multibeam sonar backscatter data are presented to analyze correlations between the 

seafloor features identified in the multibeam sonar bathymetry and the measured 

acoustic response from the seafloor. The acoustic sub-surface stratigraphy is 

described using 3.5-kHz chirp and airgun single-channel seismic-reflection data. 

These data show the subbottom structure of seafloor features identified in the MBES 

data and additionally show sub-surface features that are not evident from the surface 

seafloor data. The lithologic composition and age of seafloor sediments near the low-

backscatter anomaly is described using sediment cores. These samples are described 

in reference to the sonar data to identify the sediment facies that correspond to the 

acoustic scattering response seen in the multibeam and sidescan sonar backscatter 

intensity and subbottom structure observed in the seismic-reflection profiles. 



3.2 Multibeam Sonar Bathymetry 

The 12-kHz multibeam sonar bathymetry collected offshore New Jersey 

shows a range in water depths from approximately 2000 m to more than 4400 m 

(Figure 3.1). The seafloor typically has slope gradients less than 1° within these water 

depths on the New Jersey continental margin (Figure 3.1). Seafloor gradients 

decrease from ~1° near the upper bounds (~2000 m water depth) of the data to ~0.2° 

near the 3000 m isobath. Bathymetry data show a break in slope that occurs near the 

3000 m isobath. This break in slope has been identified by Mountain (1985) as the 

location of the Chesapeake Drift, the buried sediment drift that formed on the middle 

U.S. Atlantic continental margin during the Pliocene-Miocene ~5 to 10 mya. Seafloor 

gradients increase to -0.7° between the 3000 m to 4100 m isobaths beyond this slope 

break. This section of seafloor has been previously noted and referred to as the 

seaward flank of the buried Chesapeake Drift (Mountain and Tucholke, 1985; 

Mountain, 1987; Pratson and Laine, 1989). Seafloor gradients beyond the 4100 m 

isobath in the bathymetry data measure -0.2°. The low-backscatter anomaly is 

located on the lower section of the relatively steep (~0.7°) seafloor, immediately 

upslope from the flatter (-0.2°) seafloor gradients found beyond the 4100 m isobath 

(Figure 3.1). 
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Figure 3.1 Perspective view (looking north) showing gray hillshade of the 12-kHz multibeam 
bathymetry with NOAA ETOP02 and Coastal Relfef Model as backdrop. BaftymTrk i Z e 
vertical exaggeration ( ^ ) = lOx. Low-backscatter anomaly outlined in white-dashed to™ 
Bathymetric profile AA' across the New Jersey margin showing seafloor gradients. Average 

ixssssssssrthe top of the prof,le-Proffle indicates the approximate ,Ltion 

The bathymetric data on the New Jersey margin also show that the seafloor is 

cut by many deep-sea channels. Two of the major channels are Hudson and 
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Wilmington channels (Figure 3.1). The Wilmington channel (also called the 

Baltimore-Wilmington channel) begins at the confluence of numerous continental 

slope canyons (Figure 3.2). This confluence has been referred to as the Baltimore-

Toms gather area by Schlee and Robb (1991). 
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Figure 3.2 MBES bathymetry data overlaying NOAA ETOP02 and Coastal Relief Model 
showing slope canyons that converge into Wilmington channel. 



Hummocky and wavy seafloor features are observed within the Baltimore-

Toms gather area near the base of the continental slope on the upper continental rise 

where seafloor gradients are low (0.2°) (Figure 3.3). The hummocky seafloor 

morphology is most prevalent within the gather area above Wilmington channel. 

However, the wavy seafloor features are also found across the seafloor between the 

gather area and Hudson channel. 

Figure 3.3 Bathymetry data (gray sun-illuminated hillshade) showing hummocky and wavy 
seafloor features near the base of the continental slope where seafloor gradients are low. 



Wilmington channel forms a large bend just beyond the gather area 

confluence between the 3200 m and 4000 m isobaths. In this section of the channel, 

the walls are steep and the channel is incised approximately 300 m. The channel 

begins to shallow in its incision depth from 300 m to less than 75 m beyond the 4000 

m isobath and broadens in width from 4 km to 10 km. The bathymetry data show 

hummocky seafloor immediately outside the main channel to the south beyond the 

4000 m water depth (Figure 3.4). 
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Figure 3.4 Bathymetry data showing hummocky seafloor at the terminus of Wilmington channel. 

Hudson channel is located nearly 150 km northwest of Wilmington channel. 

Bathymetry data show a less distinct gather area than the Baltimore-Toms gather area 

(Figure 3.5). However, the bathymetry data show several canyons that converge into 

Hudson channel. 
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Figure 3.5 Map showing bathymetry data where slope canyons converge into Hudson channel. 

Hudson channel increases its incision from 100 m to 150 m near the 2500 m 

isobath up to 500 m between the 3000 m to 4000 m isobaths. The incision depth 

shallows to less than 150 m beyond 4000 m water depth and the channel broadens in 

width from 5 to 11 km. Hummocky seafloor is observed outside of the channel on 

both sides in this section (Figure 3.6). 
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Figure 3.6 Bathymetry data showing hummocky seafloor at the terminus of Hudson channel 

The MBES bathymetry data also show five, smaller channels located between 

Wilmington and Hudson channels. The channels are most distinct on the section of 

seafloor containing steeper (-0.7°) gradients (Figure 3.7). Bathymetric profile BB' 

shows that channels are 2 to 3 km wide and incise 20 to 100 m into the sediment 

(Figure 3.7). 
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Figure 3.7 Perspective view (looking landward and upslope) of bathymetry data showing five, 
small channels (a-e). Contours shown in black at 500-m intervals. Bathymetry image shown with 
lOx vertical exaggeration and the bathymetric profile shown with 50x vertical exaggeration. 

The multibeam sonar data also reveal that the small channels extend across the 

section of gentle seafloor gradients (~Q.2°) between the 2500 m and 3000 isobaths 

(Figure 3.8). Channel incision in this shallow sloping section is typically less than 30 

m. 
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Figure 3.8 Bathymetry data (gray sun-illuminated hillshade) showing the small channels 
extending upslope across the gently dipping seafloor. Thick arrows pointing to upslope channel 
sections. 

"Bowl-shaped" features within the small channels were previously identified 

by Butman et al. (2006) and are also observed in the bathymetry data for this study. 

These bathymetric depressions occur near the 3000 isobath at the start of the steeper 

seafloor section (Figure 3.9). The bowl-shaped features measure approximately 15 to 

40 m in depth. 
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Figure 3.9 Map view of bathymetry data showing bowl-shaped depressions near the 3000 
isobath. Channels are labeled a (farthest southwest) through e (farthest northeast). m 

Similar bathymetric depressions are also observed further downslope within 

the small channels (Figure 3.10). These features vary in size, but are generally the 

width of the channel and measure approximately 20 m in depth. 
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Figure 3.10 Map view of bathymetry data showing bathymetric depressions within the small 
channels. 

The three channels farthest to the west (a to c) appear to terminate within an 

area of rough seafioor near 4000 m water depth (Figure 3.11). The rough area consists 

of bathymetric depressions similar to those observed within the small channels. The 

depressions are smaller than those observed in the small channels and measure up to 2 

km wide and 25 m deep. The two channels farthest to the east (d and e) continue 

beyond the 3600 m isobath outside the rough seafioor, but become less defined once 

beyond the 4000 m isobath. 
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Figure 3.11 Rough seafloor consisting of bathymetric depressions found downslope from small 
channels. 

Knauss Knoll (Lowrie and Heezen, 1967) is located immediately down-slope 

from the small channels and rough seafloor (Figure 3.12). The base of the seamount is 

located below 4000 m and the peak rises to above 3000 m water depth. A sediment 

drift is observed on the seamount's northeast side. The sediment drift is elongate in 

shape, aligning northeast to southwest (-225° from tail to seamount) and rises upward 
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as it nears the seamount. The sediment drift was previously observed and named 

Krause Foredrift by Lowrie and Heezen (1967). 

Figure 3.12 Bathymetric perspective image of Knauss Knoll and Krause Foredrift looking 
landward towards the northwest. Vertical exaggeration = lOx. 

The bathymetry data also show a sediment ridge that extends between the 

3000-m and 3500-m isobaths near the bend in Wilmington channel (Figure 3.13). The 

axis of the sediment ridge is oriented northeast-southwest and is parallel to 

Wilmington channel before the channel begins to turn to the southeast near the 3500 

isobath. The ridge extends from the break in slope found at the 3000 m water depth. 
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Figure 3.13 Multibeam sonar bathymetry data (gray, sun-illuminated hillshade) showing 
sediment ridge near Wilmington channel. 
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An overview of described features shown in the bathymetry data are shown in 

Figure 3.14. 

Figure 3.14 Overview of bathymetry data with labeled bathymetric features. 

3.3 Multibeam Sonar Backscatter 

MBES backscatter data on the New Jersey continental rise are described in the 

following section. The descriptions are divided into three sections: 1) backscatter 

strength, 2) backscatter features and 3) regional backscatter textures. The backscatter 

data ranges from -51 to -25 dB within the seafloor area mapped offshore New Jersey. 
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These backscatter-strength values have been classified as low (-51 to -42 db), 

medium (-42 to -34 dB) and high (-34 to -25 dB). An overview map is presented 

following these descriptions showing both backscatter features and regional textures 

along with their associated backscatter strength. 

3.3.1 Backscatter Strength 

The strength-classified backscatter data show predominantly high backscatter 

on the gently (0.2°) dipping seafloor region of the upper continental rise near the base 

of the continental slope (Figure 3.15). This area corresponds to the Baltimore-Toms 

gather area and the seafloor immediately outside of the small channels upslope from 

the 3000-m isobath., where hummocky and wavy seafloor features are observed in the 

bathymetry data. Few large areas of high-backscatter are found downslope from the 

break in slope near the 3000-m isobath between Hudson and Wilmington channels. 

Small regions of high-backscatter are found on Knauss Knoll and within and at the 

terminus of Hudson and Wilmington channels. 

Large areas of predominantly medium-backscatter strength seafloor are found 

on the steeper seafloor section and on the seafloor with low slope gradients (0.2°) 

beyond the 4000-m isobath. Smaller areas of medium backscatter strength seafloor 

are also found near the base of the slope between the high-backscatter areas. 

Low-backscatter strength is found on the relatively steep seafloor (within the 

low-backscatter anomaly), downslope from the 4000-m isobath at the terminus of 

Hudson and Wilmington channels and southwest and west of Knauss Knoll. 
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Figure 3.15 Backscatter characterization map using low (-51 to -42 db), medium (-42 to -34 dB) 
and high (-34 to -25 dB) classifications. Bathymetric contours shown in meters. 

3.3.2 Backscatter Features 

The backscatter data show an elongate low-backscatter feature oriented 

northeast to southwest (nearly parallel to the bathymetric contours), located on the 

section of the relatively steep (0.7°) seafloor area between Hudson and Wilmington 

channels. This feature is referred to as the "low-backscatter anomaly" (Figure 3.15). 

It is approximately 110 km long, 40 km wide and covers an area of about 2,750 km2. 
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Other nearby bathymetric features are the small channels that traverse across the 

northeast section of the low-backscatter anomaly and Knauss Knoll (Figure 3.16). 

72SQ'0"W 71WW 

sro'o'w 

aawN-

Baltimore-Toms,^^* ;7t8 
• gather area i Vj l f i i 

"IS* " 

37"0'0"N 

38WN 

•37WN 

73WW 

Figure 3.16 Multibeam backscatter mosaic in map view showing location of bathymetry features. 
Low-backscatter anomaly outlined in white dashed line. Sediment ridge and break-in-slope near 
3000 m isobath shown by black dashed line. 

The backscatter data show that the low-backscatter anomaly is not uniform in 

backscatter intensity and can be subdivided into several regions (Figure 3.17). The 

section located furthest to the southwest immediately adjacent to Wilmington channel 
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(section a) has an average backscatter strength of-42 dB. This section has a small 

area that wraps around the sediment ridge found in the bathymetry data. 

Section a is bordered on the northeast by medium-backscatter strength 

seafloor (section b) that crosses the low-backscatter anomaly near Wilmington 

channel (Figure 3.17). This feature is referred to as the "medium-backscatter bridge." 

It is approximately 10 km wide in the slope-parallel direction and extends down-slope 

across the width of the low-backscatter anomaly. Average backscatter strength from 

within the medium-backscatter bridge measures -39 dB. 

A section with average backscatter of-44 dB (section c) is found immediately 

to the northeast of the medium backscatter bridge. The section of the anomaly with 

the lowest intensity (section d) is located adjacent to the intermediate low-backscatter 

section to the northeast (Figure 3.17). The average backscatter strength within this 

seafloor area ranges from -48 dB to -51 dB. 
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A mottled and streaky backscatter texture is found in the region farthest to the 

northeast (section e) within the low-backscatter anomaly (Figure 3.17). This section 

of the backscatter data corresponds to the area of rough seafloor at the terminus of the 

small channels farthest to the southwest. Backscatter streaks extend from the 

terminuses of the small channels downslope across the low-backscatter anomaly. 

Average backscatter values in the mottled-streaky backscatter section of the low-

backscatter anomaly measure -43 dB. 

Figure 3.17 Perspective view (looking north) of the backscatter data showing the subdivided low-
backscatter anomaly (outlined in white), a = section adjacent to Wilmington channel; b = 
medium backscatter bridge (outlined in red); c = intermediate section; d = lowest backscatter 
strength section; e = mottled-streaky section. VE=10x 

The backscatter data also show fan-shaped features with variable backscatter 

strength at the terminuses of both Wilmington and Hudson channels (Figure 3.18 and 
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Figure 3.19). These areas correspond to the hummocky seafloor outside the channels 

shown in the bathymetry data on the section of the margin profile (Figure 3.1) that is 

relatively flat (0.2°). The backscatter texture within the fan-shaped features is mottled 

and backscatter strength is both medium- and low-backscatter strength. 
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Figure 3.18 Backscatter data showing fan-shaped feature (outlined by white-dashed line) at the 
terminus of Wilmington channel. 
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Figure 3.19 Backscatter data showing fan-shaped feature (outlined by white-dashed line) at the 
terminus of Hudson channel. 

Another backscatter feature observed in the backscatter data near the low-

backscatter anomaly is a high-backscatter strength, lobe-shaped feature (Figure 3.20). 

The lobe-shaped feature extends to the southeast from the 2500-m isobath across 

Wilmington channel. 
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Figure 3.20 Backscatter data showing high-backscatter lobe outline by white-dashed line. 

3.3.3 Regional Backscatter Textures 

Data show a mottled backscatter texture in the area of seafloor with gradual 

slope gradients and high-backscatter strength near the base of the continental slope 

(Figure 3.21). These data correspond to the hummocky and wavy seafloor features 

shown in the bathymetry data. 



Figure 3.21 Backscatter data on the upper continental rise near the base of the continental slope 
showing mottled backscatter texture. 

The backscatter data show an area of homogenous backscatter texture between 

the mottled backscatter near the base of the continental slope and the low-backscatter 

anomaly (Figure 3.22). This section of backscatter texture occurs immediately 

downslope from the break in slope shown in the bathymetry data near the 3000-m 

isobath on the relatively steep (0.7°) seafloor area. Small variability within the 

homogenous-backscatter texture section occurs as the result of the small channels. 
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Figure 3.22 Backscatter data showing section of homogenous-backscatter texture between 
mottled backscatter and low-backscatter anomaly. 

The backscatter data immediately southeast of the low-backscatter anomaly 

show linear, streaky features oriented north-south and backscatter rills oriented east-

west (Figure 3.23). This backscatter region corresponds to the relatively flat seafloor 

shown by the MBES bathymetry data. 
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Figure 3.23 Backscatter data showing rilled-streaky-backscatter texture seafloor area downslope 
from the low-backscatter anomaly and the homogenous-texture backscatter seafloor. 

An overview of the backscatter features and associated backscatter strength is 

shown in Figure 3.24. 
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Figure 3.24 Map showing locations of regional backscatter textures and features. Bathymetric 
contours are at 500-m intervals. 

3.4 Chirp Seismic-Reflection Profiles 

Chirp sonar profiles were collected in the study region parallel to the contours 

of the margin along each multibeam sonar survey trackline. These data are presented 

to compare the sub-surface structure within the anomalous seafloor to the structure 

beneath the surrounding seafloor. Profile locations are shown with respect to 

multibeam backscatter data in Figure 3.25. 
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Figure 3.25 Map of 3.5-kHz chirp profiles with multibeam backscatter backdrop. Low-
backscatter anomaly outlined by white-dashed line. Batymetric contours shown at 500-m 
intervals. 

Chirp sonar profiles AA\ BB', C C and DD' were collected in the medium 

backscatter strength, homogeneous seafloor upslope from the low-backscatter 

anomaly and between Wilmington and Hudson channels (Figure 3.25). These chirp 

sonar profiles show good penetration across the medium backscatter strength seafloor 

and indicate conformable, well-stratified horizontal subbottom reflectors. Horizons 
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are continuous except where cut by the five, small channels or truncated by 

Wilmington and Hudson channels. Chirp sonar profiles indicate well built channel 

levees outside Hudson and Wilmington channels. 

Chirp sonar profiles CC and DD' also indicate sub-surface features. Seismic 

reflectors in profile CC show a v-shaped feature between Wilmington channel and 

the small channels (Figure 3.27). An amphitheater-shaped sequence is shown in chirp 

profile DD' nearer to Wilmington channel that is ~8 km wide and disrupts the 

horizontally lying stratified sub-surface reflectors (Figure 3.27). The amphitheater-

shaped sequence occurs immediately down-slope from the buried v-shaped acoustic 

stratigraphy observed in chirp profile CC. The amphitheater-shaped subbottom 

feature also occurs immediately upslope from the medium-backscatter bridge. An 

acoustically transparent, lens-shaped feature is also shown further to the northeast 

between the amphitheater-shaped sequence and the small channels (Figure 3.27). This 

feature is ~3 km wide and also disrupts the well-stratified, horizontally lying 

reflectors. 
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Figure 3.26 Seismic reflection profiles AA' and BB' collected upslope from the low-backscatter 
anomaly. Corresponding backscatter strength shown as white for high-backscatter (HBS), gray 
for medium backscatter (MBS) and black for low backscatter (LBS). 
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Figure 3.27 Seismic reflection profiles CC and DD' collected upslope and within the low-
backscatter anomaly. Corresponding backscatter strength shown as white for high-backscatter 
(HBS), gray for medium backscatter (MBS) and black for low backscatter (LBS). 
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A section of chirp profile DD' also crossed through the low-backscatter 

anomaly (Figure 3.25). The acoustic stratigraphy in this section of profile DD' shows 

well-stratified, outcropping subbottom reflectors (Figure 3.27). Chirp seismic-

reflection profiles EE\ FF' and GG' cross through the low-backscatter anomaly 

(Figure 3.25) and show weakly-stratified, outcropping subbottom reflectors within the 

low-backscatter anomaly (Figure 3.28 and Figure 3.29). These profiles show an 

acoustically transparent, lens-shaped subbottom feature. The lens-shaped feature 

disrupts horizontally lying sub-surface reflectors and corresponds to the location of 

the medium-backscatter bridge. 
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Figure 3.28 Chirp profiles EE' and FF' collected across the low-backscatter anomaly. High 
backscatter (HBS) shown in yellow, medium backscatter (MBS) in gray and low backscatter 
(LBS) in black. 
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Figure 3.29 Chirp profile GG' collected across the low-backscatter anomaly. High backscatter 
(HBS) shown in yellow, medium backscatter (MBS) in gray and low backscatter (LBS) in black. 
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Chirp seismic-reflection profiles HH', IF, JJ' and KK' were collected in the 

region down-slope from the low-backscatter anomaly across medium-backscatter 

strength seafloor with variable streaky and rilled backscatter texture (Figure 3.25). 

These profiles also cross through the fan-shaped, mottled backscatter features outside 

of Wilmington and Hudson channels. These chirp seismic-reflection profiles show 

horizontal, well-stratified, continuous reflectors with very strong bottom returns 

(Figure 3.30). Good penetration is shown in the seafloor section corresponding to 

streaky medium-backscatter, but the data show limited penetration beneath the fan-

shaped, mottled backscatter features at the termini of Wilmington and Hudson 

channels. 
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Figure 3.30 Chirp profiles HH' and II' collected down-slope from the low-backscatter anomaly. 
MBS = medium backscatter strength; LBS = low-backscatter strength. 
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3.5 LDEO Single-Channel Seismic-Reflection Profile 
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Figure 3.32 Section of LDEO single channel seismic line V2114 shown with multibeam 
backscatter as the background. Low-backscatter anomaly outlined by the white-dashed line. 
Bathymetric contours shown at 500-m intervals. 

Profile VV is a short section of Lamont-Doherty Earth Observatory airgun 

single-channel seismic (SCS) reflection line V2114 that was collected with a nearly 

north to south orientation across the low-backscatter anomaly (Figure 3.32 and Figure 

3.33). The SCS profile shows strong, well-laminated seismic reflectors rise in the 
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high-backscatter strength section and through the homogenous medium backscatter 

strength seafloor upslope from the low-backscatter anomaly near the small channels 

(Figure 3.33). The well-stratified reflectors are underlain by a section of weakly-

stratified reflectors near the low-backscatter anomaly. The weakly-stratified reflectors 

appear to outcrop at the seafloor within the low-backscatter anomaly. Downslope 

from the low-backscatter anomaly, a wedge of well-stratified, seismic sequence 

overlies weakly laminated seismic stratigraphy. This wedge corresponds to the 

relatively flat (-0.2°) seafloor with streaky and rilled, medium-backscatter strength. 

The seismic-reflection profile also shows a bottom-simulating reflector (BSR) 

located in the sub-surface upslope from the low-backscatter anomaly, which was 

previously identified by Tucholke et al. (1977). A BSR is an acoustic horizon that is 

thought to form at the boundary between sediments containing free gas underlying 

sediments containing gas-hydrate, which is known as the hydrate stability zone 

(Kvenvolden, 2000). 
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Figure 3.33 Segment of LDEO single-channel seismic-reflection line V2114. Corresponding 
backscatter strength shown in scale bar above profile. High-backscatter strength (HBS) shown in 
yellow; medium backscatter strength (MBS) shown in gray; low backscatter strength (LBS) 
shown in black. BSR = Bottom simulating reflector 
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3.6 Sediment Core Samples 

Grain-size and smear-slide analyses are presented for the three sediment cores 

located on the continental rise near the low-backscatter anomaly analyzed for this 

study. Grain-size data are presented as mean grain size in phi values for each 

sediment sample. Locations of core samples with respect to multibeam backscatter 

data are shown in Figure 3.34. 
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Figure 3.34 Core locations with multibeam backscatter map as backdrop. Contours are shown in 
black. 
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3.6.1 Core RC10-PC01 

Core RC10-PC01 was collected at 3911 m water depth in medium-backscatter 

strength seafloor between the low-backscatter anomaly and Hudson channel (Figure 

3.35 and Figure 3.36). The 3.5-kHz chirp sonar data show laminated acoustic 

stratigraphy in this area with strong bottom returns. Visual observations show that 

sediments are composed of silty clay with foraminifera. Average grain sizes in the top 

100 cm of sediment range between 4.8 to 6.9 phi (Figure 3.37). Smear-slide analysis 

of core sample RC10-PC01 shows that sediments are composed of foraminifera-rich 

silty clay with silt and sand layers composed of quartz and foraminifera. 

Figure 3.35 Perspective view (looking north) showing location of core RC10-PC01 with respect to 
bathymetry data. VE=1 Ox 

86 



Figure 3.36 Perspective view (looking north) showing location of core RC10-PC01 with respect to 
backscatter data draped over bathymetry data. Low-backscatter anomaly outlined by white 
dashed line. VE=1 Ox 
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CoreRC10-PC01 
Lithology Mean Grain Size Li'thologic Description 

(phi) 

2-\ 

£——4 

4—4 

a 

8-H 

10—' 

2 4 6 8 10 

CO 

FORAMINIFERA-rich SILTY CLAY 

Yellowish brown (10YR 4/2) foraminifera ooze 
overlying olive gray (5Y 4/1) and greenish gray (5GY 
4/1) silty clay with some bioturbation with siliciclastic 
silt and sand layers 

Depth of silt and sand layers (cm): 
160, 180-182. 200, 230-232, 295-298, 414-416, 570-
573, 680-683,720-730, 1000-1002 

Smear Slide Summary 
' " ' " ID cm" fCD/cmr 725 cm, 
.Texture 
Sand 
Silt 

,Clay 
Composition 

' Quartz" 
Feldspar 

• Mic"a 
Clay 
Pynte 

, Foraminifera 
Cafe* narinofossils 

"Diatoms 
Radiolanans 
Sponge Spicules 

Svmbols 

[;:;$} - Silty clay 

• • -Silt/sand lamination 

<v - Burrowing 

" l [ 
10 " 5 , " 35"! 
50 60i 55J 
40 35? 10) 

! ' 
. -27 - 407 50J 

TR ~ "K1 "ft" 
TR ft! 1"0[ 
25 35 5! 
0 0| 0 

""""20 15, 25"! 
" "15"* """ TR"i " * " 0; 

TR Oj 0, 
0 0 0' 

TR 0, 0! 
TR = 1% 
R = 1-5% 

•fc -Smear slide sample in 
summary table 

(Additional smear slides 
shown in Appendix A) 

Figure 3.37 Stratagraphic column of core RC10-PC01 with laser-diffraction average grain-size 
measurements and descriptions. Samples were unavailable below 100 cm core depth (with 
exception of samples at 298 cm and 725 cm depths). Smear-slide and laser-diffraction mean 
grain-size data are available in Appendices A and B. 
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3.6.2 Core EN101-PC01 

Piston core EN101-PC01 was collected within the medium-backscatter bridge 

at a water depth of 3817 m (Figure 3.38 and Figure 3.39). The 3.5-kHz chirp seismic-

reflection profiles indicate that the core was collected within the lens-shaped sub­

surface feature. 

Figure 3.38 Perspective view (looking north) showing location of core EN101-PC01 with respect 
to bathymetry data. VE=10x 
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Figure 3.39 Perspective view (looking north) showing location of core EN101-PC01 with respect 
to backscatter data draped over bathymetry data. Low-backscatter anomaly outlined in white 
dashed line and medium-backscatter bridge outlined in white solid line. VE=10x 

Visual observations show that sediments in core EN101-PC01 are 

predominantly olive-gray (5 Y 3/2) silty clay containing foraminifera assemblages, 

mottling and authigenic carbonate nodules. Few bedding features were identified in 

the core stratigraphy. Grain-size analyses show that average grain sizes within the 

core range between 5.7 to 7.8 phi (Figure 3.40). These data show core sections with 

continuous homogeneous grain sizes and sections with successions of coarse grain-

size intervals. Smear-slide analyses indicate that sediments corresponding to the 

coarse intervals are composed of silt-size siliciclastic minerals, whereas the 

homogeneous sediment between coarse layers is typically composed of foraminifera-

rich calcareous nannoplankton silty clay. 
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CoreEN101-PC01 
Lithology Mean Grain Size Lithologic Description 

H 

2H 

3H 

4H 

JO c 
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6H 

8H 

10-J 

3-45.1 
' 137.0 

kya 
<7.3 

(phi) 
2 4 6 8 10 

•«46.5 

« 

NANNOFOSSIL-rich SILTY CLAY 

Olive gray (5Y 3/2) silty clay with bioturbation 
throughout and quartz silt laminae Silty clay sections 
are typically unbedded and contain visible foraminifera 
and black, pyrltic burrows Authigemc carbonate 
nodules present Nannofossils are composed of 
coccoliths. 

Depth of silt layers (cm) 
245, 255, 270. 567 

AMS-radiocarbon dates 
10 cm - 7761-7615 cal yr BP (7370 +/- 45) 
300 cm-(46500+/-1200) 
345 cm-(45100+/-610) 
355 cm-(37000+/-310) 

ISmear Slide Summary 
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Symbols 

[>;$} - Silty clay * 
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1 —' section 
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+ 
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30 [ 

~ 5o! 
RJ 

16l 
0 

T2-
15 
R 
0 
R̂  

TR = 1% 
R = 1-5% 

-Smear slide sample in 
summary table 

(Additional smear slides 
shown in Appendix A) 

-AMS radiocarbon date 

-Authigenic carbonate nodule 
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Figure 3.40 Average grain size values measured using laser particle-size analyzer for samples 
collected in piston core EN101-PC01. X-axis values are given in phi and y-axis values are depth 
in cm. AMS-radiocarbon dates shown in parentheses. Data gaps represent sections of the core 
that were unavailable for sampling. Smear-slide and laser-diffraction mean grain-size data are 
available in Appendices A and B. 
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Smear slide percentages for the dominant components observed in core 

EN101-PC01 are shown in Figure 3.41. 

Smear-Slide Results - Core EN101-PC01 

Clay Mineral % 

0 25 50 75 100 

Foraminifera % Coccolith % Quartz % 

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 

1000 

Figure 3.41 Smear slide results for dominant components found in Core EN101-PC01. 

AMS-radiocarbon ages from samples taken at 10, 300, 345 and 355 cm depths 

from core EN101-PC01 are shown in Table 3.1 and plotted in Figure 3.42. Regional 

reservoir corrections applied to the sample at 10 cm and the resulting calibrated 
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calendar years are shown in Table 3.2. Calibrated calendar years are shown as la and 

2o distributions. The radiocarbon ages measured at 300 and 345 cm core depth 

samples show that sediment is older than the sediment age measured in the 355 cm 

sample. 

Accession Numbers 
OS-66063 
OS-66061 
OS-66051 
OS-66054 

Table 3.1 AMS-radiocarbon 

Depth (cm) 
10 

300 
345 
355 

d13C 
1.61 
1.19 

1 
0.92 

F Modern 
0.3997 
0.0031 
0.0037 

0.01 

age results. 

Fm Error 
0.0024 
0.0004 
0.0003 
0.0004 

14CAge 
7370 

46500 
45100 
37000 

Age Error 
45 

1200 
610 
310 

f 
O 

SO 

100 

150 

200 

250 

300 

350 

400 

AMS-Radiocarbon Ages Core EN101-PC01 

Age<yrs) 

10000 20000 30000 40000 50000 

• (10 cm, 7,370 yr) 

(7614-7760 calBP) 

> 

(300 cm, 46,500 yr) 

(345 cm, 45,100 yr) 

(355 cm, 37,000 yr) 

Figure 3.42 Plot of AMS-radiocarbon dates. Reservoir corrections shown but not plotted from 10 
cm sample. 

93 



Table 3.2 Regional reservoir correction values and calibrated calendar age values for 
radiocarbon ages collected from core EN101-PC01. 

Depth (cm) 
10 

300 
345 
355 

AR 
145 

AR Uncertainty 
52 

la 
7614 - 7760 cal BP 

2a 
7562 - 7837 cal BP 

3.6.3 Core EN084-GC02 

Core EN084-GC02 was collected 25 km southwest of Wilmington channel in 

medium backscatter strength seafloor and at a water depth of 4052 m (Figure 3.43 

and Figure 3.44). The 3.5-kHz chirp seismic-reflection profiles show well-laminated 

acoustic stratigraphy near the core collection location. 

Figure 3.43 Perspective view (looking north) showing collection location of core EN084-GC02 
shown with bathymetry data (gray sun-illuminated hillshade). VE=10x 



Figure 3.44 Perspective view (looking north) showing collection location of core EN084-GC02 
shown with backscatter data draped over bathymetry data (light tones = high backscatter; dark 
tones = low-backscatter). VE=10x 

Visual observations of the core indicate that sediments are predominantly silty 

clay with intermittent layers of silt sized grains. Silty clay sediments in the upper 16 

cm are pale-brown (5 YR) in color and are light olive-gray (5 Y 5/2) to the bottom of 

the core. Foraminifera assemblages are visible within the silty clay. Laser diffraction 

particle-size analyses show that average grain size values range from 7.3 to 3.7 phi 

(Figure 3.45). These data indicate that core EN084-GC02 contains very distinct 

events of silt- and fine sand-sized sediment grains. Grain-size data show that some 

events are graded sediments (fining upward), but others are not clearly graded. Smear 

slides show that coarse sediment events are predominantly composed of siliciclastic 

mineral grains with few biogenic components. Sediments between coarse events are 
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foraminifera-rich nannoplankton silty clay. Coccoliths make up the nannoplankton 

component. 

Core EN084-GC02 

Lithology Mean Grain Size Lithologic Description 

o - i 
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10—J 

(phi) 
2 4 6 8 10 

C 
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CO CO 

5K 
JO 
O 

FORAMINIFERA-rich SILTY CLAY 

Olive-gray (5Y 3/2) silty clay overlying pale brown 
(5YR 5/2) silty clay and light olive gray (5Y 5/2) silty 
clay with intermittent quartz silt and sand layers. 
Layers are sometimes bedded. 

Dept of silt and sand layers (cm! 
16-18, 39-40, 65-67, 70, 77-80, 110-114, 123-125, 
236-239, 244-245, 255; 258-261, 263-264 

,Sand 
Silt 
Clay 
Composition 
Quartz 

.Feldspar 
Mica 

,Clay 
;Pyrrte 
Foraminifera 

iCalc* nahnofossils 
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'Radiolanans 
• Sponge Spicules 

Smear Slide Summary > 
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Texture 
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40 
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-Smear slide sample in 
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(Additional smear slides 
shown in Appendix A) 

Figure 3.45 Average grain size values measured using laser particle-size analyzer for samples 
collected in gravity core EN084 GC2. X-axis values are given in phi and y-axis values are depth 
in cm. Data gap represents section of the core that were unavailable for sampling. Smear-slide 
and laser-diffraction mean grain-size data are available in Appendices A and B. 
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CHAPTER 4 

DISCUSSION 

4.1 Low-Backscatter Anomaly 

The features shown by the surface and sub-surface seafloor data suggest the 

importance of gravity-driven mass-wasting processes and contour-parallel processes 

on the New Jersey continental margin. In addition, the data suggest the presence of 

sub-surface gas and/or gas-hydrate. These processes are described in the following 

section as three working hypotheses for the geological origins of the low-backscatter 

anomaly. The first hypothesis for the low-backscatter anomaly is that it is a deposit 

that originated from suspended sediments stripped from turbidity currents that have 

traveled down the small channels. A second hypothesis is that the low-backscatter 

anomaly is an outcrop exposed either by erosion caused by the Western Boundary 

Undercurrent (WBUC) or non-deposition related to bottom currents and local seafloor 

geomorphology. A third hypothesis is that the low-backscatter anomaly is caused by 

the presence of gas within the sediments. 

4.1.1 Hypothesis 1 - Sediment Deposit 

The presence of the five small channels immediately upslope from the low-

backscatter anomaly suggests that downslope sediment transport has occurred nearby. 

Pratson and Laine (1989) envisioned that these small channels originated on the upper 
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continental rise, approximately 75 km from the base of the continental slope. They 

suggested that turbidity currents that had bypassed or overflowed the confluence 

leading to the Wilmington channel had formed the channels. 

The bathymetry data analyzed for this study support the interpretation of 

Pratson and Laine (1989) that downslope sediment transport from the continental 

slope most likely have formed the small channels. The bathymetry data show that the 

small channel farthest to the northeast (nearest to Hudson channel) extends upslope to 

the landward extent of the MBES data near the 2000 m isobath (Figure 4.1 and Figure 

4.2). Although more difficult to distinguish, the channels farther to the southwest also 

extend upslope to this region as well. These data suggest downslope sediment gravity 

flows from between Mey and Hudson Canyons have formed the small channels as 

opposed to the adjacent section of margin to the southwest, which all coalesce into 

Wilmington channel. 
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Figure 4.1 Bathymetry data (gray sun-illuminated hillshade) showing evidence of the small 
channels extending upslope from the 3000 m isobath. 

Sediment that has traversed downslope from the continental slope could have 

crossed the upper continental rise through these small channels towards the section of 

steeper seafloor near the 3000 m isobath (Figure 4.2). The increase in average slope 

gradients from approximately 0.2° to 0.7° appears to have been sufficient to increase 

the erosiveness of turbidity currents in this seafloor section, resulting in deeper 

channel incision. 
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Figure 4.2 Bathymetry data (gray sun-illuminated hillshade) showing sediment transport 
pathways (white-dashed arrows) across the upper continental rise and through the small 
channels. 

The downslope sediment gravity flows that traveled through the small 

channels would eventually intersect the high-velocity core of the WBUC. The 

presence of the WBUC is indicated near the low-backscatter anomaly by Krause 

Foredrift on the northeast side of Knauss Knoll and the erosional moat on the 

southern side of the seamount (Figure 4.3). Lowrie and Heezen (1967) argued that 



suspended sediments from Hudson Canyon have been carried southwestward by the 

WBUC. Deceleration of the WBUC flow on the upcurrent face of the seamount 

allowed sediment to accumulate as the foredrift feature at the base of the seamount 

(Lowrie and Heezen, 1967). The erosional moat on the southern side of the Knauss 

Knoll revealed by the bathymetry data in this study and in the previous study by 

Lowrie and Heezen (1967) suggests that the WBUC has scoured the seafloor. The 

local acceleration of current due to the obstruction resulted in erosion of seafloor 

sediment at the downcurrent base of Knauss Knoll (Lowrie and Heezen, 1967). 
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Figure 4.3 Bathymetric profile showing Krause Foredrift and erosion scour at the base of 
Knauss Knoll. 

The evidence of a southwest flow near the 3500 to 4000 m isobaths is 

consistent with bottom currents measured during the SYNoptic Ocean Prediction 

(SYNOP) Central Array experiment (Shay et al., 1995), the High Energy Benthic 

Boundary Layer Experiment (HEBBLE) (Richardson et al., 1981) and bottom 

photography studies by Schneider et al. (1967). The SYNOP field program identified 

the WBUC at 3500-m near 68°W and 38°N (-275 km to the northeast of the study 



area). These measurements showed that average flow rates of 6 cm/s in 3500-m water 

depth were towards the southwest along isobaths (Shay et al., 1995). Events of 

increased flow speeds up to 40 cm/s were also measured offshore the Grand Banks at 

3500 m water depth (Shay et al., 1995). The HEBBLE project also found the WBUC 

near these depths on the Nova Scotian continental rise. Measurements taken at a 

station located at the 4158 m isobath (at 40° 56.6'N and 63° 44.9'W) show a mean 

speed of 6.3 cm/s in the southwest (267°) direction, which is nearly parallel to local 

isobaths. This study found a maximum WBUC speed of 28.5 cm/s (Richardson et al. 

1981). 

Compass-oriented bottom photographs analyzed by Schneider et al. (1967) 

also show evidence of swift southwest-flowing currents near the study area. This 

research reported near tranquil deep-sea current conditions at R/V Trident Station 10 

in 3104 m water depth (Figure 4.4). However, bottom photographs at Trident Station 

11 indicate sediment streamers and bottom fauna deflected to the southwest at 3383 

m water depth (Schneider et al., 1967). The bottom photographs at Trident Station 15 

show sediment ripples and streamers and noticeably sediment-laden, "murky" water 

near the seafloor. Schneider et al. (1967) interpreted these data to suggest not only 

evidence of the WBUC, but an increase in bottom current speed with depth. 
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Figure 4.4 Perspective view (looking north) of backscatter data (low backscatter = dark tones; 
high backscatter = light tones) showing location of bottom photographs analyzed by Schneider et 
al. (1967). Red arrows indicate direction and relative magnitude of inferred current strength. 
Low-backscatter anomaly outlined in white. VE=10x 

The Western Boundary Undercurrent could have stripped suspended 

sediments from turbidity currents that overbanked the small channels and transported 

these sediments to the southwest (Figure 4.5 and Figure 4.6). A Hjulstrom-type curve 

(Heezen and Hollister, 1964) can be used to estimate the current speeds needed to 

erode, transport and deposit sediments by grain size. This diagram indicates that the 

range of WBUC flow speeds (up to 78 cm/s) are within the range needed to transport 

sediments with grain size from clay to sand in suspension (Figure 4.7). 

Based on these critical threshold predictions for sediments and the current 

meter data collected by the SYNOP and HEBBLE studies at other locations on the 
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margin within the depth range of the low-backscatter anomaly, flow speeds of the 

WBUC have likely been capable of transporting clay- to sand-size sediment. These 

interpretations are supported by the bottom photographs near the low-backscatter 

anomaly that show sediment streamers and murky water analyzed by Schneider et al. 

(1967) and the presence of Rrause Foredrift at the base of Knauss Knoll. 

Figure 4.5 Perspective view (looking upslope and landward) of bathymetry data (gray sun-
illuminated hillshade) showing downslope transport of sediment through small channels (white 
dashed arrows) and subsequent transport direction of suspended sediment parallel to contours 
by the WBUC (red arrows). VE=10x 



Figure 4.6 Perspective view (looking upslope and landward) of backscatter data (low backscatter 
= black and high backscatter = white) showing downslope transport of sediment through small 
channels (white dashed arrows) and subsequent transport direction of suspended sediment 
parallel to contours by the WBUC (red arrows). VE=10x 
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Figure 4.7 Diagram showing erosion, transport and deposition conditions plotted by grain size 
and current speed. The area outlined in yellow shows measured average grain size of sediment 
cores analyzed in this study. The range of current speeds measured by the HEBBLE and SYNOP 
projects (4158-m and 3500-m) near the depth of the low-backscatter anomaly shown at the 
bottom of the diagram. Modified from Heezen and Hollister (1964). 

Deposition of sediments may have occurred to the southwest of the small 

channels in the downflow direction of the WBUC. The Heezen and Hollister (1964) 

diagram shows that WBUC speeds less than ~0.4 cm/s are necessary for sediment 

deposition of sediments within the range of samples analyzed for this study (although 
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the grain size range of sediments within the low-backscatter anomaly is unknown). 

Although studies have measured that the WBUC has average speeds of ~6 cm/s at 

depths coinciding with the low-backscatter anomaly, current speed data also indicate 

greatly varying speeds from near tranquil conditions up to 78 cm/s (Richardson et al., 

1981; Shay et al., 1995). Therefore it would be possible for sediments to be deposited 

across this seafloor region under slower WBUC flow conditions. 

It may also be possible that suspended sediment particles have aggregated 

while transported in suspension. As part of the HEBBLE study, McCave (1985) 

found that settling of bottom sediments was strongly influenced by mucus binding of 

clay-sized components. These processes were thought responsible for seafloor 

sediment compositions that measured -30% clay in an environment with 

intermittently strong (averaging 8 to 32 cm/s) bottom currents (McCave, 1985). Or 

perhaps the grain size of suspended particles is coarser than silt and clay. The Heezen 

and Hollister (1964) diagram shows that sand-size sediment grains are deposited at 

current speeds of approximately 6 cm/s. This could suggest that the low-backscatter 

anomaly sediment deposit is composed of sand-sized sediment grains as opposed to 

the clay- and silt-sized sediment observed in sediment cores from the surrounding 

areas. 

The decrease in backscatter strength could be caused by smooth seafloor 

relative to the acoustic wavelength of the MBES. de Moustier and Alexandrou (1991) 

have suggested that seafloor roughness with a radius of curvature with a root mean 

square (rms) greater than ~4 cm (or peak-to-peak amplitude -12 cm) is required to 

influence 12-kHz MBES backscatter as interface backscatter. The seafloor relief 
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within the low-backscatter anomaly could be below this threshold, whereas the 

surrounding areas may be relatively rough in comparison. 

In addition, the deposit could be composed of homogenous, fine-grain 

sediments that have a lower acoustic impedance contrast at the seabed and lower 

volume backscatter properties within the upper few meters of the sediments than the 

surrounding regions. The lower acoustic impedance contrast between the water and 

seafloor could be caused by sediment properties such as high porosity or low 

sediment density. These sediment properties decrease the acoustic impedance value 

of the sediment by reducing the overall density (known as saturated bulk density) and 

the sound speed of the seafloor medium (Hamilton, 1956; Hamilton, 1970). A lack of 

sediment inhomogeneities within the penetration depth of the sonar transmission 

could be caused by an absence of coarser sediment layers such as turbidites or 

contourites within sediment deposit. 

4.1.2 Hypothesis 2 - Outcropping Stratigraphic Units 

An alternate hypothesis is presented suggesting that the low-backscatter 

anomaly represents an outcrop of older sediment. Studies have previously suggested 

that sediments outcrop on the section of the continental margin near the low-

backscatter anomaly (Schneider et al., 1967; Mountain and Tucholke, 1985; Locker, 

1989; Pratson and Laine, 1989). These studies have suggested that the outcrop has 

resulted from erosion or non-deposition by the WBUC and local geomorphology. 

High-resolution 3.5-kHz chirp sonar profiles EE' and FF' (Figure 3.28) and 

airgun seismic-reflection profile VV show that seismic reflectors outcrop within the 
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low-backscatter anomaly (Figure 4.8). The outcropping reflectors that occur within 

the bounds of the low-backscatter anomaly suggest that the low-backscatter anomaly 

is an erosional surface. 
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Figure 4,8 (a) Section of LDEO airgun seismic reflection profile showing outcropping seismic 
reflectors within the low-backscatter anomaly, (b) Interpreted seismic reflector horizons. 
Seafloor shown in red and subbottom reflectors shown in blue (refectors not interpreted across 
data gap). 
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The most likely cause of eroded seafloor within the low-backscatter anomaly 

is the WBUC. As previously discussed, the sediment drift and scouring at the base of 

Knauss Knoll suggests the presence of the WBUC near the low-backscatter anomaly. 

Data collected in the SYNOP and HEBBLE experiments recorded average bottom 

speeds of approximately 6 cm/s at 3500 and 4128 m water depths (Richardson et al., 

1981; Pickart and Watts, 1990; Shay et al., 1995). In addition, these studies measured 

events up to 28.5 cm/s on the Nova Scotian margin at 4128 m water depth and 40 

cm/s at 3500 m water depth offshore the Grand Banks (Richardson et al., 1981, Shay 

et al, 1995). Schneider et al. (1967) also interpreted evidence of southwest currents 

east of the 3600-m isobath in an area corresponding to the location of the low-

backscatter anomaly from bottom photographs (Figure 4.4). 

Sediment cores from near the low-backscatter anomaly that were analyzed for 

this study show that average grain sizes of sediments in the top 1 to 2 m are in the 

fine silt to fine sand range (average grain size = 7.8 to 3.7 O or 0.004 to 0.076 mm). 

The Heezen and Hollister (1964) diagram (Figure 4.7) indicates that flow speeds of 

approximately 4 cm/s are necessary to erode unconsolidated clays and silts and 

currents in the range of 20 to 300 cm/s are necessary to erode consolidated clay to silt 

sediments. These relatively fast current speeds are required to erode consolidated silts 

and clays because of the cohesive properties of clay-rich sediment (McCave, 1982). 

The critical thresholds for erosion indicated by the Heezen and Hollister 

(1964) diagram suggest that unconsolidated sediments and possibly cohesive 

sediments within the average grain-size range of 7.8 to 3.7 O or 0.004 to 0.076 mm 
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could be eroded either by the average flow of the WBUC (~6 cm/s at the depth of the 

low-backscatter anomaly or more likely by events of intense bottom-current speeds 

(up to 40 cm/s). Previous studies have recorded erosion of silt and clay sediments due 

to WBUC flow on the Nova Scotian continental rise (Richardson and Gardner, 1985). 

Using particle concentrations of suspended sediment from the HEBBLE study area, 

Richardson and Gardner (1985) concluded that currents at an average rate of 9 cm/s 

had resuspended sediments with a grain-size mode of 8 ̂ m (~7 phi). This suggests 

that sediments within the low-backscatter anomaly could have been removed under 

similar flow conditions if sediments had been compositionally similar to those found 

on the Nova Scotian rise. 

Erosion of surface sediments within the low-backscatter anomaly may have 

also been enhanced by the local morphology of the continental margin. The 

bathymetry data show that the low-backscatter anomaly is located at the toe of the 

relatively steep (0.7°) seafloor. Erosion could have been caused by the onlapping of 

the stronger section of the WBUC onto the steeper slope. The onlap may have been 

induced by a slight bend in the margin isobaths (Figure 4.9). The orientation of 

Krause Drift on the northeast side of Knauss Knoll suggests that the direction of the 

WBUC has been slightly oblique to the orientation of the bathymetric contours near 

the low-backscatter anomaly (Figure 4.9). This angle between the steeper slope and 

the approach direction of the WBUC may have increased sediment erosion. 
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Figure 4.9 Map view of backscatter data showing the direction of the WBUC (as interpreted 
from the orientation of Krause Drift) relative to the bathymetric contours. Low-backscatter 
anomaly outlined by white line. 

Another possibility is that the low-backscatter anomaly could have been 

caused by erosion that occurred when the WBUC had greater speeds at shallower 

depths. Studies have shown that the position of the high-velocity core of the WBUC 

has varied over the last 25,000 yr (Bulfinch et al., 1982). Sediment grain size and 

magnetic alignment in mineral grains found in sediment cores collected along the 

New Jersey margin indicate that the upper boundary of the high-velocity core of the 
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WBUC currently resides at 4440 +/- 20 m water depth and extends out to water 

depths of approximately 5200 m (Bulfinch et al., 1982). However, these sediment-

core data also show that the high-velocity core of the WBUC was shallower between 

17 to 7 ka (Ledbetter and Balsam, 1985). During this interval, the core of the WBUC 

moved up to 4000 m water depth (Ledbetter and Balsam, 1985). 

Erosion of sediments could have occurred during the time period between 17 

to 7 ka when the high-velocity axis of the WBUC resided at shallower depths. The 

high-velocity axis depth of 4000 m interpreted by Ledbetter and Balsam (1985) 

corresponds to the location of the low-backscatter anomaly and the outcropping 

sediment reflectors shown on the seismic-reflection profiles. 

An outcrop exposed from this or previous erosion episodes could have been 

preserved due to sediment bypassing. Mountain and Tucholke (1985) have suggested 

that sediment accumulation from the Late Pliocene through the Quaternary has been 

minimal in the region of the continental margin where the low-backscatter anomaly is 

located. In addition, Locker (1989) concluded that the area corresponding to the low-

backscatter anomaly has been a bypass zone for sediment gravity flows. This was 

thought to have been due to the relatively steep slopes of the local seafloor (Locker, 

1989) and confinement of sediment gravity flows within Hudson and Wilmington 

channels (Locker, 1989; Schlee and Robb, 1991). 

Funneling and confinement of sediment that has traveled downslope across 

the upper rise could have been one cause for sediment bypassing. Schlee and Robb 

(1991) identified funnel-shaped areas above channel convergences in 6.5-kHz 

GLORIA sidescan-sonar data. These regions were referred to as "gather areas". The 
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section of seafloor at the base of the New Jersey continental slope where continental 

slope canyons funnel into the Wilmington channel was named the Baltimore-Toms 

gather area (Schlee and Robb, 1991). 

Multibeam bathymetry data analyzed for this study further suggest that 

downslope sediment flows have been funneled into Hudson and Wilmington channels 

across most of the New Jersey margin through the gather areas. The section of 

continental slope between Baltimore and McMaster Canyons is approximately 220 

km across (Figure 4.10). The funnel shape of the Baltimore-Toms gather area upslope 

from Wilmington channel suggests that sediment gravity flows from the continental 

slope converge into Wilmington channel (Figure 4.11). A smaller, 50-km wide gather 

area above Hudson channel also suggests that downslope transport of sediment that 

has traversed from continental slope canyons has been funneled through the Hudson 

channel (Figure 4.12). Together, these gather areas cover approximately 85% of the 

margin upslope from the low-backscatter anomaly between Baltimore and McMaster 

Canyons. 
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Figure 4.10 Map view of backscatter data showing the inferred downslope sediment transport 
paths through Hudson and Wilmington channels. Low-backscatter anomaly outlined in white 
solid line. Transport paths shown in white dashed line. 
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Figure 4.11 Perspective view (looking upslope and landward) of bathymetry data (gray sun-
illuminated hillshade) showing location of the Baltimore-Toms gather area (outlined by white-
dashed line). VE=10x 
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Figure 4.12 Perspective view (looking upslope and landward) of bathymetry data (gray sun-
illuminated hillshade) gather area funneling into Hudson channel (outlined by white-dashed 
line). VE=10x 

Schlee and Robb (1991) suggested that the lack of fan morphology on the 

continental rise beyond the gather areas indicates that Hudson and Wilmington 

channels have acted as "pass-throughs" for sediment. The surface and subbottom data 

analyzed for this study also show a lack of features that resemble submarine fans 

between the 3000 to 4000 m isobaths. This suggests that flows have remained mainly 

confined within channels in this seafloor section. 

The multibeam sonar backscatter data suggest the presence of depositional 

lobes beyond the 4000 m isobath. The fan-shaped, mottled backscatter features shown 

at the terminus of both Hudson and Wilmington channels suggests evidence for 
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dispersal of sediment flows that have traveled through these channels (Figure 4.13 

and Figure 4.14), These depositional lobes correspond to the change in seafloor 

gradient from 0.7° to 0.2° near the 4000 m isobath and to a decrease in channel 

incision depth from 300 to < 75 m in Wilmington channel and from 500 to < 100 m in 

Hudson channel. The lack of confinement suggests lateral dispersion and deposition 

of sediments. The locations of these features suggest that downslope flows have 

remained mainly confined within the channels until reaching beyond the 4000 m 

isobath and have bypassed the low-backscatter anomaly. 

Figure 4.13 Perspective view (looking upslope and landward) of backscatter data draped over 
bathymetry showing the Wilmington channel fan. VE=10x 
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Figure 4.14 Perspective view (looking upslope and landward) of backscatter data draped over 
bathymetry showing the Hudson channel fan. VE=10x 

Chirp seismic-reflection profiles HH', IF, JJ' and KJKL' collected downslope 

from the low-backscatter anomaly (Figure 3.30 and Figure 3.31) show significantly 

stronger bottom returns than profiles AA', BB', C C and DD' collected upslope from 

the low-backscatter anomaly (Figure 3.26 and Figure 3.27). The strong bottom returns 

east of the low-backscatter anomaly shown by chirp seismic-reflection profiles 

suggest that coarser sediments have been deposited in this seafloor section rather than 

on steeper seafloor section upslope from the low-backscatter anomaly. This 

coarsening of sediments in the seaward direction also suggests downslope sediment 

transport around the low-backscatter anomaly. These coarser sediments may have 
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originated from turbidity currents expelled through the small channels or material 

expelled from the terminus of Hudson channel that has been transported and 

deposited to the southwest. Airgun seismic-reflection profile V2114 suggests that 

these coarser deposits have onlapped onto the area corresponding to the low-

backscatter anomaly, as previously interpreted by Mountain (1987), and are most 

likely younger deposits. 

Downslope transport of sediment may have also been inhibited by the gentle 

slope gradients upslope from the low-backscatter anomaly. Hummocky bathymetry 

with mottled backscatter texture and high-backscatter-strength seafloor is found 

between the 2500 m to 3000 m isobaths where slope gradients are low (0.2°). Cores 

and bottom photographs collected at Ocean Drilling Project (ODP) Site 905 (Figure 

4.15 and Figure 4.16) show extensive evidence of mass-wasting within this seafloor 

area (Shipboard Party, 1994; McHugh et al., 2002). Water-gun and 3.5-kHz seismic-

reflection profiles show an acoustically transparent section and hummocky reflectors 

overlying a well-stratified stratigraphic unit near the surface section (up to 0.2 s 

below the seafloor) suggesting debris-flow deposits (Shipboard Party, 1994). Video 

of the seafloor also show large, detached blocks with fractured, coherent strata 

(Shipboard Party, 1994), which suggests that extensive downslope sediment-failure 

deposits have occurred. 
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Figure 4.15 Bathymetry data (gray sun-illuminated hillshade) showing location of ODP Site 905. 
Baltimore-Toms gather area outlined by black dashed line. 



Figure 4.16 Map showing location of ODP Site 905 with MBES backscatter data as backdrop. 
Baltimore-Toms gather area outlined by black dashed line. Bathymetric contours shown in 500-
m intervals. 

Homogenous backscatter texture is found on the relatively steeply (0.7°) 

dipping seafloor downslope from the gentle slope gradients with hummocky 

bathymetry and mottled, high-backscatter strength seafloor. Chirp profiles AA', BB', 

CC\ and DD' from steeply dipping region show well-stratified, conformable 

subbottom reflectors and good penetration in this region (Figure 3.26 and Figure 
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3.27). These data suggest an absence of debris-flow deposits, slumps and slides and 

that sediment deposition has been predominantly hemipelagic drape, as previously 

suggested by Schlee and Robb (1991). 
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Figure 4.17 Map of backscatter data showing region of homogenous backscatter on the relatively 
steep (0.7°) seafloor. Low-backscatter anomaly outlined by white-dashed line. Bathymetric 
contours are shown at 500-m intervals. 

This distribution of mass-flow deposits on the New Jersey margin suggests 

that the low-backscatter anomaly has remained mostly protected from sediment 
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introduced by mass-flows to this region that originated upslope on the steeper 

continental slope. The shielding could have preserved the outcrop that had been 

previously been exposed by WBUC erosion or could have prevented substantial 

sediment deposition through time. 

The data also suggest that not all sediment that has traveled downslope across 

the margin has bypassed through Hudson and Wilmington channels or been shielded 

by the shallow slope gradients found upslope from the low-backscatter anomaly. The 

small channels shown by the bathymetry data provide evidence that sediments have 

crossed the gentle gradients (0.2°) and reached the low-backscatter anomaly by 

suspended gravity-sediment flows such as turbidity currents (Figure 4.2). However, 

absence of well-defined fan morphology at the termini of the small channels suggests 

that these sediments could have been redirected by an intensified WBUC without 

significant deposition or may have bypassed the low-backscatter area due to the 

steeper slope gradients (0.7°) and been deposited on the section of flatter (0.2°) 

seafloor downslope from the 4000-m isobath. 

As previously discussed under hypothesis 1, the decrease in backscatter 

strength could be caused by relatively smooth seafloor (less than 12 cm peak-to-peak 

seafloor relief) as compared to the surrounding areas. The smoother seafloor could be 

due to the influence of bottom currents, whereby seabed features may have been 

smoothed or unable to form under the current speeds found within the low-

backscatter anomaly. Sediments within the outcrop could also have a lower acoustic 

impedance contrast at the seabed and/or fewer sediment inhomogeneities in the upper 

few meters of the sediment column due to higher water content or lower sediment 
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density within the low-backscatter anomaly in comparison to the surrounding areas. 

Higher water content within the sediments may result from a change in sediment 

porosity or could be related to water seepage along stratagraphic horizons that 

outcrop within the low-backscatter anomaly. The lack of sediment inhomogeneities 

could be caused by an absence of coarser sediment layers such as turbidites or 

contourites within exposed sediment strata. The absence of these layers may have 

resulted from a decreased input of sediment gravity flows or from weaker/deeper 

bottom currents during the time that sediments were deposited. 

4.1.3 Hypothesis 3 - Presence of Sediment Gas 

A third hypothesis is that sub-surface gas has caused the low-backscatter 

anomaly. Previous studies have suggested the presence of a large gas reservoir on the 

New Jersey margin (Tucholke et al., 1977; Tucholke and Mountain, 1986; Mountain, 

1987; Dillon et al., 1995). Tucholke and Mountain (1986) and Mountain (1987) 

suggested that the gas reservoir has formed as the result of rapid burial of organic 

material in sediments derived from a shelf delta during the Miocene. These sediments 

were thought to have formed the feature referred to as the Chesapeake Drift by 

Mountain and Tucholke (1985), part of which underlies the seafloor region 

immediately upslope from the low-backscatter anomaly (Figure 4.18). Dillon et al. 

(1995) also mapped a region thought to contain gas-hydrate on the New Jersey 

margin. 
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Figure 4.18 Map showing the approximate location of the buried Chesapeake Drift (outlined by 
white dashed lines) as identified by Tucholke and Mountain (1986) and Pratson and Laine (1989) 
with respect to MBES backscatter data. 

The bottom-simulating reflector (BSR) shown by LDEO seismic-reflection 

line V2114 (Figure 3.33) suggests the presence of sub-surface gas and gas hydrate on 

the New Jersey margin (Tucholke et al., 1977). The BSR is thought to be an acoustic 

surface generated by the phase boundary between free gas and gas-hydrate-charged 

sediments (Hovland and Judd, 1988; Kvenvolden, 2000). The interface is caused by 
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fast sound speed in gas-hydrate rich sediment and slow sound speed in the underlying 

sediment containing free gas (Kvenvolden, 2000). 

The seismic stratigraphy within the low-backscatter anomaly also suggests the 

presence of sub-surface gas. High-resolution 3.5-kHz seismic-reflection profiles EE\ 

FF' and GG' (Figure 3.28 and Figure 3.29) and LDEO airgun seismic-reflection 

profile V2114 (Figure 3.33) indicate weakly stratified acoustic reflectors within the 

low-backscatter anomaly. The absence of seismic reflectors could be the result of 

"gas-blanking," whereby the presence of sediment gas causes subsurface reflector 

horizons to be masked. Many observations of gas-blanking have been associated with 

gas-hydrate accumulations (Dillon and Max, 2000). 

Authigenic carbonate nodules found in core EN101-PC01 also suggest the 

presence of methane in the sediments. Authigenic carbonates have been found in 

seafloor environments such as gas seeps where fluids are enriched in methane 

(Bohrmann and Torres, 2006) and in known gas-hydrate zones such as Hydrate Ridge 

on the Cascadia margin (Bohrmann et al., 1998; Bohrmann and Torres, 2006). One of 

the processes that can form authigenic carbonate is anaerobic oxidation of methane 

(AOM) by methane oxidation and sulfate reduction (Boetius et al. 2000; Bohrmann 

and Torres, 2006). The net reaction is given by Boetius et al. (2000) as: 

CH4 + S04
2" -> HC03 ' + HS" + H20 

[4.1] 

This reaction occurs when upward migrating methane (CH4) and downward diffusing 

sulfate (SO42") are consumed to form bicarbonate (HCO3"), bisulfide (HS") and water 
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(Ussier and Paull, 2008). The high concentrations of bicarbonate in the sediment pore 

waters can then bind calcium ions to precipitate carbonate. 

The bathymetric depressions shown in the bathymetry data (Figure 4.19) 

within the small channels and within the mottled section of the low-backscatter 

anomaly downslope from the small channels also could suggest the presence of gas 

sapping or pockmarks. Butman et al. (2006) previously interpreted that pore-water or 

gas discharge formed these bathymetric depressions. Hovland and Judd (1988) 

indicated that pockmarks can form as the result of fluid and gas escape from seafloor 

sediments. As fluid and gas ascends to the seafloor, these materials fluidize the 

sediments and eject them into the water column (Hovland and Judd, 1988). 

Suspended sediments from the pockmarks could have been removed by currents or 

transported downslope through the small channels. The bathymetric depressions 

found within the small channels may suggest evidence of pockmark strings. Chains of 

pockmarks have been recorded previously in the Norwegian Trench (Hovland and 

Judd, 1988). These Norwegian Trench strings of pockmarks extend for several 

hundreds of meters in a line. The depressions within the channels may be larger 

analogues to these features found in the Norwegian Trench. 

130 



Figure 4.19 Bathymetry data (gray sun-illuminated hillshade) showing bathymetric depressions 
(several indicated by arrows) within and downslope from small channels that may result from 
gas and fluid escape. Hillshade illumination from the southwest. Contours shown in meters. 

The presence of these features suggests a regional existence of sub-surface gas 

and gas seepage near the low-backscatter anomaly. This could suggest that sediments 

at the seabed within the bounds of the low-backscatter anomaly contain greater 

quantities of sub-surface gas than the surrounding regions. This change in gas-

saturation could result in the low-backscatter response of this area of seafloor. 

131 



4.2 Medium-Backscatter Bridge 

A geological interpretation for the medium-backscatter bridge (Figure 4.20) is 

presented in this section. Previous interpretations have suggested a mass flow deposit 

in the area corresponding to the medium-backscatter bridge (Embley and Jacobi, 

1986; Pratson and Laine, 1989). High-resolution 3.5-kHz chirp seismic-reflection 

profiles analyzed for this study support these interpretations and show a sequence of 

sub-surface reflectors that suggest the debris-flow originated from slope failure on the 

eastern flank of a sediment ridge immediately upslope from the medium-backscatter 

bridge. Sediment core EN101-PC01, which was collected from the medium-

backscatter bridge, suggests that successive turbidites formed the medium-

backscatter bridge feature. 
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Figure 4.20 Perspective view (looking north) showing medium-backscatter bridge outlined by 
solid white line, the low-backscatter anomaly outlined in white-dashed line and other nearby 
bathymetric features. 

4.2.1 Turbidite Deposit 

Stratigraphic analysis of core EN101-PC01 (Figure 4.21) suggests that the 

medium-backscatter bridge is a deposit formed by several turbidity currents. 

Consecutive coarse grain size layers shown by laser-diffraction particle-size analysis 

(Figure 4.22) give evidence that episodic deposition of coarser-grained sediment has 

occurred at the location of the medium-backscatter bridge. The episodic discrete 

changes in average grain size in core EN101-PC01 suggest the occurrence of fine­

grained turbidites. Sections of several of the coarse-grain layers (Ti and T2) show 

normal sediment grading, which is typically found in deep-sea turbidites 

(Shanmugam, 2000). Although physical observations do not show clear evidence of 



Bouma Sequences (Figure 4.22), these data show some of the stratigraphic features 

found within the fine-grained turbidite model proposed by Stow and Shanmugam 

(1980). The thin, convolute laminations found underlying normal-graded sediment 

that contains a silt lens could be the bottom and middle sections of the fine-grain 

turbidite model. The convolute laminations were identified by increases in grain size 

and higher quartz component than the overlying layers. 

Figure 4.21 Perspective view (looking north) showing the location of core EN101-PC01 with 
respect to the medium-backscatter bridge (outlined in red). 

In addition, some of the coarse grain size layers have a high (>25%) quartz 

component in smear slide samples compared to the composition of the background 

(non-turbidite) sediments (Figure 4.23). This change in composition suggests that a 



discrete change in sediment input, which could be a result of deposition of turbidity 

current material. 
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Figure 4.22 Image showing photograph of section of a possible fine-grained turbidite sequence 
(260 to 280 cm) within sediment core EN101-PC01. Turbidites highlighted by blue boxes on 
mean grain size plot. 
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Figure 4.23 Comparison of grain-size analysis with quartz compositions estimated from smear 
slide analysis. 
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4.2.2 Debris-Flow Deposit 

Although stratigraphic analyses of core EN101-PC01 shows the presence of 

turbidite layers, there is not a clear correlation with chirp sonar records that suggest 

the mediurn-backscatter bridge is a turbidity current deposit. The sequence of the 

acoustically transparent, lens-shaped features beneath the medium-backscatter bridge 

and the amphitheater-shaped and v-shaped sub-surface reflectors shown by chirp 

sonar data upslope from the medium-backscatter bridge suggests that the medium-

backscatter bridge is a debris-flow deposit (Figure 4.24). Embley and Jacobi (1986) 

interpreted similar lens-shaped masses of acoustically incoherent sub-surface in 3.5-

kHz subbottom records as debris-flow deposits. 

The debris flow likely initiated upslope from the medium-backscatter bridge 

near profile AA'. The amphitheater-shaped feature shown in profile BB' suggests that 

non-deformational sediment failure such as a slide or a slump may have initially 

caused the sediment-gravity flow. The acoustically transparent lens found in profiles 

CC, DD, and EE' suggests that the sediment failure may have induced or 

transformed into a debris flow. 
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Figure 4.24 Backscatter data and consecutive 3.5-kHz chirp profiles showing medium 
backscatter bridge. Medium-backscatter bridge outlined in red and low-backscatter anomaly 
outlined in white. Seismic-reflection profile vertical exaggeration = 65x 



4.2.3 Triggering Mechanisms 

One of the causes for the sediment failure that formed the medium-backscatter 

bridge could have been oversteepening due to toe removal at the base of the relatively 

steep (-0.7°) seafloor. As previously discussed, the presence of the WBUC and 

truncated sediment reflectors shown by chirp seismic-reflection profiles that cross the 

low-backseatter anomaly suggest that sediment erosion may have occurred in the 

region corresponding to the low-backscatter anomaly. Sediment removal caused by 

the WBUC could have caused slope instability of the seafloor and resulted in the 

mass-wasting event that formed the medium-backscatter bridge. 

The debris flow or sequence of turbidity currents that formed the medium-

backscatter bridge across the low-backscatter anomaly could have also been initiated 

by another larger slide that occurred upslope from the medium-backscatter bridge. 

The medium-backscatter bridge aligns with the downslope axis of the large lobe of 

high-backscatter located to the northwest of Wilmington channel (Figure 4.25). 

Previous studies by Embley and Jacobi (1986) have mapped a slide complex made up 

of a number of coalescing blocky slides and debris-flow deposits that correspond to 

this high-backscatter feature. An impact between one of the slides that form this 

complex and the sediment ridge located on the southeast side of Wilmington channel 

could have triggered the sediment failure on the seaward side of the ridge. 
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Figure 4.25 Map view showing interpretation of upslope slide complex (high-backscatter lobe) 
mapped by Embley and Jacobi (1986) as possible cause of medium-backscatter bridge. 

4.2.4 Core EN101-PC01 Sediment Ages 

A study by Stapleton (1987) measured the physical properties of sediment in 

core EN101-PC01 that was collected in the medium-backscatter bridge and found that 

the sediments are overconsolidated. These data and 3.5-kHz seismic-reflection 

profiles led Stapleton (1987) to conclude that 10 to 20 m of overburden sediment had 

been removed by erosion from the seafloor region near core EN101-PC01. If 10 to 20 
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m of sediment were removed, extrapolated sedimentation rates of ~7 to 11 cm kyr" 

found in this study and in previous studies (Embley, 1980) suggest that sediments at 

the top of core EN101-PC01 would be older than 70 kyr in age. However, calibrated 

radiocarbon ages from the top of core EN101-PC01 show that sediments from within 

the medium-backscatter bridge across the low-backscatter anomaly are younger than 

6 kyr. Linear extrapolations using sedimentation rates from radiocarbon ages show 

that only 40 to 70 cm of sediment has been removed from the sediment core top, as 

opposed to 10 to 20 m found by Stapleton (1987). This indicates a disagreement 

between the radiocarbon dates found in this study and conclusions by Stapleton 

(1987). 

Radiocarbon dating suggests that very little (40 to 70 cm) sediment has been 

removed from the seafloor where the core was collected. The 40 to 70 cm of sediment 

missing from the top of core EN101-PC01 could have been lost during piston coring, 

as explained by Ross and Riedel (1967) instead of by sediment erosion. Although 

these data do not suggest erosion of surface sediments in core EN101-PC01 and the 

medium-backscatter bridge, the radiocarbon age constraints do not clearly dismiss the 

hypothesis suggesting sediment erosion has caused the low-backscatter anomaly. 

Erosion likely occurred prior to the debris flow. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Multibeam sonar backscatter data collected in 2004 and 2005 along the U.S. 

Atlantic continental margin show an anomalous low-backscatter feature on the New 

Jersey continental margin. This feature had not been clearly mapped in previous 

seafloor studies. Without ground-truth data collected from within the low-backscatter 

anomaly, it is impossible to determine the exact composition and nature of sediment 

strata responsible for the anomalously low backscatter strength at this location. 

However, three possible geological explanations have been presented using 

interpretations of the data analyzed for this study. 

1) The low-backscatter anomaly could be caused by a sediment deposit 

composed of sediment supplied by several nearby small channels. Sediment 

suspended by turbidity currents that have traveled down-slope through the channels 

have been transported to the southwest by the Western Boundary Undercurrent. These 

sediments have been deposited across the seafloor corresponding to the low-

backscatter anomaly. 

2) The low-backscatter anomaly is an outcrop of older sediment strata that has 

resulted from surface sediment erosion and/or non-deposition. Sediment removal has 

likely resulted from an intensification of the WBUC due to the local seafloor 
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bathymetry or was caused by a shallowed and stronger WBUC high-velocity core. 

Additionally, sediments that traveled down-slope across the margin bypassed the 

anomalous area through Wilmington and Hudson channels. The gentle slope 

gradients on the upper continental rise further shielded sediments to this area by 

stopping sediments traversing the margin as gravity-driven flows. Sediments that 

traveled down-slope could have also bypassed the region due to the relatively steeper 

seafloor gradients and presence of the WBUC. 

3) The presence of gas in the sub-surface sediments has caused a low-

backscatter response from this seafloor region. 

Bottom photographs collected during a study by Schneider et al. (1967) at 

3400 m and 4200 m depths near the low-backscatter anomaly suggest that speeds of 

the WBUC are capable of suspended sediment transport. However, it is difficult to 

interpret from the available current-meter and grain-size data whether conditions 

within the low-backscatter anomaly have more likely caused deposition or erosion. 

The Heezen and Hollister (1964) diagram (Figure 4.7) suggests that average current 

speeds (~6 cm/s) found in other areas of the margin at similar depths as the low-

backscatter anomaly would likely create sediment transport or erosion conditions as 

opposed to sediment deposition within the range of grain sizes observed in sediment 

cores collected nearby the anomaly. Other studies (Tucholke and McCave, 1986) 

have suggested that deposition of fine-grain sediment can occur at current speeds less 

than 15 cm/s, which was observed during the HEBBLE study (McCave, 1985). 

Interpretation is further complicated by the broad range of current speeds (from 
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tranquil up to 78 cm/s) that have been measured for the WBUC and by cohesive 

strength of fine-grain sediments. 

However, the outcropping reflectors shown by the chirp sonar data and airgun 

seismic-reflection profiles from the low-backscatter anomaly strongly suggest that 

erosion has occurred within the low-backscatter anomaly as opposed to sediment 

deposition. A feature that might suggest the low-backscatter anomaly is a depositional 

lobe cannot be identified either in the chirp sonar seismic-reflection data or in the 

MBES bathymetry data. 

In addition, it is not clear that the turbidity current and contour current 

processes described under hypothesis 1 could form a sediment deposit that is 

homogenous in sediment composition within the penetration limits of the MBES and 

GLORIA sidescan sonar. Although it is likely that both processes could occur 

simultaneously, turbidity currents and contour currents are both episodic in nature. As 

a result, deposition that originates from these mechanisms would likely produce a 

sediment profile that is inhomogeneous in sediment composition. 

Therefore, although the sediment transport and subsequent deposition 

processes described under hypothesis 1 are plausible explanations for the origins of 

the low-backscatter anomaly, the seafloor data examined for this study suggest that 

hypotheses 2 is a more likely explanation for the low-backscatter anomaly than is 

hypothesis 1. 

It is also not clear from the data analyzed for this study that the presence of 

sub-surface gas can fully explain the presence of the low-backscatter anomaly. The 

bathymetrie depressions that resemble pockmarks are found in the northeast section 
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of the low-backscatter anomaly, but not in the section nearer to Wilmington channel. 

These features would likely be ubiquitous throughout the anomaly if high amounts of 

sediment gas were present throughout the feature. 

The acoustically transparent lens shown by chirp sonar data suggests that the 

medium-backscatter bridge across the low-backscatter anomaly is likely formed by a 

debris-flow deposit. Although sediment core EN101-PC01 shows the presence of 

several turbidite layers, it is difficult to envision that these layers have resulted in the 

medium-backscatter bridge feature. The stratigraphy shown by core EN101-PC01 

represents a small (~8 cm diameter) section of the seafloor, whereas the several chirp 

sonar profiles that image the subbottom structure across and upslope from the 

medium-backscatter bridge provide a more regional view. This debris-flow likely 

occurred as a single catastrophic event induced by oversteeping due to WBUC 

erosion or was triggered by a slide or earthquake that occurred upslope. This event 

likely occurred after the formation of the low-backscatter anomaly. 

5.2 Recommendations for Future Work 

This research shows the presence of a low-backscatter anomaly on the New 

Jersey continental margin and indicates an excellent opportunity for future research. 

The primary recommendation for the "next step" would be to collect sediment cores 

within the low-backscatter anomaly preserving the surface sediments (gravity core, 

box core and/or multicore), along with a sample attaining several meters of 

penetration (piston core). 



The seafloor sediment type and near-surface lithostratigraphy could be found 

by conducting grain-size analysis and smear-slide analysis on samples from sediment 

cores. Investigations of these samples could help to address the geology of the 

seafloor within the low-backscatter anomaly. These results could be compared to 

results of this thesis research to determine if there is a change in the composition of 

near-surface sediment stratigraphy within and outside of the low-backscatter 

anomaly. 

Measurements on the physical properties of the sediment such as porosity, 

saturated bulk density, and sound speed could be used to address the geoacoustic 

cause of the decreased backscatter strength. Some of these measurements have 

previously been conducted on sediment core EN101-PC01 by Stapleton (1987). The 

geoacoustic analysis on a sediment core collected within the low-backscatter anomaly 

could be used for comparison of acoustic stratigraphy within and outside of the 

anomalous feature to evaluate possible acoustic reasons for the change in backscatter 

strength. 

Geological explanations of the low-backscatter anomaly presented as 

hypotheses for this thesis research could be further investigated by this sediment core 

analysis. AMS-radiocarbon dating of planktonic foraminifera sampled from a core 

from the low-backscatter anomaly could be used to determine age constraints for the 

seafloor sediments. This would help to determine whether the anomaly is an exposed 

section of older sediments or composed of recently deposited material. Sediments 

could also be measured for gas content to determine if sediments are saturated in gas. 

These data could be compared to other seafloor samples collected outside of the 
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backscatter anomaly to resolve whether the low-backscatter return represents a 

significantly different sediment facies type from the surrounding seafloor. 

In addition to a sediment core, bottom photography or videography would be 

recommended to address bottom roughness and the presence/intensity of the WBUC 

within the low-backscatter anomaly. Photographs could provide visual evidence for 

sediment transport in this area. 

A long-term current-meter array across the low-backscatter anomaly could 

further resolve whether there is a change in WBUC speeds in this region. 

Measurements collected near the seafloor could be used to determine if this area 

corresponds to the landward limit of the high-velocity flow of the WBUC core. 

A comparative study is also recommended to help understand the anomalously 

low-backscatter seafloor found on the New Jersey margin. Backscatter data show a 

region of seafloor on the Blake Bahama Outer Ridge (BBOR) that may be analogous 

to the low-backscatter anomaly offshore New Jersey. An area of low-backscatter 

strength (~-45 dB) occurs near the coordinates 75° W and 30° (Figure 5.1). Unlike the 

New Jersey margin low-backscatter anomaly, this low-backscatter zone has been 

sampled by previous studies (Deep Sea Drilling Leg 11 and Woods Hole 

Oceanographic Institute research cruise KNR140). Analysis of these data could 

provide further clues to understanding the causes of the low-backscatter anomaly on 

the New Jersey margin. 
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Figure 5.1 Map showing location of the low-backscatter area on the Blake Bahama Outer Ridge. 
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7.34 

2.33 
2.31 

0.25 
0.24 

6.82 
6.85 

7.80 
7.82 

I 610 7.14 2.36 0.25 6.63 7.65 | 

009 1 

7.18 2.26 0.24 6.70 7.66 | 
I 590 7.02 2.46 0.26 6.49 7.54 | 
I 580 7.28 2.31 0.24 6.80 7.76 | 
I 570 7.28 2.32 0.25 6.78 7.77 | 
I 567 5.66 1.76 0.18 5.29 6.03 | 
I 550 7.79 1.51 0.16 7.47 8.11 | 
I 540 7.60 1.88 0.20 7.20 7.99 | 

0£9 | 

7.81 1.52 0.16 7.48 8.13 | 

039 | 

7.80 1.50 0.16 7.48 8.11 | 
I 510 7.46 1.95 0.21 7.05 7.87 | 

009 I 

7.34 2.12 0.22 6.90 7.79 | 
I 490 7.52 1.70 0.18 7.16 7.88 | 
I 480 7.32 2.06 0.22 6.88 7.76 | 
I 440 7.47 1.72 0.18 7.11 7.83 | 
I 430 7.26 2.05 0.22 6.83 7.69 | 
I 420 7.31 2.04 0.22 6.88 7.74 | 
I 410 7.32 2.03 0.21 6.90 7.74 | 
I 400 7.30 2.03 0.21 6.87 7.73 | 

062 | 

7.28 en
 

0.21 6.87 7.69 | 

08£ | 
7.43 CD

 

0.18 7.06 7.79 | 
I 370 7.26 bo

 

0.20 6.87 7.65 | 
I 355 7.34 b

i 0.17 7.01 7.67 | 

09£ I 

7.17 0.19 6.80 7.54 | 
I 345 7.30 ^ *.

 

0.19 6.92 7.67 | 
I 340 7.07 bo

 

0.19 6.69 7.46 | 
I 335 7.35 co

 

0.20 6.95 7.75 | 
I 320 7.41 bo

 
00

 

0.20 7.02 7.81 | 
I 310 7.07 2.06 0.22 6.63 7.51 | 

ooe I 

7.28 1.97 0.21 6.86 7.71 | 
I 295 7.10 2.23 0.24 6.62 7.57 | 
I 285 5.63 2.28 0.24 5.16 6.11 | 

082 | 

5.67 2.23 0.24 5.20 6.14 | 
I 275 6.11 2.11 0.22 5.66 6.55 | 
I 270 5.65 2.16 0.23 5.19 6.10 | 
I 265 6.06 2.08 0.22 5.61 6.50 | 

093 I 

6.71 2.24 0.24 6.23 7.18 | 

993 I 

6.36 2.16 0.23 5.90 6.82 | 

093 | 

6.79 1.97 0.21 6.37 7.21 | 
I 245 7.65 1.57 0.17 7.32 7.98 | 
I 240 7.26 1.66 0.17 6.91 7.61 | 
I 235 6.82 2.11 0.23 6.38 7.27 | 
I 225 7.21 2.13 0.22 6.77 7.65 | 
I 220 6.90 2.30 0.25 6.42 7.39 | 

| Depth (cm) Mean (Phi) Std Dev Std Err Mean Lower 95% Upper 95% | 
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CoreENlOl-PCOHcontcU 

Depth (cm) 
640 
650 
660 
665 
670 
675 
680 
685 
690 
695 
700 
705 
710 
715 
720 
725 
730 
735 
740 
745 
750 
760 
770 
780 
790 
800 

Mean (Phi) 
7.35 
5.95 
6.31 
6.10 
7.13 
7.28 
7.06 
7.57 
7.41 
7.80 
7.78 
7.62 
7.81 
7.52 
7.63 
7.63 
7.40 
7.57 
7.58 
7.57 
7.58 
7.63 
7.51 
7.54 
7.32 
7.48 

Std Dev 
2.08 
2.08 
2.11 
2.32 
1.80 
2.18 
2.26 
1.91 
2.07 
1.95 
1.96 
2.23 
1.96 
2.26 
1.55 
1.54 
1.88 
1.53 
1.51 
1.52 
1.54 
1.52 
1.84 
1.72 
2.02 
1.81 

Std Err Mean 
0.22 
0.22 
0.22 
0.25 
0.19 
0.24 
0.24 
0.20 
0.22 
0.21 
0.21 
0.24 
0.21 
0.24 
0.17 
0.16 
0.20 
0.16 
0.16 
0.16 
0.16 
0.16 
0.20 
0.18 
0.22 
0.20 

Lower 95% 
6.90 
5.51 
5.86 
5.60 
6.74 
6.81 
6.58 
7.17 
6.97 
7.39 
7.36 
7.15 
7.40 
7.05 
7.29 
7.31 
7.01 
7.24 
7.26 
7.25 
7.25 
7.30 
7.12 
7.17 
6.89 
7.09 

Upper 95% 
7.79 
6.39 
6.75 
6.59 
7.51 
7.75 
7.54 
7.97 
7.86 
8.21 
8.19 
8.09 
8.23 
8.00 
7.97 
7.96 
7.80 
7.89 
7.89 
7.88 
7.91 
7.95 
7.90 
7.91 
7.75 
7.87 

Core ENQ84-GC02 

Depth (cm) 
0 
5 
10 
15 
17 
20 
25 
30 
35 
40 
45 

Mean (Phi) 
6.30 
5.90 
6.47 
5.79 
4.40 
6.13 
6.70 
6.48 
6.53 
4.51 
6.66 

Std Dev 
1.77 
2.12 
1.96 
2.04 
1.19 
2.03 
1.89 
1.99 
1.90 
1.38 
1.96 

Std Err Mean 
0.19 
0.23 
0.21 
0.21 
0.12 
0.21 
0.20 
0.21 
0.20 
0.15 
0.21 

Lower 95% 
5.93 
5.45 
6.05 
5.36 
4.15 
5.70 
6.30 
6.06 
6.12 
4.22 
6.24 

Upper 95% 
6.68 
6.35 
6.88 
6.21 
4.64 
6.55 
7.10 
6.90 
6.93 
4.80 
7.08 
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