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a b s t r a c t

Groundfish that associate with rugged seafloor types are difficult
to assess with bottom-trawl sampling gear. Simrad ME70 multi-
beam echosounder (MBES) data and video imagery were collected
to characterize trawlable and untrawlable areas, and to ultimately
improve efforts to determine habitat-specific groundfish biomass.
The data were collected during two acoustic-trawl surveys of the
Gulf of Alaska (GOA) during 2011 and 2012 by NOAA Alaska Fish-
eries Science Center (AFSC) researchers. MBES data were collected
continuously along the trackline, which included parallel transects
(1–20 nmi spacing) and fine-scale survey locations in 2011. Video
data were collected at camera stations using a deployed camera
system. Multibeam-derived seafloor metrics were overlaid with
the locations of previously conducted AFSC bottom-trawl (BT) sur-
vey hauls and 2011 camera stations. Generalized linear models
were used to identify the best combination of multibeam metrics
to discriminate between trawlable and untrawlable seafloor for the
region of overlap between the camera stations or haul paths and
theMBESdata. The twobestmodelswere developedusing data col-
lected at camera stations with either oblique incidence backscatter
strength (Sb) or mosaic Sb in combination with bathymetric posi-

∗ Corresponding author. Tel.: +1 907 789 6603; fax: +1 907 789 6094.
E-mail address: jodi.pirtle@noaa.gov (J.L. Pirtle).

1 Present address: National Academy of Sciences, National Research Council, Visiting Scientist at National Oceanic and
Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 17109 Point Lena Loop Road,
Juneau, AK, 99801, USA.

http://dx.doi.org/10.1016/j.mio.2015.06.001
2211-1220/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.mio.2015.06.001
http://www.elsevier.com/locate/mio
http://www.elsevier.com/locate/mio
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mio.2015.06.001&domain=pdf
mailto:jodi.pirtle@noaa.gov
http://dx.doi.org/10.1016/j.mio.2015.06.001


J.L. Pirtle et al. / Methods in Oceanography 12 (2015) 18–35 19

tion index and seafloor ruggedness; these described over 54% of
the variation between trawlable and untrawlable seafloor types. A
mapof predicted seafloor trawlability produced from themodel us-
ing mosaic Sb and benthic-terrain metrics demonstrated that 58%
of the area mapped (5987 km2) had ≥50% probability of being
trawlable and 42% of being untrawlable. The model correctly pre-
dicted 69% of trawlable and untrawlable haul locations. Success-
ful hauls occurred in areas with 62% probability of being trawlable
and gear damage occurred in areas with a 38% probability of being
trawlable. This model and map produced frommultibeam-derived
seafloor metrics may be used to refine seafloor interpretation for
the AFSC BT surveys and to advance efforts to develop habitat-
specific biomass estimates for GOA groundfish populations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-species bottom-trawl surveys are a common fishery-independent assessment method to
obtain biomass estimates for demersal fish populations. Inherent in trawl survey biomass estimates is
the issue of catchability, which is influenced by the relative proportion of trawlable and untrawlable
ground in a survey area, or the area accessible by the survey (Cordue, 2007). Management areas
like the Gulf of Alaska and US West Coast have a mix of trawlable and untrawlable seafloor
types (Zimmermann, 2003; Von Szalay et al., 2010). Certain groundfish species, such as rockfishes
(Sebastes spp.) have mixed distribution in trawlable and untrawlable habitat or prefer rugged habitat
inaccessible to bottom-trawl gear (Stein et al., 1992; Clausen and Heifetz, 2002; Jagielo et al.,
2003; Rooper et al., 2007). Consequently, the proportion of the population in untrawlable habitat is
undersampled or not sampled at all, and the sampledpopulation is assumed to be representative of the
entire population for the purpose of the stock assessment. Disproportionate survey access to all areas
occupied by the harvested population can introduce non-random error to biomass estimates from
trawl survey time-series (Cordue, 2007). Thus,more accurate accounting of the extent of trawlable and
untrawlable survey area is needed as a first step toward assessing and correcting this potential bias.

National Oceanic and Atmospheric Administration (NOAA) Alaska Fisheries Science Center (AFSC)
Resource Assessment and Conservation Engineering (RACE) Division researchers conduct a bien-
nial area-wide bottom-trawl survey (BT survey) for groundfish in the Gulf of Alaska (GOA), from
the Islands of Four Mountains (169°59
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N) in the Aleutian Islands to Dixon Entrance
(133°13

′

53
′′

W 54°30
′

38
′′

N) (Von Szalay et al., 2010). The RACE BT survey is conducted aboard char-
tered commercial fishing vessels. Stations in 59 survey strata are allocated from a sampling grid in a
stratified-random design. A survey vessel skipper searches to locate trawlable ground within a sta-
tion grid cell for a minimum of two hours, or abandons that cell and searches within another until
trawlable ground is located. The sampling grid is populated with the locations of known trawlable
and untrawlable features. However, knowledge of seafloor trawlability is not comprehensive across a
survey grid cell and is qualitative at best. Untrawlable seafloor is often encountered in areas thought
to be trawlable, which can result in considerable gear damage and loss of the sample and survey time.
Given the difficulties in selecting trawlable seafloor, we know that there are similar difficulties as-
sociated with identifying untrawlable seafloor. A better estimate of the areal extent of trawlable and
untrawlable ground in the GOA will improve biomass estimates for groundfish, increase survey effi-
ciency, and reduce damage to gear and benthic habitat. In this study, we test metrics derived from
multibeam echo sounder (MBES) data for their ability to discriminate between trawlable and un-
trawlable seafloor types in the RACE BT survey area.
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MBES surveys can acquire high-resolution bathymetry and backscatter data concurrently to pro-
duce detailed images of the seafloor. Several quantitative metrics can be derived from MBES data to
distinguish seafloor features of varied morphology (e.g., Wilson et al., 2007). When combined with
groundtruth data of similar spatial scale, it is possible to model andmap seafloor types and landscape
features that influence marine species distribution (Dolan et al., 2008; Buhl-Mortensen et al., 2009;
Reynolds et al., 2012), including habitat for harvested species (Shotwell et al., 2008; Todd andKostylev,
2011). Metrics extracted from MBES data that may be useful predictors to discriminate between ar-
eas of trawlable and untrawlable seafloor include those derived from angle-dependent backscatter
strength, backscatter mosaics, and bathymetry.

Seafloor backscatter strength (Sb) is dependent on the incident angle of soundwith the seafloor. For
example, the predicted Sb (decibels; dB) of a cobble seafloor is quite similar to fine sand and silt when
examined at angles near normal incidence (0°). In contrast, the Sb of cobble is predicted to bewell sep-
arated from sediments of finer grain sizes at oblique incidence angles between 30° and 50° (APL, 1994;
Weber et al., 2013). Studies have usedmultibeam-derived angle-dependent Sb metrics to describe the
nature of seafloor sediments (Fonseca andMayer, 2007; Fonseca et al., 2009), terrain features (Weber
et al., 2013), and benthic habitat (Hasan et al., 2012). The ability of angle-dependent Sb metrics to dis-
criminate between trawlable and untrawlable seafloor has been tested for a small region containing
a subset of the seafloor types present in the GOA (Weber et al., 2013).

Mosaics are a commonly used form of backscatter data. Mosaics are generated by normalizing
Sb values across the multibeam swath to the range of observed values at oblique incidence angles
(e.g., Rzhanov et al., 2012). One caveat to working with mosaics is the assumption that normal inci-
dence backscatter strength has the same discriminatory power as backscatter strength from oblique
incidence angles. Some angular resolution of the Sb data is also lost when mosaics are produced.
However, backscatter mosaics have the potential to simplify interpretation of seafloor properties, as
opposed to retaining and analyzing the full angle-dependent Sb. Greater spatial resolution is also avail-
able from backscatter mosaics, as opposed to angle-dependent Sb metrics that apply to discrete sec-
tions of the multibeam swath.

Several benthic terrain metrics can be derived from high-resolution multibeam bathymetry data
that describe attributes of seafloor morphology. Seafloor slope, curvature, and bathymetric position
index are measures of terrain variability. Seafloor slope is the rate of change in bathymetry over a
defined area (Horn, 1981). Seafloor curvature highlights concave and convex slopes and defines slop-
ing terrain along features (Evans, 1980; Schmidt et al., 2003). Bathymetric position index (BPI) is the
equivalent of topographic position index, which describes the elevation of one location relative to the
mean of neighboring locations (Guisan et al., 1999; Weiss, 2001). BPI will emphasize features that are
shallower or deeper than the surrounding area, such as ridges and valleys. Seafloor ruggedness is a
measure of terrain complexity that highlights the presence of rough and bathymetrically uneven ter-
rain (Sappington et al., 2007). Examining these terrain metrics at fine and broad spatial scales may be
meaningful to determine the relative influence of features of different scale to distinguish between
trawlable and untrawlable seafloor types.

We derived several metrics that describe the seafloor in the GOA from data collected opportunis-
tically with a Simrad ME70 MBES, during ongoing fishery resource surveys. The ME70 is a calibrated
MBES designed to collect quantitative acoustic data on targets throughout the water column (Trenkel
et al., 2008; Cutter et al., 2010). Bathymetry and backscatter data are acquired concurrently when the
ME70 is operated in the standard fishery mode. User configuration is possible and bottom detections
can be extracted from the data with customized software designed to characterize the seafloor in the
area of study (Weber et al., 2013).

In this work, we demonstrate the value of multibeam metrics as predictor variables to discrimi-
nate between trawlable and untrawlable seafloor types in the GOA, extending the preliminary study
byWeber et al. (2013). Our objectiveswere to (1) determinewhether or not trawlable and untrawlable
ground can be distinguished using a variety of multibeam-derived backscatter and bathymetry met-
rics; (2) identify which multibeam metrics, singularly or in combination, are most useful to discrim-
inate between trawlable and untrawlable locations; and (3) generate probability maps of predicted
seafloor trawlability within the GOA.



J.L. Pirtle et al. / Methods in Oceanography 12 (2015) 18–35 21

2. Methods

2.1. Multibeam survey

NOAA AFSC RACE researchers conduct acoustic-trawl surveys (AT surveys) with the NOAA ship
Oscar Dyson to assess semi-demersalwalleye pollock (Gadus chalcogrammus) biomass and distribution
during summer and winter in the GOA (Jones and Guttormsen, 2012; Jones et al., 2015). ME70
data were collected during the summer 2011 GOA-wide biennial AT survey from 14 June to 12
August from the Islands of Four Mountains in the Aleutian Islands (169°59
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eastern side of Kodiak Island (151°5
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N). Additional ME70 data were collected during
the smaller-scale winter 2012 AT survey during 13–22 February and 17–27 March between Sanak
Island (163°14

′

42
′′

W 54°48
′

37
′′

N) and the eastern side of Kodiak Island. Survey activities for the
pollock assessment were generally conducted during daylight hours in the summer and both day and
night during the winter pre-spawning pollock AT surveys. Nominal underway free-running (versus
trawling) vessel speedwas 5.5–6m s−1 (10.7–11.7 kt), but varied depending onweather and sea state.

The ME70 was operated in fishery mode, using a custom configuration of 31-beams at frequencies
from 73–117 kHz, with beam opening angles from 2.8°–11.0°, steered to 0° in the alongship direction
and −66° to +66° in the athwartship direction, with the lowest frequencies steered to the highest
beam angles, and a pulse duration of 1.5 m s−1 (sensu Weber et al., 2013). The ME70 was calibrated
in Three Saints Bay, Kodiak Island (153°30

′

54
′′

W 57°10
′

30
′′

N), prior to the start of the summer 2011
survey, using the standard sphere calibration method (Foote et al., 1987).

ME70 data were collected during the surveys along parallel transects spaced 2–20 nmi apart over
20–500m bottom depths. Fine-scale multibeam surveys with 100% bottom coverage were conducted
during evening hours of the summer 2011 survey to target both trawlable and untrawlable seafloor
types. An Applanix POS/MV V4 system output dynamic motion and position data directly to theME70
to compensate the beam directions for pitch and roll of the ship and to georeference the multibeam
data. A C-Nav MBX-4 system applied differential correction data to the POS/MV to improve position
accuracy. Expendable bathythermograph (XBT) profiles were conducted approximately every 3–6 h
during the survey and conductivity temperature and depth (CTD) sensor profiles were conducted
nightly at fine-scale survey locations to measure sound speed through the water column and correct
for the effect of sound refraction. Conductivity and temperature were also continuously measured
near the transducer by the ME70 system.

2.2. Camera stations

Video imagery was collected at camera stations to characterize the seafloor as trawlable or un-
trawlable for comparisonwith theME70 data. Camera stations were sampled during evening hours of
the summer 2011 survey within the fine-scale multibeam survey areas. Camera stations were located
in a pattern that sampled a central location and then targeted the remaining fine-scale survey area
equally. One camera deployment was conducted at each camera station. At least one and as many as
five camera stations were sampled during each fine-scale survey.

Video imagerywas collected at camera stations using one of two camera systems, including a single
camera (DC) and stereo camera (SDC) system. The DC was fitted with one digital video recorder and
two lights placed above the camera housing for illumination. The SDC had two-Sony TRD-900 progres-
sive scan camcorderswith 1280×720 pixel resolution (Sony Corp., Tokyo, Japan) and two lights placed
above the camera housings (Williams et al., 2010). Both systems were mounted in aluminum cages.

EachDC deployment via standard shipboardwinch included 5min of total bottom time providing a
visual assessment of the seafloor. Each SDC deployment included 30min total bottom time. Unlike the
DC, the SDCused a real-time video feed and a dedicatedwinchwhich allowed verticalmaneuverability
in thewater column and over the benthic terrain. This systemwas optimal for greater spatial coverage
and was used when more ship time was available.

Seafloor substrate was classified from video, using a two-code system with the following
categories: rock with vertical relief (R), flat bedrock (F), boulder (B; >25.5 cm), cobble (C;
6.5–25.5 cm), pebble (P; 2–6.5 cm), gravel (G; 2–4 mm), sand (S; grains distinguishable), and mud
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(M) (Wentworth, 1922; Stein et al., 1992). Grain size was estimated from a tethered weight (28 cm
diameter) in the field of view (DC), or directly from the horizontal field of view (2.4 m; SDC). The
first code with this system represented 50%–80% of the substrate composition, and the second code
represented 20%–50% (e.g., MB is at least 50% mud and at least 20% boulder, and BB is ≥80% boulder).
A new codewas assignedwhen a change in substrate was encountered for an area lasting greater than
10 s of video duration.

The seafloor substrate and overall benthic terrain at camera stations was further classified as
trawlable or untrawlable. A standard Poly-Nor’eastern 4-seam bottom-trawl is used in the GOA BT
survey (Stauffer, 2004). Untrawlable areas for this study were defined as any substrate containing
boulders (>25.5 cm at the greatest dimension) reaching higher than 20 cm off bottom, or bedrock
with vertical relief and–or ruggedness that would likely prevent the bottom-trawl from passing over
it without damage from seafloor contact.

2.3. Haul locations

Historic BT survey haul locations were sampled with the ME70 whenever possible during the AT
surveys. Because the bottom-trawl haul locations occurred in areas thatwere assumed to be trawlable
by the BT survey, the haul locations represent only a subset of the seafloor types in the GOA. In
contrast, the camera stations sampled during the multibeam survey captured a variety of trawlable
and untrawlable seafloor types that were characterized from video. Due to this difference, the haul
locations and camera stations were compared to the ME70 data as separate data sets.

Haul location samples were constrained to survey years 1996–2011, due to positional precision
and reliable trawl gear damage reporting. Haul performance is characterized by RACE as successful,
marginally-successful (hereaftermarginal), or failed, based on the level of gear damage sustained from
seafloor contact. Successful hauls do not sustain gear damage and provide an acceptable catch sample.
Marginal hauls are those with some gear damage, but where the damage was judged to not affect the
catch. Failed hauls have extensive gear damage, or the damagewas located in an area of the net where
the catch was judged to be affected. Bottom-trawl hauls used in our analysis incurred several types
of failure resulting in gear-damage, including gear hang-ups (i.e., gear was snagged or entangled on
the seafloor), having to haul-back early due to hangs, major hangs that stopped the forward progress
of the vessel, and on two occasions the net was destroyed. Successful hauls were assumed to occur
in areas of trawlable seafloor and failed hauls in areas of untrawlable seafloor. Marginal hauls were
pooled with failed hauls for the analysis because all hauls with gear damage were assumed to occur
in locations with untrawlable features.

2.4. Multibeam data

2.4.1. Multibeam data processing
The Simrad ME70 data collection and processing workflow for this study is shown in Fig. S1 (see

Appendix A). Raw acoustic data files were generated by the ME70 workstation during data collection.
Bathymetry and Sb datawere extracted from the rawME70 files using algorithms that performbottom
detections and apply uncertainty corrections (sensu Weber et al., 2013). The bottom detections were
then used to calculate angle-dependent Sb metrics for data analysis, or written to Generic Sensor
Format (GSF) files for further processing.

2.4.2. Angle-dependent Sb
Three different angle-dependent Sb metrics were derived from the seafloor backscatter strength.

These were based on the predicted Sb at incidence angles (Jackson and Richardson, 2007). These
metrics were normal-incidence Sb (0°–1°), oblique incidence Sb (30°–50°), and the slope of the angle-
dependent backscatter within 10° of normal incidence (Sb-slope).

2.4.3. Backscatter mosaics and bathymetry grids
Bottom detections from the ME70 data were input as GSF files into the hydrographic data pro-

cessing software CARIS HIPS (version 7.2, CARIS). Soundings were corrected for vessel offsets, sound
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refraction, and tides, and merged to generate a 6 m2 resolution surface, using the Combined Uncer-
tainty and Bathymetric Estimator algorithms (CUBE). Cursory cleaningwas conducted to remove obvi-
ous sounding errors affecting the surface. Processed GSF files were exported to Fledermaus Geocoder
Tools (FMGT) and DMagic to generate backscatter mosaics (Sb, dB) and bathymetry grids (m-depth),
each at 6 m2 resolution (version 4.0, IVS).

2.4.4. Benthic terrain analysis
Benthic terrain metrics were derived from bathymetry grids (6 m2) in ArcGIS (version 10.1, ESRI).

Calculations for seafloor slope and curvaturewere performedusingDEMSurface Tools (Jenness, 2013).
Seafloor ruggedness and BPI were calculated using features of the Benthic Terrain Modeler (Wright
et al., 2012). Seafloor slope, curvature, and ruggedness were calculated from a moving analysis win-
dow of a 3×3 array of grid cells, which uses the bathymetry of each cell and 8 surrounding neighbors.
Ruggedness was also calculated using 11 and 21 cell arrays. These spatial scales were selected based
on the scale of terrain features derived by thesemetrics that are likely encountered by a bottom-trawl
haul path (16mwidth). Slopewas calculated along east–west and north–south gradients, usingHorn’s
directional method (Horn, 1981). Two measures of curvature were calculated. Profile curvature is the
curvature of the surface in themaximumdirection of slope, and is useful to highlight concave and con-
vex slopes. Plan curvature is the curvature perpendicular to the maximum direction of slope, and is
useful to define sloping terrain along features (Evans, 1980; Schmidt et al., 2003). Seafloor ruggedness
was calculated using a vector ruggedness measure (VRM) that quantifies the 3-dimensional disper-
sion of vectors orthogonal to the planar terrain surface and accounts for variability in both slope and
aspect (Sappington et al., 2007). BPI compares the bathymetric position of a grid cell to the mean
of neighboring cells in radial directions (Guisan et al., 1999; Weiss, 2001). BPI was calculated from
neighborhoods with a radius of 20, 50, 100, and 200 cells.

2.5. Data analysis

2.5.1. Extract multibeam metrics
Two sets of sample locationswere used for this analysis. These included the camera stationswithin

theME70 fine-scale survey areas and BT survey trawl haul locations.Multibeam-derived seafloormet-
rics were overlaid with the location of camera stations and haul path locations to extract metrics
that could potentially discriminate between trawlable and untrawlable seafloor types and to gener-
atemodels and probabilitymaps of predicted seafloor trawlability. Multibeammetricswere extracted
from an area within 20 m of the camera stations. Multibeammetrics were extracted at haul locations
for the area of overlap between the ME70 swath and bottom-trawl path where the net was in contact
with the seafloor, taking into account the distance of wire out, trawl warp length, trawl width (16 m),
and the positional uncertainty of the survey vessel. A 28mbuffer around the haul pathswas applied to
additionally include one half of the trawl net width (8 m). Haul paths targeted during the multibeam
survey were sampled with 100% coverage. Occasionally, only the edge or a section of a haul path was
sampled because of the opportunistic nature of ME70 operations during the AT surveys. Multibeam
survey coverage of individual haul path locations was determined based on the proportion of the haul
path area sampled by the multibeam swath. Analysis was limited to haul locations where the region
of overlap between the multibeam data and bottom-trawl haul path location was >10% of the haul
path area.

The multibeam data extracted for analysis with the camera and haul data sets included angle-
dependent Sb metrics, backscatter and bathymetry metrics as well as their associated mean and stan-
dard deviation (SD). These calculations were performed for Sb metrics (dB) by first converting those
values to intensities. Metrics used in data analysis are listed in Table 1. To determine whether a
multibeam-derived metric could discriminate between trawlable and untrawlable areas, the metric
values of camera stations and haul locations that were characterized as trawlable or untrawlablewere
first compared using a 2-sample t-test (α = 0.05).
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Table 1
Seafloor metrics derived from data collected with the ME70 MBES during cruises in 2011
and 2012 aboard the NOAA ship Oscar Dyson in the Gulf of Alaska. Metrics derived from
the angle-dependent seafloor backscatter strength (Sb) were normal-incidence seafloor Sb ,
oblique incidence Sb , and the slope of the angle-dependent backscatter within 10° of normal
incidence (Sb-slope). The mean mosaic value (mosaic Sb) was derived from backscatter
mosaics. Metrics derived from gridded bathymetry data were seafloor slope, plan curvature,
profile curvature, ruggedness (VRM), and bathymetric position index (BPI).

Multibeam metric Angle of incidence or scale

Angle-dependentSb Raw data resolution
Normal incidence Sb 0°–1°
Oblique incidence Sb 30°–50°
Sb-slope 0°–10°
Backscatter mosaic 6 m2

Mosaic value Swath normalized to values from 30°–50°
Bathymetry grid 6 m2

Slope 3 × 3 cells
Profile curvature 3 × 3 cells
Plan curvature 3 × 3 cells
VRM 3 × 3, 11 × 11, 21 × 21 cells
BPI 20, 50, 100, 200 cell radius

2.5.2. Model seafloor trawlability
The ability of each multibeam-derived metric to discriminate between trawlable and untrawlable

areas was tested with predictive models. Seafloor trawlability was modeled separately for camera
stations and haul locations with logistic regression using a generalized linear model (GLM) Y = ∝

+β1X1 + βiXi + E and the logit link function p(Y ) = exp(Y )/(1 + exp(Y )) for binary response
data (McCullagh and Nelder, 1983). GLM can accommodate data that are not normally distributed
and the model results can be implemented as probability maps for prediction (Guisan et al., 1999;
Duff, 2008). The response for thesemodels was the trawlable or untrawlable characterization for each
sample location. Predictor variables were the multibeam-derived seafloor metrics at the sample loca-
tions (Table 1). Multibeam metrics were standardized prior to analysis by subtracting the mean and
dividing by the SD of the metric. Best-fitting models were determined in a forward step-wise fashion
beginning with the camera stations.

Models with metrics as individual predictors were examined first. Common diagnostics for logis-
tic regression were evaluated, including the proportion of deviance explained (D2) and an analysis
of deviance test. An analysis of deviance test is a likelihood ratio test for GLMs used to evaluate the
performance of each model compared to a null model (α = 0.05). The most discriminatory models
were chosen based on the Akaike information criterion (AIC). Models with AIC values within 2 digits
are not considered different with regard to the predicted response (Burnham and Anderson, 2002).

Models withmore than one predictor were examined next, using combinations of the best individ-
ual predictor models. Multi-collinearity among multibeam metrics was examined prior to choosing
metrics for models with more than one predictor, so that collinear metrics (|r| > 0.7) were not in-
cluded in the same model (e.g., Dormann et al., 2013). Predictors were added one by one as long as
the model fit improved. The best models with more than one predictor were evaluated and compared
to the results of the single predictor models. All analysis was conducted in R (R Development Core
Team, 2013).

2.5.3. Map seafloor trawlability
Predicted probability of seafloor trawlability for the GOA multibeam survey area was mapped us-

ing themodel coefficients andmultibeammetrics from the best model. Amodel probability threshold
of 0.5 was used to discriminate between trawlable and untrawlable areas. The ability of the model to
correctly predict the presence of trawlable and untrawlable seafloor features was evaluated for either
camera stations or haul locations, depending on which data set was used with the MBES survey data
to develop the best model. This cross-validation analysis was conducted in ArcGIS by extracting the
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Fig. 1. Distribution of angle-dependent seafloor backscatter strength values (Sb; dB) for the range of incidence angles
(−55°–+55°) sampled by the multibeam swath at camera stations classified as trawlable or untrawlable. Camera stations
(n = 47) were sampled during the 2011 ME70 MBES survey aboard the NOAA ship Oscar Dyson in the GOA.

model values of predicted seafloor trawlability from the region of overlap with sample locations that
were classified as trawlable or untrawlable.

3. Results

A total of 47 camera stations were sampled at fine-scaleME70 survey locations during the 2011 AT
survey. Trawlable seafloorwas identified at 27 camera stations and untrawlable seafloor at 20 stations
(Table S1; see Appendix A).

Seafloor substrate at trawlable camera stations includedpoorly sorted, fine-grain sediments,which
were difficult to distinguish from one another in the video data (e.g., mixed sand and mud with silt).
Other substrate types at the trawlable camera stations were more readily discernible and included
areas of fine-grain sediments with scattered gravel, pebbles, cobbles, and the occasional embedded
small boulder, or continuous areas of gravel and pebbles with scattered cobbles of varied size. Un-
trawlable stations included areas of fine-grain sediment with boulders and rock outcrops, areas of
continuous gravel, pebbles, and cobble with isolated boulders and rock, or areas of continuous boul-
der and rock.

The total area mapped with the ME70 during the AT surveys was 5987 km2, which corresponded
with the location of 450 historic bottom-trawl haul paths across the BT survey area. These included
373 successful hauls and 77 marginal and failed hauls. The range of spatial overlap between the
multibeamdata (swath) and individual haul locationswas 10%–100%withmean overlap of 55% (±26%
SD). Examining the distribution of seafloor scattering strength data at the range of angles across
the multibeam swath demonstrated that areas of trawlable seafloor generally exhibited lower Sb
values than areas with untrawlable seafloor. Areas of trawlable seafloor at camera stations generally
had lower Sb values at all incidence angles than untrawlable seafloor (Fig. 1). The BT survey haul
performance categories, successful,marginal, and failed, show separation in Sb values across incidence
angles at haul locations, with successful haul locations having lower values overall (Fig. 2). Marginal
and failed haul locations grouped together in the range of higher Sb values across themultibeamswath.
Mean Sb values at marginal and failed haul locations were not significantly different.

3.1. Multibeam metrics and camera stations

Angle-dependent Sb metric values (Table 1) for camera stations classified as trawlable were sig-
nificantly lower than those classified as untrawlable (Fig. 3). Similar results were obtained for values
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Fig. 2. Distribution of angle-dependent seafloor backscatter strength values (Sb; dB) for the range of incidence angles
(−55°–+55°) sampled by the multibeam swath at haul locations where trawl performance was classified as successful,
marginal, or failed. Haul locations sampled (n = 450) were conducted during the summer 1996–2011 RACE BT surveys.

Fig. 3. Multibeam-derived seafloor metrics (mean, +SD) compared between trawlable and untrawlable camera stations
(t-test, α = 0.05). Metrics derived from the angle-dependent seafloor backscatter strength (Sb) are normal-incidence Sb ,
oblique incidence Sb , and Sb-slope. Mosaic Sb is derived from backscatter mosaics (6 m2). Metrics derived from gridded
bathymetry data (6 m2) are seafloor slope, profile curvature, and plan curvature, calculated from 3 × 3 cell arrays. Seafloor
ruggedness (VRM) is calculated from 3 × 3, 11 × 11, and 21 × 21 cells, and bathymetric position index (BPI) is calculated
from 20, 50, 100, and 200 cell radius analysis windows. Significance levels are as follows: * (p < 0.05), ** (p < 0.001), ***
(p < 0.0001).

derived from backscatter mosaics. Mosaic Sb values were significantly lower at trawlable camera sta-
tions.

Differences were detectable between trawlable and untrawlable camera stations for only some of
the benthic terrain metrics derived from the bathymetry grids (Fig. 3). All BPI values were signifi-
cantly less at trawlable camera stations. Measures of seafloor slope and curvature did not distinguish
between trawlable and untrawlable stations. Differences were also not detectable between trawlable
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Fig. 4. Multibeam-derived seafloor metrics (mean,+SD) compared between trawlable and untrawlable historic bottom-trawl
haul locations (t-test, α = 0.05). Metrics derived from the angle-dependent seafloor backscatter strength (Sb) are normal-
incidence Sb , oblique incidence Sb , and Sb-slope. Mosaic Sb is derived from backscatter mosaics (6 m2). Metrics derived from
gridded bathymetry data (6 m2) are seafloor ruggedness (VRM) calculated from a 21 × 21 cell array, and bathymetric position
index (BPI) calculated from an analysis window of 200 cell radius. Significance levels are as follows: * (p < 0.05), ** (p < 0.001),
*** (p < 0.0001).

and untrawlable stations for seafloor ruggedness calculated from 3× 3 and 11× 11 cell arrays. How-
ever, broad-scale ruggedness (VRM 21 × 21 cells) was significantly lower at trawlable stations.

There was a significant difference between oblique incidence Sb and mosaic Sb normalized to
oblique incidence angles (p < 0.0001), demonstrating that themeans of thesemetrics were different.
These metrics were correlated for camera stations (r = 0.78).

3.2. Multibeam metrics and haul locations

All angle-dependent Sb metric values for bottom-trawl haul locations classified as trawlable were
significantly less than values at untrawlable locations (Fig. 4). These included normal incidence Sb,
oblique incidence Sb, and Sb slope near normal incidence. Mosaic Sb values at trawlable haul locations
were also significantly lower than untrawlable haul locations.

Only benthic terrain metrics that could discriminate between trawlable and untrawlable camera
stations were evaluated in the analysis for haul locations, including VRM and BPI at one derived
spatial scale. Although thesemetricswere discriminatory at camera stations,which sampled a broader
range of seafloor types than the BT haul locations, they did not discriminate between trawlable and
untrawlable haul locations (Fig. 4).

There was a significant difference between oblique incidence Sb and mosaic Sb normalized to
oblique incidence angles (p < 0.0001), demonstrating that themeans of thesemetrics were different.
These metrics were correlated for haul locations (r = 0.95).

3.3. Trawlability models

Themost discriminatory singlemetricmodels for camera stations based on AIC valuesweremosaic
Sb (AIC = 37.2, D2

= 0.38) and oblique incidence Sb (AIC = 42.5, D2
= 0.28). The best models for

camera stations with more than one predictor were models that included broad-scale bathymetric
position index (BPI 200 cells) and seafloor ruggedness (VRM21 cells) with oblique incidence Sb (AIC =
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Table 2
Comparison of results from GLM models to predict seafloor trawlability at camera stations. Models
are listed by decreasing accuracy of the GLM predictions, expressed by the Akaike Information
Criterion (AIC), the proportion of total deviance explained (D2), and an analysis of deviance test
comparing the model results to a null model (α = 0.05). Predictor variables are the multibeam-
derived seafloor metrics. Angle-dependent backscatter metrics are normal incidence Sb , oblique
incidence Sb , and Sb-slope. Mosaic Sb was derived from backscatter mosaics (6 m2). Benthic terrain
metrics derived from bathymetry grids (6 m2) are seafloor slope, profile curvature, and plan
curvature (3 × 3 cell arrays). Seafloor ruggedness (VRM) is calculated from 3 × 3, 11 × 11, and
21×21 cells arrays, and bathymetric position index (BPI) is calculated from analysis windows of 20,
50, 100, and 200 cell radius.

Model AIC D2 Model significance

Oblique incidence Sb + BPI200 + VRM21 32.1 0.55 ***

Mosaic Sb + BPI200 + VRM21 32.5 0.54 ***

Mosaic Sb + BPI200 35.8 0.44 ***

Mosaic Sb + VRM21 37.2 0.42 ***

Mosaic Sb 37.2 0.38 ***

Oblique incidence Sb + VRM21 38.5 0.39 ***

Oblique incidence Sb + BPI200 40.8 0.35 ***

Oblique incidence Sb 42.5 0.28 ***

VRM21 48.9 0.16 *

VRM11 51.1 0.12 *

BPI200 51.1 0.12 *

BPI100 52.2 0.10 *

VRM3 53.2 0.08 *

Normal incidence Sb 54.3 0.06 NS
Sb-slope 55.4 0.04 NS
Profile curvature 55.9 0.03 NS
Plan curvature 56.6 0.02 NS
Slope 57.1 <0.01 NS

Significance levels for analysis of deviance tests are as follows: NS (not significant).
* (p < 0.05).

∗∗ (p < 0.001).
*** (p < 0.0001).

32.1, D2
= 0.55) or mosaic Sb (AIC = 32.5, D2

= 0.54). The AIC difference for these two models was
0.4 digits, which suggests empirical support for both models. Significant models for camera stations
explained a proportion of the total deviance (D2) that ranged from 0.08 to 0.55 (Table 2).

The most discriminatory single metric model for haul locations was with oblique incidence Sb
(AIC = 261.0, D2

= 0.24). A two-metric model that combined oblique incidence Sb and normal
incidence Sb was not an improvement as these models are not empirically different (AIC = 260.0,
D2

= 0.25). Significant models for haul locations explained a proportion of the total deviance (D2)
that ranged from 0.04 to 0.25 (Table 3).

The models developed using MBES data collected at camera stations that included either oblique
incidence Sb ormosaic Sb with broad-scale BPI and VRMwere themost discriminatory over all models
tested. A probability map of predicted seafloor trawlability for the MBES survey area was generated
using themodel that includedmosaic Sb. Thismodel was 0.36+[−2.1∗Mosaic Sb]+[−3.8∗BPI200]+
[−1.6 ∗ VRM21]. This model was selected because the spatial coverage of the map using mosaic Sb
would be greater than the model that included the angle-dependent metric oblique incidence Sb.

Probability maps produced using the best-fittingmodel predicted that trawlable seafloor occurred
over 3445 km2 and untrawlable seafloor accounted for 2544 km2 (Fig. 5). These maps demonstrated
variability in the predicted seafloor trawlability across the GOA, including the fine-scale MBES survey
locations with camera stations (Fig. 6) and the BT survey haul locations (Fig. 7). The model developed
at camera stations was cross-validated at bottom-trawl haul locations and correctly predicted 69% of
sampled trawlable and untrawlable haul locations. For the haul locations, a total of 68% of success-
ful haul locations were correctly assigned as trawlable by the model and 83% of marginal and 73% of
failed haul locations were correctly assigned as untrawlable by the model. Trawlable haul locations
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Table 3
Comparison of results from GLM models to predict seafloor trawlability at haul locations. Models are listed by
decreasing accuracy of the GLM predictions, expressed by the Akaike Information Criterion (AIC), the proportion
of total deviance explained (D2), and an analysis of deviance test comparing the model results to a null model
(α = 0.05). Predictor variables are the multibeam-derived seafloor metrics. Angle-dependent backscatter metrics
are normal incidence Sb , oblique incidence Sb , and Sb-slope. Mosaic Sb was derived from backscatter mosaics
(6 m2). Benthic terrain metrics derived from bathymetry grids (6 m2) are VRM 21 × 21 cells and BPI 200 cells.

Model AIC D2 Model significance

Oblique incidence Sb + normal incidence Sb 260.0 0.25 ***

Oblique incidence Sb 261.0 0.24 ***

Mosaic Sb + normal incidence Sb 274.7 0.21 ***

Mosaic Sb 278.0 0.19 ***

Normal incidence Sb 304.5 0.11 ***

Sb-slope 340.1 0.04 **

VRM21 342.4 <0.01 NS
BPI200 342.4 <0.01 NS

Significance levels for analysis of deviance tests are as follows: NS (not significant).
∗ (p < 0.05).

** (p < 0.001).
*** (p < 0.0001).

Fig. 5. Probability of trawlable seafloor for theME70MBES survey footprint in the GOA. The probability surface is derived from
the following logistic regressionmodel created fromdata at camera stations: 0.36+[−2.1∗MosaicSb]+[−3.8∗BPI200]+[−1.6∗

VRM21]. Areas of the seafloorwith high probability of being trawlable are blue and areaswith low probability of being trawlable
(i.e., untrawlable) are red, classified based on a model threshold value of 0.5 from a probability scale of 1–0 for trawlable and
untrawlable seafloor. The RACE BT survey sampling grid shows qualitatively classified trawlable grid cells (green), qualitatively
classified untrawlable cells (yellow), and cells that are not designated as trawlable or untrawlable (gray). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

(successful hauls) had a 62% ± 29% (mean ± SD) probability of being trawlable and untrawlable haul
locations (marginal and failed hauls) had a 38% ± 22% probability of being trawlable.
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Fig. 6. Probability of trawlable seafloor at ME70 MBES fine-scale survey locations (a, b), with camera stations in the RACE BT
survey area. Areas of the seafloor with high probability of being trawlable are blue and areas with low probability of being
trawlable (i.e., untrawlable) are red. The survey locations intersect the BT survey sampling grid, including several qualitatively
classified trawlable grid cells (green), qualitatively classified untrawlable cells (yellow), and cells that are not designated as
trawlable or untrawlable (gray). Three successful bottom-trawl haul locations (white lines) intersect areas of trawlable seafloor
predicted by themodel (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

4. Discussion

Angle-dependent Sb distinguished between trawlable and untrawlable seafloor types across
incidence angles at camera stations andhaul locations. Trawlable locations had lower Sb values overall,
which likely corresponded to sediments of finer grain size or the lack of strong scatterers such as
boulders and rock (Jackson and Richardson, 2007). Oblique incidence Sb was the most discriminatory
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Fig. 7. Probability of trawlable seafloor for sections of the ME70 MBES survey trackline in the RACE BT survey area (a, b).
Areas of the seafloor with high probability of being trawlable are blue and areas with low probability of being trawlable
(i.e., untrawlable) are red. The multibeam survey trackline intersects the BT survey sampling grid, including several previously
qualitatively classified trawlable grid cells (green) and untrawlable cells (yellow), as well as cells that are not designated as
trawlable or untrawlable (gray). Haul locations, including successful (white), and marginal (dark gray) and failed (black) due to
gear damage, are interspersed throughout these areas. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

single angle-dependent metric for camera stations and haul locations. Normal incidence Sb was only
useful in predictive models of seafloor trawlability for haul locations, where it was one of the two
best models when combined with oblique incidence Sb. Although normal incidence Sb and Sb-slope
were discriminatory for both data sets, sample size may have limited the utility of these other angle-
dependent Sb metrics when evaluating camera stations. This is similar to the results of Weber et al.
(2013). Nonetheless, our results demonstrate that the seafloormapping protocol developed byWeber
et al. (2013) at Snakehead Bank for the ME70 MBES, using angle-dependent Sb and other multibeam-
derived seafloor metrics, can be applied broadly for the GOA.

Mosaic Sb was included in the effort to develop a broad-scale seafloor trawlability model for the
GOA. Trawlable and untrawlable locations from both data sets were often detected usingmosaic Sb. As
a single metric, mosaic Sb was the best predictor for seafloor trawlability usingMBES data collected at
camera stations and the second best metric after oblique incidence Sb for haul locations. Mosaic Sb is a
commonly used backscatter product that has becomemorewidely available outside the hydrographic
community to characterize and map seafloor habitat (Anderson et al., 2008; Brown et al., 2011; Buhl-
Mortensen et al., 2012).

The nature ofmosaic Sb and angle-dependent Sb metrics should be consideredwhen examining the
predictive power of these metrics. Backscatter mosaics are generated by normalizing Sb values across
the multibeam swath to the range of observed values at oblique incidence angles (Rzhanov et al.,
2012). This procedure requires that normal incidence Sb is treated as if it has the same discriminatory
power as oblique incidence Sb when this is not strictly true (Figs. 1 and 2). Due to the procedure
by which backscatter mosaics are produced, it is likely that mosaic Sb and the Sb metric at oblique
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incidence angles are not effectively different metrics with regard to these data sets. These metrics
were correlated for both the camera station and haul location data sets. However, these metrics had
different discriminatory ability inmodels of seafloor trawlability, which suggests that they are related,
complementary metrics.

Bathymetric position index (BPI) and seafloor ruggedness (VRM) were discriminatory terrain
metrics at all spatial scales analyzed for trawlable and untrawlable camera stations. However, seafloor
slope and curvaturewere not helpful in this regard. None of the bathymetrymetrics tested for bottom-
trawl haul locations were discriminatory. The power of multibeam-derived terrain metrics to predict
seafloor features of interest depends on application and spatial scale (Wilson et al., 2007). For example,
BPI and terrain aspect, which is the orientation of the steepest gradient of slope, are important in
combination to describe habitat for animals like corals that occur on emergent seafloor features
and orient with current direction for feeding (Dolan et al., 2008). In contrast, BPI was important for
predicting seafloor trawlability, but aspect would not likely matter.

Backscatter metrics alonewere better predictors of seafloor trawlability than BPI and VRM derived
fromgridded bathymetry data. Backscatter values that correspond to locations of untrawlable seafloor
types are still only a proxy for a variety of features that could snag bottom-trawl gear. Depending on
the application, it is tempting to argue that certain seafloor terrain metrics indicate the presence of
rock or rocky features when thesemetrics represent proxies for seafloor types that could be rock. This
may be a particular temptation when backscatter data or other direct measures of surficial substrate
qualities are not available and terrain metrics derived from bathymetry data are relied upon. In the
case of bottom-trawl haul locations, optical groundtruth data collected at appropriate spatial scales
should help to identify the nature of untrawlable features predicted to occur in the MBES survey area.

A potential limitation in using seafloor terrain metrics with MBES survey trackline data is that the
spatial scale of the neighborhoods required to calculate these metrics is limited by the multibeam
swath width. This will become a larger issue when calculating these metrics at broader-spatial scales,
when the metric will only be computed for sections of the swath where the entire analysis window is
fulfilled. This is not likely a limitation for MBES data collected from areas with 100% bottom coverage,
such as the fine-scale survey locations sampled in 2011.

Camera stations and bottom-trawl survey haul locations produced different broad-scale seafloor
trawlability models for the GOA. Backscatter metrics were useful to distinguish between trawlable
and untrawlable conditions with both data sets. However, seafloor terrain metrics derived from
bathymetry data were useful only to distinguish between conditions for camera stations. This is
because the camera stations likely represented a broader range of seafloor types encountered by
the MBES survey than the haul locations, which had been preselected as locations that were likely
trawlable during groundfish BT survey operations. This was apparent, for example, when examining
the differences between themean and the spread of the values for broad-scale BPI and VRM calculated
for each data set (Figs. 3 and 4).

The results indicated that the camera data produced better models predicting seafloor trawlability
than the BT survey data. This is likely caused by the scale and characteristics of the data collected for
each of the models. For the bottom-trawl haul path model, the MBES metrics were integrated over
bottom-trawl tows that were conducted over multiple hectares, on, at worst, marginally trawlable
seafloor. In contrast, the camera drops were collected over hundreds of meters and over a much
greater variety of seafloor types in the study area. The camera data therefore provided much more
contrast in conditions (trawlable seafloor, marginally trawlable and untrawlable seafloor) and a
much better spatial resolution to those conditions. The definition of untrawlable seafloor used when
characterizing video data collected at camera stations (i.e., having a 25 cm or larger boulder or rock
present), although a relatively arbitrary decision that was based on the trawl footrope characteristics,
appeared to reasonably capture the difference between trawlable and untrawlable seafloor in the BT
survey area, as evidenced by the model fit.

The two best models of seafloor trawlability for the GOA survey area included either oblique in-
cidence Sb or mosaic Sb with BPI and VRM derived at broad-spatial scales developed from MBES
data sampled at camera stations. These models were most discriminatory over all models tested and
were not different in their relative discriminatory power. Because oblique incidence Sb is an angle-
dependent metric, maps of predicted seafloor trawlability using this metric were limited in spatial
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coverage compared to maps using the model with mosaic Sb. The mosaic Sb model produced a map
with the greatest spatial coverage, which may be more useful in practice.

This broad-scale GOA seafloor trawlability model and map have the potential to improve how the
BT survey identifies trawlable and untrawlable locations. The trawlabilitymap crosses several areas of
the BT survey sampling grid that are not classified as trawlable or untrawlable (Fig. 5). Themodel map
can help inform a trawlability classification for these survey grid cells. The model can also be used to
extend a quantitative classification to areas that are currently qualitatively classified as trawlable or
untrawlable by the BT survey researchers. For example, untrawlable areas near the slope include sev-
eral grid cells with the qualitative designation as untrawlable (Fig. 5). The extent of these areas could
be updated using the model result with a specified threshold and then surveyed more extensively
using the ME70 MBES with optical groundtruth sampling to identify specific features of interest.

The concept of spatial scale is an important consideration with respect to using the model map.
Much more fine-scale variation is detected from the map produced using MBES data gridded to 6 m2

resolution than would be detected if the model results were mapped at a coarser resolution, such as
the 5 km2 sampling grid used by the BT survey for groundfish (Figs. 6 and 7). A finer-scale trawlability
classification for the GOA presents an opportunity to identify untrawlable features that are not known
for the current BT survey sampling grid or even visible on current navigational charts (Table S1; see
Appendix A). This may assist BT survey personnel to avoid certain untrawlable features, which may
otherwise be missed using only single-beam echosounders to search for trawlable ground. This has
great potential to help optimize BT survey operations in sampling groundfish populations in areas,
which are likely trawlable.

A model and map of predicted seafloor trawlability across the greater GOA applies more broadly
than optimizing BT survey efficiency and avoiding gear damage. This information will help describe
the distribution of commercially harvested groundfish species that occur in either trawlable, un-
trawlable, ormixed habitats. For example,many harvested rockfishes associatewith rugged and rocky
untrawlable habitat where it is difficult to obtain biomass estimates using traditional BT surveymeth-
ods. Instead, biomass estimates for these species are extrapolated to untrawlable areas from trawlable
sample locations where they are captured by the BT survey. Biomass for rockfishes in untrawlable
habitat on Snakehead Bank, sampled using a combined acoustic-camera survey, was estimated to be
5–60 times greater than the biomass estimated for these species using traditional bottom-trawl sam-
pling gear (Jones et al., 2012). In contrast, biomass estimates for flatfish in trawlable areas sampled us-
ing an occupied submersible were 10 times higher in these habitats than in surrounding untrawlable
locations (Jagielo et al., 2003). The GOA-wide trawlability model and map that includes both multi-
beambackscatter and bathymetrymetrics has the potential to be an indispensable resource to develop
habitat-specific assessments to improve biomass estimates for numerous groundfish species.
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