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arrows. Refer to text for explanation 118 
Figure 4.45. Level surface widths measured for profiles 10 and 11 as indicated by the black 
doubled headed arrows 118 
Figure 4.46. Level surface widths measured for profiles 12 and 13 as indicated by the black 
doubled headed arrows 119 
Figure 4.47. A representative profile from Oceanographer canyon channel that shows the relief 
parameters of interest: total relief from the incised channel floor to the top of each abutting wall 
(red double-headed arrows), relief of the abutting valley walls (blue double-headed arrows) and 
the channel wall relief of the incised thalweg (yellow double-headed arrows) 119 
Figure 4.48. A representative cross profile from Oceanographer canyon channel that shows the 
width parameters of interest: the total width measured from the tops of the abutting walls (red 
double-headed arrow), the width of the level surfaces (blue double-headed arrows), the width of 
the incised channel (yellow double-headed arrow), the total width from the base of each abutting 
wall (green double-headed arrow), and the width of the abutting valley walls (black double-
headed arrows) 120 
Figure 4.49. Overview of Atlantic bathymetry between Cape Hatteras and Georges Bank with 
ETOP01 background. The location of Oceanographer canyon channel is shown in the yellow 
box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, 
V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, 
A=Albermarle, Ha=Hatteras, Pa= Pamlico 124 
Figure 4.50. Overview of Oceanographer canyon channel showing cross profiles in white and 
numbered. Sections that Oceanographer canyon channel was subdivided into for further 
description are shown with black brackets and numbered 125 
Figure 4.51. Profiles 1 through 6 that comprise section 1 of Oceanographer canyon channel; 
profiles have a vertical exaggeration of 6. Black brackets encompass the extents of the channel 
system, red arrows indicate level surfaces, blue arrows point to crests that border the incised 
channel and the purple arrow points to incised channel axis 126 
Figure 4.52. Profiles 7 through 9 that comprise section 2 of Oceanographer canyon channel; 
profiles have a vertical exaggeration of 6. Black brackets encompass the extents of the channel 
system, red arrows indicate level surfaces, purple arrow points to incised channel axis 127 

XIV 



Figure 4.53. Profiles 10 through 13 that comprise the upper portion of section 3 of 
Oceanographer canyon channel; profiles have a vertical exaggeration of 6. Black brackets 
encompass the extents of the channel system, red arrows indicate level surfaces, purple arrow 
points to incised channel axis 128 
Figure 4.54. Profiles 14 through 17 that comprise the lower portion of section 3 of Oceanographer 
canyon channel; profiles have a vertical exaggeration of 6. Black brackets encompass the extents 
of the channel system, red arrows indicate level surfaces, purple arrow points to incised channel 
axis 129 
Figure 4.55. Profiles 18 through 23 that comprise section 4 of Oceanographer canyon channel; 
profiles have a vertical exaggeration of 6. Black brackets encompass the extents of the channel 
system, red arrows indicate level surfaces, purple arrow points to incised channel axis, blue arrow 
encompasses hole feature 130 
Figure 4.56. Profiles 24 and 25 that comprise section 5 of Oceanographer canyon channel; 
profiles have a vertical exaggeration of 6. Black arrow points to channel axis, red arrow points to 
an additional channel, black bracket encompasses hummocky region where a distinct thalweg 
could not be determined at the 100-m resolution of the data 131 
Figure 4.57. Profiles 26 through 32 that comprise the lowermost section of Oceanographer 
canyon channel; profiles have a vertical exaggeration of 6. Black arrow points to channel axis.132 
Figure 4.58. Representative relief parameters for a Type II channel cross section. Red double-
headed arrows represent the total relief from the floor of the incised channel to the top of the 
confining bathymetry, blue double-headed arrows represent the relief of the abutting valley walls, 
the yellow double-headed arrows represent the relief of the incised thalweg 133 
Figure 4.59. Representative width parameters for a Type II channel cross section. Red double-
headed arrow represents the total width measured between the tops of the confining bathymetry, 
the blue double-headed arrows represent the width of the terrace features, the yellow double-
headed arrow represents the width of the main incised channel, the green double-headed arrow 
represents the total width from the base of each abutting wall, and the black double-headed 
arrows represent the width of the abutting valley walls 134 
Figure 4.60. Longitudinal profile of Oceanographer canyon channel. Arrows point to minor 
inflections in the profile 134 
Figure 4.61 .Change in total channel wall relief with increased thalweg water depth for 
Oceanographer canyon channel 135 
Figure 4.62.The change in relief of the northeastern and southwestern abutting valley walls with 
increased thalweg water depth for Oceanographer canyon channel 136 
Figure 4.63. Change in channel wall relief of the main incised channel with increased thalweg 
water depth for Oceanographer canyon channel 137 
Figure 4.64. Change in top width with increased thalweg water depth for Oceanographer canyon 
channel 138 
Figure 4.65. Change in the top width of the main incised channel with increased thalweg water 
depth for Oceanographer canyon channel 138 
Figure 4.66. Change in width of terrace-like features adjacent to the incised thalweg with 
increased thalweg water depth for Oceanographer canyon channel 139 
Figure 4.67. Change in total floor width with increased thalweg water depth for Oceanographer 
canyon channel 140 
Figure 4.68. Change in the width of the abutting walls with increased thalweg water depth for 
Oceanographer canyon channel 141 
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Figure 4.69. Overview of Atlantic bathymetry between Cape Hatteras and Georges Bank with 
ETOP01 background. Location of Hydrographer canyon channel is shown in the yellow box. Ny 
=Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, 
V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, 
A=Albermarle, Ha=Hatteras, Pa= Pamlico 145 
Figure 4.70. Overview of Hydrographer canyon channel with cross profiles in white and 
numbered. Sections that the channel was subdivided into for further discussion are shown with 
black brackets and numbered 146 
Figure 4.71. Profiles 1 through 4 that comprise the upper portion of section 1 of Hydrographer 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to terrace like features 147 
Figure 4.72. Profiles 5 through 8 that comprise the lower section of section 1 of Hydrographer 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to terrace-like feature 148 
Figure 4.73. Profiles 9 through 14 that comprise section 2 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis 149 
Figure 4.74. Profiles 15 through 20 that comprise section 3 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis 150 
Figure 4.75. Profiles 21 through 24 that comprise the upper part of section 4 of Hydrographer 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

151 
Figure 4.76. Profiles 25 through 31 that comprise the lower portion of section 4 of Hydrographer 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

152 
Figure 4.77. Profiles 32 through 37 that comprise section 5 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis 153 
Figure 4.78. Profiles 38 through 40 that comprise section 6 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow is 
secondary channel 154 
Figure 4.79. Profiles 41 through 45 that comprise the upper part of section 7 of Hydrographer 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

155 
Figure 4.80.Profiles 46 through 50 that comprise the lower portion of section 7 of Hydrographer 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

156 
Figure 4.81. Profiles 51 and 52 at the terminus of Hydrographer canyon channel; profiles have a 
vertical exaggeration of 10 157 
Figure 4.82. Longitudinal profile for Hydrographer canyon channel. Arrows point to minor 
inflections in the profile 158 
Figure 4.83. Change in channel wall relief with increased channel floor water depth for 
Hydrographer canyon channel 159 
Figure 4.84. Change in channel top width with increased channel floor water depth for 
Hydrographer canyon channel 160 
Figure 4.85. Overview of Atlantic margin bathymetry between Cape Hatteras and Georges Bank 
with EOP01 background. The location of Veatch canyon channel is shown in the yellow box. Ny 
=Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, 
V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, 
A=Albermarle, Ha=Hatteras, Pa= Pamlico 163 
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Figure 4.86.Overview of Veatch canyon channel with cross profiles in white and numbered. 
Sections that the channel was subdivided into for further description are shown with black 
brackets and numbered 164 
Figure 4.87. Profiles 1 through 4 that comprise the upper portion of the shallowest section of 
Veatch canyon channel; cross profiles have a vertical exaggeration of 10. Black arrow points to 
channel axis 165 
Figure 4.88. Profiles 5 through 11 that comprise the lower portion of the shallowest section of 
Veatch canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel 
axis 166 
Figure 4.89. Profiles 12 through 14 that comprise the upper portion of section 2 of Veatch canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 167 
Figure 4.90. Profiles 15 through 17 that comprise the lower portion of section 2 of Veatch canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow 
points to crests that delineate the channel rim 168 
Figure 4.91. Profiles 18 through 23 that comprise section 3 of Veatch canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis 169 
Figure 4.92. Profiles 24 through 28 that comprise the upper portion of section 4 of Veatch canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 170 
Figure 4.93. Profiles 29 through 33 that comprise the middle portion of section 4 of Veatch 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

171 
Figure 4.94. Profiles 34 through 37 that comprise the lower portion of section 4 of Veatch canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 172 
Figure 4.95. Profiles 38 through 41 that comprise the upper portion of section 5 of Veatch canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 173 
Figure 4.96. Profiles 42 through 45 that comprise the lower portion of section 5 of Veatch canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 174 
Figure 4.97. Profiles 46 through 52 that comprise the lowermost section of Veatch canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 175 
Figure 4.98. Longitudinal profile of Veatch canyon channel. Black arrows point to minor inflections 
in the profile 176 
Figure 4.99. Change in channel wall relief with increased channel floor water depth for Veatch 
canyon channel 178 
Figure 4.100. Change in channel top width with increased channel floor water depth for Veatch 
canyon channel 179 
Figure 4.101. Change in channel floor width with increased channel floor depth for Veatch canyon 
channel 180 
Figure 4.102. Overview of Atlantic bathymetry between Cape Hatteras and Georges Bank with 
ETOPO background and locations of canyon channels in black. Location of Jones Valley canyon 
channel is shown in the yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 
0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, 
Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 183 
Figure 4.103. Overview of Jones Valley canyon channel with cross profiles in white and 
numbered. Sections that the channel was subdivided into for further description are shown with 
black brackets and numbered 184 
Figure 4.104. Profiles a and b that are located just upslope of the start of Jones Valley canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 185 
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Figure 4.105. Profiles land 2 that comprise the uppermost portion of section 1 of Jones Valley 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to slump features 185 
Figure 4.106. Profiles 3 through 7 that comprise the lower portion of section 1 of Jones Valley 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to slump features 186 
Figure 4.107. Profiles 8 through 14 that comprise the upper portion of the second section of 
Jones Valley canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to 
channel axis and red arrow points to a hole feature 187 
Figure 4.108. Profiles 15 through 20 that comprise the lower portion of the second section of 
Jones Valley canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to 
channel axis and red arrow points to a hole feature 188 
Figure 4.109. Profiles 21 through 23 which comprise the lowermost section of Jones Valley 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

189 
Figure 4.110. Longitudinal profile of Jones Valley canyon channel. Black arrow points to an 
inflection in the profile 190 
Figure 4.111. Change in channel wall relief with increased channel floor water depth for Jones 
Valley canyon channel 191 
Figure 4.112. Change in channel top width with increased channel floor depth for Jones Valley 
canyon channel 192 
Figure 4.113. Change in channel floor width with increased channel floor water depth for Joes 
Valley canyon channel 193 
Figure 4.114. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOP01 
background and the location of Hudson canyon channel shown in the yellow box. Ny =Nygren, 
M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, 
JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, 
Ha=Hatteras, Pa= Pamlico 196 
Figure 4.115. Overview of Hudson canyon channel with cross profiles in white and numbered. 
The sections that the channel was subdivided into for further discussion are indicated with black 
brackets and numbered 197 
Figure 4.116. Profiles 1 through 6 that comprise the upper segment of section 1 of Hudson 
canyon channel; profiles have vertical exaggeration of 10. Black arrow points to channel axis. 198 
Figure 4.117. Profiles 7 through 12 that comprise the lower segment of section 1 of Hudson 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

199 
Figure 4.118. Profiles 13 through 17 that comprise the second section of Hudson canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red 
arrows point to terrace-like features, purple arrow points to thalweg axis, blue bracket 
encompasses intersection with a channel feature 201 
Figure 4.119. Profiles 18 through 21 that comprise the third section of Hudson canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrows point to 
terrace-like features, purple arrow points to thalweg axis and blue arrow points to bathymetric 
high 202 
Figure 4.120. Profiles 22 through 27 that comprise the first subsection of section 4 of Hudson 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to slump features on inside of channel bend, blue arrow points to bathymetric 
high 204 



Figure 4.121. Profiles 28 through 31 that comprise the second subsection of section 4 of Hudson 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to possible slump features, green arrow points to inflections that may indicate 
incision 205 
Figure 4.122. Profiles 32 through 35 that comprise the third subsection of section 4 of Hudson 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to slump features along the inside of channel bends, green arrow points to 
inflections that may indicate incision 206 
Figure 4.123. Profiles 36 through 40 that comprise section 5 of Hudson canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis, green arrow points to 
inflections that may indicate incision 207 
Figure 4.124. Profiles 41 through 45 that comprise the upper portion of section 6 of Hudson 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrows points to terrace-like features, purple arrow points to thalweg axis 209 
Figure 4.125. Profiles 46 through 51 that comprise the lower portion of section 6 of Hudson 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrows points to terrace-like features, purple arrow points to thalweg axis 210 
Figure 4.126. Profiles 52 through 57 that comprise the upper segment of section 7 of Hudson 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses U-
shaped depression 211 
Figure 4.127. Profiles 58 through 62 that comprise the lower segment of the lowermost section of 
Hudson canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses 
U-shaped depression 212 
Figure 4.128. Longitudinal profile of Hudson canyon channel. Black bracket encompasses a large 
region of irregularity and black arrows point to minor inflections 213 
Figure 4.129. Change in channel wall relief with increased thalweg water depth for Hudson 
canyon channel 214 
Figure 4.130. Change in channel top width with increased thalweg water depth for Hudson 
canyon channel 215 
Figure 4.131. Profiles 1 and 2 with locations of top of channel (black arrows) and where the 
channel has likely incised into the slump scar (red arrows) 220 
Figure 4.132. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOP01 
background and channels delineated in black. Location of Wilmington canyon channel is shown in 
yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, 
Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, 
No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 224 
Figure 4.133. Overview of Wilmington canyon channel with cross profiles in white and numbered 
for both the Baltimore tributary channel and Wilmington canyon channel. The gather area is 
outlined in red. Black brackets indicate the sections that the channel was subdivided into for 
further description. W=Wilmington, B=Baltimore tributary channel 225 
Figure 4.134. Profiles 1 through 5 that comprise the uppermost section of the Baltimore tributary 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 226 
Figure 4.135. Profiles 6 through 8that comprise the upper portion of the second section of the 
Baltimore tributary channel; profiles have a vertical exaggeration of 10. Black arrow points to 
channel axis 227 
Figure 4.136. Profiles 9 through 11 that comprise the lower portion of the second section of the 
Baltimore tributary channel; profiles have a vertical exaggeration of 10. Black arrow points to 
channel axis 228 
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Figure 4.137. Profiles 12 through 18 that comprise the third section of the Baltimore tributary 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 229 
Figure 4.138. Profiles 19 through 22 that comprise the fourth section of the Baltimore tributary 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, black 
brackets encompass channel extents, red arrows indicate terrace-like features and purple arrow 
points to thalweg axis 230 
Figure 4.139. Profiles 1 through 5 that comprise the first section of Wilmington canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, black brackets 
encompass channel extents, red arrows indicate terrace-like features and purple arrow points to 
thalweg axis 231 
Figure 4.140. Profiles 6 through 9 that comprise section 2 of Wilmington canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis, black bracket indicate 
slump features, blue brackets indicate rounded bathymetric feature, red arrows indicate terrace
like features and purple arrow points to thalweg axis 232 
Figure 4.141. Profiles 10 through 12 that comprise the upper portion of section 3 of Wilmington 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow point to channel axis, 
black brackets encompass slump features, red arrows indicate terrace-like features and purple 
arrow points to thalweg axis 233 
Figure 4.142. Profiles 13 and 14 that comprise the lower portion of section 3 of Wilmington 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow point to channel axis, 
black brackets encompass slump features, red arrows indicate terrace-like features and purple 
arrow points to thalweg axis 234 
Figure 4.143. Profiles 15 through 20 that comprise section 4 of Wilmington canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrows indicate 
terrace-like features, purple arrow points to thalweg axis and blue arrow indicates hole feature. 

235 
Figure 4.144. Profiles 21 through 23 that comprise section 5 of Wilmington canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrows indicate 
sloped, terrace-like features, blue arrow indicates a depression/hole feature, and purple arrow 
points to thalweg axis 236 
Figure 4.145. Profiles 24 through 30 that comprise the lowermost section of Wilmington canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, black 
brackets encompass channel extents, blue arrow points to a depression feature 237 
Figure 4.146. Longitudinal profile for the Wilmington canyon-channel system 239 
Figure 4.147. Change in channel wall relief with increased thalweg (channel floor) water depth for 
the Wilmington canyon-channel system. BT= Baltimore Tributary channel, WCC=Wilmington 
canyon channel 240 
Figure 4.148. Change in channel top width with increased thalweg (channel floor) water depth for 
the Wilmington canyon channel system 241 
Figure 4.149. Change in channel floor width with increased thalweg (channel floor) water depth 
for the Wilmington canyon-channel system. Black arrows indicate regions where no floor width 
could be accurately determined 243 
Figure 4.150. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOP01 
background and channels delineated in black. The location of Washington canyon channel is 
shown in the yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, 
Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, 
No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 247 
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Figure 4.151. Overview of Washington canyon channel with cross profiles in white and numbered. 
Sections that the channel was subdivided into for description purposes are shown with black 
brackets and numbered 248 
Figure 4.152. Profiles 1 through 4 that comprise the first subsection of section 1 of Washington 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrows and brackets indicate slump features, and purple arrow points to possible thalweg 
axis 249 
Figure 4.153. Profiles 5 through 9 that comprise the second subsection of Section 1 of 
Washington canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to 
channel axis; red arrows and brackets indicate irregular topography that could be the product of 
slump features 250 
Figure 4.154. Profiles 10 through 14 that comprise section 2 of Washington canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis 251 
Figure 4.155. Profiles 15 through 17 that comprise the lowermost portion of Washington canyon 
channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the extents of 
the channel 252 
Figure 4.156. Longitudinal profile of Washington canyon channel. Black arrow indicates minor 
inflection 253 
Figure 4.157. Change in channel wall relief with increased channel floor water depth for 
Washington canyon channel 254 
Figure 4.158. Change in channel top width with channel floor water depth for Washington canyon 
channel 255 
Figure.4.159. Change in channel floor width with increased channel floor water depth for 
Washington canyon channel 256 
Figure. 4.160. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI 
background and channels delineated in black. Location of Norfolk canyon channel is shown in the 
yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, 
Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, 
No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 259 
Figure. 4.161. Overview of Norfolk canyon channel with cross profiles in white and numbered. 
The channel subsections are shown in black brackets and numbered. The continuation of a 
possible distributary channel is shown as a white dashed line down-slope from the last of the 
cross profiles 260 
Figure. 4.162. Profiles 1 through 6 that comprise the upper segment of section 1 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrows point to slump features 261 
Figure. 4.163. Profiles 7 through 11 that comprise the lower segment of section 1 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrows point to slump features 262 
Figure. 4.164. Profiles 12 through 15 that comprise the upper segment of section 2 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

263 
Figure. 4.165. Profiles 16 through 18 that comprise the lower segment of section 2 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure. 4.166. Profiles 19 through 24 that comprise the upper segment of section 3 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the 
confines of the elevated bathymetry on either side of a small channel. Black arrow points to 
channel axis for profile 19 and the purple arrow points channel axis of the small channel for the 
remainder of the profiles 265 
Figure. 4.167. Profiles 25 through 30 that comprise the lower segment of section 3 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the 
confines of the elevated bathymetry on either side of a small channel. The purple arrow points to 
the axis of the small channel 266 
Figure. 4.168. Profiles 31 through 35 that comprise the upper segment of section 4 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the 
confines of the elevated bathymetry, purple arrow points channel axis of small channel, red arrow 
points to additional smaller channels 267 
Figure. 4.169. Profiles 36 through 40 that comprise the lower segment of section 4 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the 
confines of the higher bathymetry, purple arrow points channel axis of small channel, red arrow 
points to additional smaller channels, black arrow points to channel axis of a more trough-like 
shaped channel at the end of the section 268 
Figure. 4.170. Profiles 41 through 44 that comprise the upper segment of section 5 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses broad 
U-shaped channel 269 
Figure. 4.171. Profiles 45 through 48 that comprise the lower segment of section 5 of Norfolk 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses broad, 
U-shaped channel 270 
Figure. 4.172. Longitudinal profile of Norfolk canyon channel. Arrows point to minor inflections in 
the profile and dashed line shows the vicinity of the confluence with Washington canyon channel. 

272 
Figure. 4.173. Change in channel wall relief with increased thalweg (channel floor) water depth 
for Norfolk canyon channel. IC = incised channel EB = elevated bathymetry 273 
Figure. 4.174. Change in channel top width with increased thalweg (channel floor) water depth for 
Norfolk canyon channel 275 
Figure. 4.175. Change in floor width with increased channel floor water depth for Norfolk canyon 
channel 276 
Figure. 4.176. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOP01 
background and channels delineated in black. Location of Albermarle canyon channel is shown in 
the yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, 
Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, 
No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 281 
Figure. 4.177. Overview of Albermarle canyon channel with cross profiles in white and numbered. 
The sections that the channel was subdivided into for further description are shown with black 
brackets and numbered. Possible distributary channels are delineated with white dashed lines. 

282 
Figure. 4.178. Profiles 1 through 5 that comprise the uppermost section of Albermarle canyon 
channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the extents of 
the canyon-channel system, red arrows indicate terrace like features, the purple arrow points to 
the thalweg axis, and black arrow points to smaller channel on the northeastern side of the main 
channel 283 
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Figure 4.179. Profiles 6 through 8 that comprise the upper segment of the second section of 
Albermarle canyon channel; profiles have a vertical exaggeration of 10. Black bracket 
encompasses extent of the canyon-channel system, red arrows indicate terrace-like features, the 
purple arrow points to the thalweg axis and the black arrow points to small channel adjacent to 
the main channel 284 
Figure 4.180. Profiles 9 and 10 that comprise the lower segment of the second section of 
Albermarle canyon channel; profiles have a vertical exaggeration of 10. Black bracket 
encompasses the extents of the canyon-channel system, red arrows indicate terrace-like 
features, purple arrow points to the thalweg axis and black arrow points to small channel adjacent 
to the main channel 285 
Figure 4.181. Profiles 11 through 15 that comprise the third section of Albermarle canyon 
channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the extent of the 
canyon-channel system, red arrows indicate terrace-like features and the purple arrow points to 
thalweg axis 286 
Figure 4.182. Profiles 16 through 19 that comprise the fourth section of Albermarle canyon 
channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the extents of 
the canyon-channel system, red arrows indicate terrace like features, the purple arrow points to 
the thalweg axis and the black arrow points to the elevated bathymetry that is continuous with 
that of the first three sections 287 
Figure 4.183. Profiles 20 through 25 that comprise the fifth section of Albermarle canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses the extents of the 
canyon-channel system and the purple arrow points to thalweg axis 288 
Figure 4.184. Profiles 26 through 29 that comprise the sixth section of Albermarle canyon 
channel. Profiles have vertical exaggeration of 10. Black bracket encompasses channel extents 
and black arrows point to inflections that may be the expression of smaller, incised channel....289 
Figure 4.185. Profiles 30 through 33 that comprise the lowermost section of Albermarle canyon 
channel. Profiles have a vertical exaggeration of 10. Black bracket encompasses extents of the 
channel 290 
Figure 4.186. Longitudinal profile of Albermarle canyon channel. Black arrows indicate minor 
inflections 292 
Figure 4.187. Relief of the main incised thalweg and confining bathymetry of Albermarle canyon 
channel. Black box encompasses the portion of channel which becomes U-shaped and lacks a 
confining bathymetry. IC = incised channel, CB = confining bathymetry 293 
Figure 4.188. Top widths of the main incised channel and confining bathymetry with increased 
thalweg water depth for Albermarle canyon channel. The black box encompasses the portion of 
channel which becomes U-shaped and lacks confining bathymetry 295 
Figure 4.189. Width of terrace-like features adjacent to the incised thalweg with increased 
thalweg water depth for Albermarle canyon channel. TF = terrace-feature 296 
Figure 4.190. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOP01 
background and channels delineated in black. The location of Hatteras canyon channel is shown 
in the yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, O=0ceanographer, 
Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, 
No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 301 
Figure 4.191. Overview of Hatteras canyon channel with cross profiles in white and numbered. 
Sections that the channel was subdivided into for further description are delineated with black 
brackets and numbered 302 
Figure 4.192. Profiles 1 through 3 that comprise section 1 of Hatteras canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis 303 

XXIII 



Figure 4.193. Profiles 4 through 7 that comprise section 2 of Hatteras canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis, blue arrow points to crest 
feature on the southwestern side of channel, red arrow points to smaller channel parallel to 
Hatteras canyon channel and orange arrow encompasses a hole feature 304 
Figure 4.194. Profiles 8 through 13 that comprise section 3 of Hatteras canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to 
additional smaller channel, blue bracket encompasses feature of elevated bathymetry and red 
dashed double-headed arrow indicates possible terrace-like feature 305 
Figure 4.195. Profiles 14 through 16 that comprise section 4 of Hatteras canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis 306 
Figure 4.196. Profiles 17 through 19 that comprise the upper portion of section 5 of Hatteras 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the 
extents of the canyon-channel system, red arrows indicate terrace features, purple arrow points 
to incised thalweg, and the black arrow points to small channel to the east of the main channel. 

307 
Figure 4.197. Profiles 23 through 25 that comprise the upper portion of section 6 of Hatteras 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
purple arrow points to incised thalweg, and red arrows indicate terrace-like features 308 
Figure 4.198. Profiles 26 through 28 that comprise the lower portion of section 6 of Hatteras 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
purple arrow points to incised thalweg, and red arrows indicate terrace-like features 309 
Figure 4.199. Profiles 29 through 32 that comprise section 7 of Hatteras canyon channel; profiles 
have a vertical exaggeration of 10. Black bracket encompasses extent of canyon-channel system, 
purple arrow points to main channel axis, black arrow points to additional, smaller channel 310 
Figure 4.200. Profiles 33 through 37 that comprise the upper subsection of section 8 of Hatteras 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses 
confining bathymetry, purple arrow points to thalweg axis 311 
Figure 4.201. Profiles 38 through 42 that comprise the lower subsection of section 8 of Hatteras 
canyon channel; profiles have a vertical exaggeration of 10. Black bracket encompasses 
confining bathymetry, red arrow points to the confining bathymetric feature that is present on 
southwestern side only and purple arrow points to thalweg axis 312 
Figure 4.202. Profiles 43 through 46 that comprise section 9 of Hatteras canyon channel; profiles 
have a vertical exaggeration of 10. Black bracket encompasses confining bathymetry, purple 
arrow points to thalweg axis, green arrow points to inflection that may be indicative of an incised 
thalweg 313 
Figure 4.203. Profiles 47 through 49 that comprise section 10 of Hatteras canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to 
top of slump feature, black bracket encompasses possible slump feature and green arrow points 
to inflections that indicate an incised channel rim 314 
Figure 4.204. Profiles 50 through 54 that comprise the lowermost segment of Hatteras canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis and red 
arrow points to slump features 315 
Figure 4.205. Longitudinal profile of Hatteras canyon channel. Black bracket encompasses region 
of irregularity 317 
Figure 4.206. Change in channel wall relief with increased thalweg water depth for the Hatteras 
canyon channel system. IC=lncised Channel, CB=Confining Bathymetry 319 
Figure 4.207. Change in channel top width with increased thalweg water depth for the Hatteras 
canyon-channel system 321 

XXIV 



Figure 4.208. Change in floor width with increased thalweg (channel floor) depth for Hatteras 
canyon channel. Black arrow indicates portion of channel for which the only floor width would be 
the incised thalweg, which is below the resolution of the data 323 
Figure 4.209. Width of terrace-like features adjacent to thalweg with increased thalweg water 
depth for Hatteras canyon channel. TF = terrace feature 323 
Figure 4.210. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOP01 
background and channels delineated in black. Location of Pamlico canyon channel is shown with 
the yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, 
Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, 
No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 329 
Figure 4.211. Overview of Pamlico canyon channel with cross profiles in white and numbered. 
The sections that Pamlico canyon channel was subdivided into for further discussion are shown 
with black brackets and numbered 330 
Figure 4.212. Profiles 1 and 2 that encompass section 1 of Pamlico canyon channel; profiles have 
a vertical exaggeration of 10. Black arrow points to channel axis 331 
Figure 4.213. Profiles 3 through7 that comprise the upper subsection of section 2 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

332 
Figure 4.214. Profiles 8 and 9 that comprise the lower subsection of section 2 of Pamlico canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 333 
Figure 4.215. Profiles 10 through 15 that comprise the upper segment of Section 3 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to possible slump features and blue arrow points to rim crests 334 
Figure 4.216. Profiles 16 through 21 that comprise the middle segment of Section 3 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

335 
Figure 4.217. Profiles 22 through 27 that comprise the lower segment of Section 3 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

336 
Figure 4.218. Profiles 28 through 30 that comprise the upper portion of Section 4 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

337 
Figure 4.219. Profiles 31 through 33 that comprise the lower portion of Section 4 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

338 
Figure 4.220. Profiles 34 through 38 that comprise the upper segment of section 5 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis 
and dashed arrow points to possible channel locations 339 
Figure 4.221. Profiles 39 through 43 that comprise the lower segment of section 5 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

340 
Figure 4.222. Profiles 44 through 49 that comprise the upper segment of section 6 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, 
red arrow points to slump features 341 
Figure 4.223. Profiles 50 through 56 that comprise the lower segment of section 6 of Pamlico 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

342 
Figure 4.224. Longitudinal profile of Pamlico canyon channel. Black arrows point to minor 
inflections 343 

XXV 



Figure 4.225. Change in channel wall relief with increased channel floor water depth for Pamlico 
canyon channel 345 
Figure 4.226. Change in top channel width with increased channel floor water depth for Pamlico 
canyon channel. Gaps represent portions of channel where a defined channel was unresolvable 
at the 100 m resolution of the data 346 
Figure 4.227. Change in floor width with increased channel floor water depth for Pamlico canyon 
channel. Gaps represent portions of channel where a defined channel was unresolvable at the 
100 m resolution of the data 347 
Figure 5.1. Atlantic bathymetry with ETOP01 background and canyon channels delineated. Black 
indicates a Type I channel and white indicates a Type II channel. Channels that consist of white 
and black segments are mixed systems. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 
0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, 
Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 351 
Figure 5.2. Longitudinal profiles of canyon channels from the 2550 m isobath 353 
Figure 5.3. Longitudinal profiles of canyon channels color coded by type. Red represents 
channels that are entirely Type I and black represents mixed canyon channel systems 354 
Figure 5.4. Longitudinal profiles of all canyon channels color coded by location. Green represents 
canyon channels in the Far North region, blue represents channels in the North region, red 
represents channels in the Central region and black represents channels from the South region. 

354 
Figure 5.5. Groups defined by the longitudinal profiles. Box I corresponds to bracket 1, Box 2 
corresponds to bracket 2, box 3 corresponds to bracket 3 and group 4 corresponds to bracket 4 
on the longitudinal profile plot (Fig. 5.4). Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 
0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, 
Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico 355 
Figure 5.6. Change in the southwest channel wall relief with increased distance down-channel for 
Munson, Nygren, Washington and the uppermost portions of Powell and Norfolk canyon 
channels 357 
Figure 5.7. Change in the northeast channel wall relief with increased distance down-channel for 
Munson, Nygren, Washington and the uppermost portions of Powell and Norfolk canyon 
channels 357 
Figure 5.8. Change in the southwest channel wall relief with increased channel floor water depth 
for Munson, Nygren, Washington and the uppermost portions of Powell and Norfolk canyon 
channels 358 
Figure 5.9. Change in the northeast channel wall relief with increased channel floor water depth 
for Munson, Nygren, Washington and the uppermost portions of Powell and Norfolk canyon 
channels 358 
Figure 5.10. Change in the southwest channel wall relief with increased distance down-channel 
for Hudson, Hydrographer, Veatch, Wilmington and Pamlico canyon channels 360 
Figure 5.11. Change in the northeast channel wall relief with increased distance down-channel for 
Hudson, Hydrographer, Veatch, Wilmington and Pamlico canyon channels 360 
Figure 5.12. Change in the channel wall relief of Pamlico canyon channel with increased channel 
floor water depth 361 
Figure 5.13. Change in the southwest channel wall relief with increased channel floor water depth 
for Hudson, Hydrographer, Jones Valley, Veatch and Wilmington canyon channels 362 
Figure 5.14. Change in the northeast channel wall relief with increased channel floor water depth 
for Hudson, Hydrographer, Jones Valley, Veatch and Wilmington canyon channels 363 

XXVI 



Figure 5.15. Average channel wall relief shown in context of the Atlantic continental margin for 
Hydrographer, Veatch, Jones Valley, Hudson and Wilmington canyon channels. Blues indicate a 
portion of channel with higher channel wall relief and the pinks and yellows indicate a portion of 
channel with lower channel wall relief 364 
Figure 5.16. Change in the channel top width of all Type I channels with increased distance 
down-channel, excluding Jones Valley canyon channel 365 
Figure 5.17. Change in the channel top width of all Type I channels with increased channel floor 
water depth, including Jones Valley canyon channel 365 
Figure 5.18. Change in the channel top width with increased distance down-channel for Hudson, 
Hydrographer, Pamlico, Veatch, and Wilmington canyon channels 366 
Figure 5.19. Change in the channel top width with increased channel floor water depth for 
Hudson, Hydrographer, Pamlico, Veatch, and Wilmington canyon channels 367 
Figure 5.20. Change in the channel top width with increased distance down-channel for Munson, 
Nygren, Washington and the uppermost portions of Powell and Norfolk canyon channels 368 
Figure 5.21. Change in the channel top width with increased channel floor water depth for 
Munson, Nygren, Washington and the uppermost portions of Powell and Norfolk canyon 
channels 368 
Figure 5.22. Change in the channel top width with increased channel floor water depth for 
Munson, Nygren, Washington, and the uppermost portions of Powell and Norfolk canyon 
channels. The plot includes Jones Valley canyon channel for comparison 369 
Figure 5.23. Change in the channel floor width with increased distance down-channel for Type I 
canyon channels 370 
Figure 5.24. Change in the channel floor width with increased channel floor water depth for Type I 
canyon channels 370 
Figure 5.25. Change in the channel floor width with increased distance down-channel for Veatch, 
Wilmington and Pamlico canyon channels 371 
Figure 5.26. Change in the channel floor width with increased channel floor water depth for 
Veatch, Wilmington and Pamlico canyon channels 372 
Figure 5.27. Change in the channel floor width with increased distance down-channel for Munson, 
Nygren, Washington and the uppermost portions of Powell and Norfolk canyon channels 373 
Figure 5.28. Change in the channel floor width with increased channel floor water depth for 
Munson Nygren, Washington and the uppermost portions of Powell and Norfolk canyon channels. 

373 
Figure 5.29. Change in the channel floor width with increased channel floor depth for Munson 
Nygren, Washington and the uppermost portions of Powell and Norfolk canyon channels. Plot 
includes Jones Valley canyon channel for comparison 374 
Figure 5.30. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Nygren canyon channel 375 
Figure 5.31. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Munson canyon channel 375 
Figure 5.32. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Powell canyon channel 376 
Figure 5.33. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Hydrographer canyon channel 376 
Figure 5.34. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Veatch canyon channel 377 
Figure 5.35. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Jones Valley canyon channel 377 

XXVII 



Figure 5.36. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Hudson canyon channel 378 
Figure 5.37. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Wilmington canyon channel 378 
Figure 5.38. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Washington canyon channel 379 
Figure 5.39. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for the uppermost portion of Norfolk canyon channel 379 
Figure 5.40. Profiles of channel floor water depth and channel rim water depths with increased 
distance down-channel for Pamlico canyon channel 380 
Figure 5.41. Change in the relief of the northeastern wall of the confining bathymetry with 
increased thalweg water depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras 
canyon channels 382 
Figure 5.42.Change in the relief of the southwestern wall of the confining bathymetry with 
increased thalweg water depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras 
canyon channels 383 
Figure 5.43. Change in the width between the tops of the confining bathymetry with increased 
thalweg water depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon 
channels 383 
Figure 5.44. Change in the relief of the northeastern incised channel wall with increased thalweg 
water depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 385 
Figure 5.45. Change in the relief of the southwestern incised channel wall with increased thalweg 
water depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 385 
Figure 5.46. Change in the width of the top of the main incised channel with increased thalweg 
water depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 386 
Figure 5.47. Change in the width of the northeastern terrace-like features with increased thalweg 
water depth for Lydonia, Oceanographer, Albermarle and Hatteras canyon channels 387 
Figure 5.48. Change in width of the southwestern terrace-like features with increased thalweg 
water depth for Lydonia, Oceanographer, Albermarle and Hatteras canyon channels 387 
Figure 5.49. Slope of the Atlantic continental margin calculated with a100-m grid cell size 395 
Figure 5.50. Slope of the Atlantic continental margin calculated with a 1000-m grid cell size. Black 
polygons indicate regions of increased slope 396 
Figure 5.51. Atlantic bathymetry with ETOP01 background and regional profiles constructed for 
slope verification shown in white 398 
Figure 5.52. Profiles from north to south along the margin that correspond to the profiles shown in 
Figure 5.51. Entire slope of the profile is shown as and segments of the profiles and associated 
slopes are delineated 399 
Figure 6.1. Subcategories of the canyon channels that show decreased channel wall relief with 
increased channel floor water depth (distance down-channel). Black indicates a Type I channel 
and white indicates a Type II channel. Channels that consist of white and black segments are 
mixed systems. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, 
Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, 
No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. The yellow box shows subcategory 1 of 
channel wall relief that includes Nygren, Munson, and the uppermost potion of Powell canyon 
channels. The red box shows subcategory 2 of channel wall relief that includes Washington and 

the uppermost portion of Norfolk canyon channels 408 
Figure 6.2. Atlantic bathymetry with the location of the Chesapeake Drift overlain, adapted from 
Tucholke and Mountain (1986). Average channel wall relief of Hudson, Wilmington and Jones 
Valley canyon channels is shown. The blues and purples indicate more entrenched sections of 

XXVIII 



channel and pinks and yellows are less entrenched sections. Black box indicates location of 
higher regional slope delineated from ArcGIS. The white line indicates a profile and the red 
portion indicates the higher (0.7°) slope while the white portions are lower slopes (<0.7°) 412 
Figure 6.3. Atlantic bathymetry with location of the southeast New England terrace front from 
O'Learyand Dobson (1992). Average channel wall relief of Veatch and Hydrographer canyon 
channels is shown. The blues and purples indicate more entrenched sections of channel while 
the pinks and yellows are less entrenched sections. Black box indicates a higher slope region 
delineated from ArcGIS. The white line indicates a profile and the red portion indicates the higher 
(0.7°) slope while the white portions have lower slopes (<0.7°) 413 
Figure 6.4. Atlantic bathymetry with overlay of a map of the southeast New England terrace and 
Chesapeake Drift from O'Leary and Dobson (1992) with the locations and average channel wall 
relief of Hydrographer, Veatch, Jones Valley, Hudson and Wilmington canyon channels. The 
blues and purples indicate entrenched segments of channel while the pinks and yellows are less 
entrenched segments of channel. The black box indicates a region of higher seafloor delineated 
from ArcGIS. The white lines indicate profiles and the red portions indicate higher slope (0.7°) 
while the white portions are lower slopes (<0.7°) 414 
Figure 6.5. Atlantic bathymetry with an overlay map adapted from Tucholke and Mountain (1986) 
that shows the amount of sediment that has accumulated along the central Atlantic margin since 
the Pliocene. The locations and average channel wall relief of Hydrographer, Veatch, Hudson, 
Wilmington and Jones Valley canyon channels are shown. The blues and purples indicate more 
entrenched segments of channel while the pinks and yellows are less entrenched segments of 
channel 416 
Figure 6.6. Major delineations in Pamlico canyon channel. The red box shows the channel on the 
upper continental margin that was not used for most calculations, the white boxes show where 
the channel is clearly defined as a U-shaped channel, the black boxes show a less well-defined 
channel and the yellow boxes show where the channel is mainly undefined 418 
Figure 7.1. Example of cross sectional morphology of Oceanographer canyon channel showing 
Type II morphology 426 
Figure 7.2. Wilmington canyon channel with black indicating Type I sections, white indicating 
Type II sections and the gather area delineated in red 427 
Figure 7.3 Enlarged view of the apex of the Wilmington canyon channel gather area with Type I 
sections in black, Type II sections in solid white and additional tributary channels in dashed white. 

428 
Figure 7.4. Enlarged view of the apex of the Wilmington canyon channel gather area with Type I 
sections in black, Type II sections in solid white and additional tributary channels in dashed white. 
Sample profiles are shown 428 
Figure 7.5. Overview of Hatteras canyon channel. White indicates Type II channel segments and 
black indicates Type I channel segments. Black box indicates the location of capture and is 
shown in next two figures 429 
Figure 7.6. Enlarged view of Hatteras canyon channel where it appears that Hatteras canyon 
channel has captured the down-slope portion of an additional channel. White indicates a Type II 
channel segment and black indicates Type I channel segments. Dashed white indicates the 
remnant captured channels 430 
Figure 7.7. Enlarged view of Hatteras canyon channel where it appears that Hatteras canyon 
channel has captured the down-slope portion of an additional channel. White indicates a Type II 
channel segment and black indicates Type I channel segments. Dashed white indicates the 
remnant captured channels.Sample profiles are shown 430 

XXIX 



ABSTRACT 

QUANTITATIVE MORPHOLOGICAL ANALYSIS OF SUBMARINE 

CANYON-CHANNEL SYSTEMS ON THE U.S. ATLANTIC 

CONTINENTAL MARGIN 

by 
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Multibeam data of the Atlantic continental margin was used to quantify morphologic 

parameters of 15 canyon channels between Cape Hatteras and Georges Bank. Detailed 

morphologic comparison of channel parameters identified two different morphologies; Type I, U-

and V-shaped with well-defined channels walls, and Type II, an incised channel bordered by 

terraces. Eight canyon channels are Type I whereas 7 are mixed Type I and II. Channel wall relief 

is the foremost differentiating parameter between Type I channels and either decreases with 

increased distance down-channel or increases to a maximum between the 3250 and 4000 m 

isobaths. Entrenchment co-occurs with steeper local seafloor slope and may reflect channel 

equilibrium status. The magnitude of entrenchment may be affected by riverine discharge and 

confinement. A north-south variation in the magnitude of channel wall relief indicates differences 

in margin processes. Longitudinal profiles of the channels also show a north-south relationship 

that reflects regional slopes. 
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CHAPTER 1 

INTRODUCTION 

1.1 Atlantic Continental Margin Canyon Channels 

The continental margin off the U.S. east coast was mapped in 2004, 2005 and 2008 by 

the Center for Coastal and Ocean Mapping/Joint Hydrographic Center (CCOM/JHC) at the 

University of New Hampshire using multibeam echo sounding (MBES). The surveys provide very 

high-resolution bathymetric data with extremely precise positioning over a large region of the 

Atlantic continental margin from New England to Florida from near the 1000 m isobath to beyond 

the 5000 m isobath (Gardner, 2004; Cartwright and Gardner, 2005; Calder and Gardner, 2008). A 

total of 15 canyon-channel systems were mapped that traverse the lower continental margin 

deeper than the 2550 m isobath. The term canyon channel is used here to describe channels that 

have evolved down-slope from canyons and traverse from regions of steeper gradient on the 

upper continental margin to regions of less steep gradient on the lower continental margin. 

From north to south, the prominent canyon channels that were mapped are: Nygren, 

Munson, Powell, Lydonia, Oceanographer, Hydrographer, Veatch, Jones Valley (also called 

Carsten's), Hudson, Wilmington, Washington, Norfolk, Albermarle, Hatteras and Pamlico canyon 

channels (Fig. 1.1). Hatteras canyon channel merges with Hatteras Transverse Canyon on the 

lower continental margin near the 5100 m isobath. Hatteras Transverse Canyon trends parallel to 

the regional isobaths, which is a fundamentally different trend from the canyons and canyon 

channels that develop as down-slope features, so Hatteras Transverse Canyon was not included 

in this study. Because no canyon channels were identified south of Cape Hatteras along the 

Blake Plateau or Blake Escarpment, the study is focused on the region between Georges Bank 

on the north and Cape Hatteras on the south (Fig. 1.1). 

The canyons and canyon channels of the U.S. Atlantic continental margin have been 

studied for several decades, however, very few comprehensive and comparative morphometric 
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studies have been undertaken for the canyon channels that traverse the lower continental margin. 

Previous surveys and studies of the Atlantic continental margin such as those using the GLORIA 

sidescan-sonar system were limited in their topographic representation and depth discrepancies 

were common (Robb et al., 1996). The high-resolution bathymetric data collected in support of 

Law of the Sea mapping provides an unprecedented dataset with which to systematically study 

the morphology of the continental margin. This study intends to specifically enhance the present 

understanding of the canyon-channel systems on the Atlantic continental margin. The detailed 

morphologic quantification and comparison of canyon-channel parameters highlights similarities 

and differences between canyon channels along the margin and provides insights into local and 

regional factors that have influenced the present morphology of the channels. 

Figure 1.1. Map that shows a subset of the Atlantic bathymetry between Georges Bank and Cape Hatteras with 
locations and names of canyon channels analyzed in this study. 
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1.2 Previous Research of Atlantic Margin Canyons and Canyon Channels 

The continental margin off of the U.S. East Coast has been the subject of several large-

scale surveys and the morphology of the canyons and canyon channels has been mainly 

discussed in a descriptive manner. Sidescan-sonar imagery off the New England continental 

margin was collected in 1979 by the GLORIA II system (Scanlon, 1984) and then the entire U.S. 

Exclusive Economic Zone (EEZ) was mapped in 1987 (Robb et al., 1996). These surveys 

provided the first continuous sidescan-sonar data with which to study the continental margin on a 

regional scale. The continental margin shallower than 1500 m was shown to be heavily dissected 

by canyon and gully systems, especially northeast of Hydrographer Canyon (Scanlon, 1984). It 

was noted that several of the canyons continue onto the lower continental margin and several 

also contain bends (Scanlon, 1984). The morphology of the continental margin between the 2000 

and 3200 m isobaths seaward of Georges Bank was described by McGregor (1985) from 3.5-kHz 

subbottom and Sea Marc I mid-range sidescan-sonar data. Six canyons and Bear Seamount are 

the prominent features in the area and the three largest canyons, Oceanographer, Gilbert and 

Lydonia Canyons indent the shelf edge. The canyons merge to form two main channels down-

slope from the 2900 m isobath. Seismic-reflection profiles of Oceanographer, Gilbert and Lydonia 

Canyons were used to describe and compare canyon morphologies (McGregor, 1985). 

Oceanographer Canyon was observed to have a flat, uniform floor, whereas Gilbert canyon was 

observed to have a meandering thalweg. According to McGregor (1985) this difference could 

suggest differences in present canyon activity, with Gilbert Canyon being more active. 

Oceanographer Canyon was interpreted to have undergone two stages of incision and is 

presently entrenched into a broad valley (McGregor, 1985). 

A regional study between Hudson and Baltimore Canyons generally focused on features 

in less than 2500 m water depth and 51 canyons were identified (Twichell and Roberts, 1982). 

Although several canyons, including Wilmington and Baltimore Canyons, indent the shelf edge, 

most of the canyons were observed to begin in water depths between 200 and 700 m and trend 

directly down-slope (Twichell and Roberts, 1982). A survey that encompassed Wilmington, South 

Wilmington and North Heyes Canyons was conducted in 1980 (McGregor et al., 1982) between 
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the 250 and 2500 m isobaths using a mid-range sidescan sonar (Sea MARC I). The upper 

continental margin south of Wilmington Canyon was observed to be dissected by numerous 

valleys and tributaries and a gully system was observed to feed into South Wilmington and North 

Heyes Canyons. South Wilmington and North Heyes Canyons are straight, which is a distinctly 

different morphology from that of Wilmington Canyon. Wilmington canyon indents the shelf edge 

and exhibits a meandering pattern. It was suggested that Wilmington Canyon is older and more 

mature than either South Wilmington or North Heyes Canyons (McGregor et al., 1982). In 

addition, 3.5-kHz subbottom profiles showed ~ 100 m of sediment between Wilmington and South 

Wilmington Canyons. However, this sediment was not present in the canyon axes, an indication 

that active erosion may be taking place (McGregor et al., 1982). 

A regional GLORIA II sidescan-sonar survey that extended from the Blake Escarpment in 

the south to Georges Bank in the north was conducted in 1987 as part of the U.S. Geological 

Survey's EEZ-SCAN program to map the U.S. Atlantic continental margin out to the seaward 

boundary of the EEZ (Robb et al., 1996). The study provides sidescan-sonar coverage of the 

continental margin that contains Hudson, Wilmington, Baltimore, Washington and Norfolk 

Canyons (Schlee and Robb, 1991). Schlee and Robb (1991) observed that portions of the mid-

Atlantic margin can be interpreted as 'gather' areas where several channels merge into one major 

channel that continues down-slope. Three gather areas were delineated: Norfolk, Accomac, and 

Baltimore-Toms gather areas (Schlee and Robb, 1991). Schlee and Robb (1991) distinguished 

two types of canyon-channel systems: those that traverse down-slope from gather areas, such as 

Wilmington canyon channel, and those that directly connect from canyons incised into the upper 

continental margin, such as Hudson canyon channel. Although canyon activity has not resulted in 

significant fan construction on the lower margin (Schlee and Robb, 1991), Hudson and 

Wilmington Canyon systems were important in delivering sediment down-slope during the Late 

Pliocene and Pleistocene (Mountain and Tucholke, 1985). Sediments ponded behind Hatteras 

Outer Ridge to form a feature that Mountain and Tucholke (1985) called the lower continental rise 

terrace. 
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Rona et al. (1967) described the continental margin seaward of Cape Hatteras and 

recognized the Hatteras Canyon System. The system was interpreted to encompass Hatteras 

Canyon and Hatteras Transverse Canyon. Hatteras Canyon originates on the upper continental 

margin off of Cape Hatteras and continues across the lower continental margin until it merges 

with Hatteras Transverse Canyon (Rona et al., 1967). Rona et al. (1967) also recognized Pamlico 

Canyon and described the canyon as U-shaped. Newton and Pilkey (1969) observed an 

additional canyon tributary that was interpreted as an upslope continuation of Hatteras 

Transverse Canyon. They proposed that the canyon be considered a distinct portion of the 

canyon system and called it the 'Albermarle Transverse Canyon'. The morphology of the 

continental margin off of Cape Hatteras was further described by Popenoe and Dillon (1996), who 

also recognized the three drainages in GLORIA II sidescan-sonar imagery and called them 

valleys. From north to south, they are Albermarle, Hatteras, and Pamlico valleys and these 

valleys evolve from canyons that indent the upper continental margin. The valleys were observed 

to traverse southeastward across the continental margin and intersect Hatteras Transverse 

Canyon on the lower margin. The southernmost valley identified and analyzed in the study area 

was Pamlico valley. Popenoe and Dillon (1996) described Pamlico valley as the deepest and 

most clearly defined out of the three valleys identified in this region. It was also interpreted as flat-

floored on the upper continental margin. In contrast, Hatteras Canyon was described as broad 

and shallow. Albermarle Canyon was interpreted to consist of three parallel channels within a 

bathymetric low on the lower continental margin (Popenoe and Dillon, 1996). 

In addition to the mainly descriptive continental margin studies, several quantitative 

morphometric studies of the U.S. East Coast continental margin canyons have been conducted 

as well. Early analyses included the construction of canyon longitudinal profiles and the 

calculation of gradients of submarine canyons off Georges Bank and New York where there was 

adequate availability of soundings (Shepard and Beard, 1938). A canyon recognized off of 

Chesapeake Bay, as well as Hudson Canyon, were shown to have the lowest gradients of 2.6% 

and 2.7%, respectively (-1.5°). Georges Canyon, located much farther north, had the steepest 

gradient of 10% (-5.7°). Chesapeake Canyon was traced the farthest seaward and showed a 
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lower gradient in the outermost portion than in the uppermost portion of the canyon. This trend is 

also generally true of riverine systems in the adjacent land area. However, the opposite trend was 

observed for several other submarine canyons. Shepard and Beard (1938) attributed the higher 

gradient in the outer portions to the lack of data near the termini of the canyons because profiles 

rarely exceeded the 2500 m isobath. 

Forde (1981) also used seismic-reflection profiles acquired perpendicular to canyon axes 

to describe and compare Veatch, Washington and Norfolk Canyons. Veatch Canyon is located on 

the southern New England continental margin and Washington and Norfolk Canyons are located 

on the continental margin seaward of the Chesapeake Bay. The study focused mainly on the 

canyon heads and the profiles rarely extended beyond the 2000 m isobath. Although specific 

morphologic parameters were not quantified, the seismic cross-profiles showed that the upper 

portions of all three canyons were V-shaped. Forde (1981) concluded that these portions are 

erosional in nature. However, the down-slope portion of Veatch Canyon appeared to be primarily 

of depositional origin whereas portions farther down-slope in Washington and Norfolk were 

interpreted to be formed by both depositional and erosional processes, which may reflect different 

episodes of cut and fill (Forde, 1981). 

Kelling and Stanley (1970) described the morphology of the Wilmington and Baltimore 

Canyon heads approximately between the 100 and 2400 m isobaths both qualitatively and 

quantitatively from seismic-reflection profiles. Qualitatively, changes in the down-slope trend of 

the canyons were observed, most notably a sharp transition from a southerly to a southeasterly 

direction in the canyon heads. The canyon heads are V-shaped upslope from the change in 

direction, and although are still steep-sided down-slope, they become flat-floored. Quantitatively, 

width:depth (W/D) ratios were calculated from the cross-profiles (Kelling and Stanley, 1970). In 

riverine systems, a low W/D ratio generally indicates a deeper and narrower channel (Rosgen, 

1994). A decrease in the W/D ratios occurred at changes in channel direction and appeared to 

correspond to steeper sections of the channels. In addition, a V-shaped channel within a broad 

valley was observed within Wilmington Canyon on and evidence of the removal of sediment infill 

was observed in the upper portion of the Baltimore canyon head; these features may be 
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indicative of recent incision (Kelling and Stanley (1970). Kelling and Stanley (1970) concluded 

that Baltimore Canyon is a more mature canyon because it has higher W/D ratios and lower 

gradients than Wilmington Canyon. However, it was interpreted that both of the canyon heads 

have undergone two stages of erosion that is evident in the change in direction at the canyon 

heads (Kelling and Stanley, 1970). 

Canyon channels that traverse the lower continental margin have been less well studied 

quantitatively than the canyons that have incised into the upper continental margin. Pratt (1967) 

examined the seaward extensions of the major canyons along the U.S. Atlantic continental 

margin. The study included Hudson, Wilmington, Baltimore, Washington, Norfolk, Veatch, 

Hydrographer, Lydonia, Oceanographer, Gilbert and Corsair Canyons. The lengths of the 

channels were quantified from available data and their general morphology described. In addition, 

longitudinal profiles of the longest channels (Wilmington and Hudson canyon channels) were 

constructed from a contour chart. The plots showed the channel thalweg profile as well as profiles 

of the channel rims with increased distance from the 2000 m contour. The profiles showed that 

the channels have a deep central portion generally between the 3000 and 4000 m isobaths (Pratt, 

1967). 

Eleven consecutive cross sectional profiles between the 200 and 3830 m isobaths were 

derived from echograms and used to determine the dimensions of Pamlico Canyon, located off of 

Cape Hatteras (Rona et al., 1967). It was observed that Pamlico Canyon grades from V-shaped 

to U-shaped further down-slope. The U-shaped portion corresponds to a slightly higher average 

floor-width to relief ratio (Rona et al., 1967). In addition, the levees of Pamlico canyon channel 

were observed to be an average of 50 m higher on the southwestern side than on the 

northeastern side (Rona et al., 1967). 

Hudson Canyon and its associated canyon channel have been the most recently studied 

with bathymetric, backscatter and seismic-profile data in order to describe the channel 

morphology, deposits, and processes of formation (Butman et al., 2004). Profiles of depth against 

distance down-channel were constructed for the thalweg as well as for both channel rims using 

data from measurements taken in 5-km intervals down the length of the channel. Several 

7 



representative cross-profiles were constructed perpendicular to the channel thalweg in order to 

demonstrate the change in channel relief with increased distance down-channel. The plots and 

profiles showed that the canyon has the highest relief on the upper continental margin and relief 

then decreases down-slope. However, relief was shown to increase near the 3000 m isobath 

(Butman et al., 2004). 

This current study provides a more detailed quantitative analysis of the morphology of the 

canyon channels along the lower Atlantic continental margin and builds upon the observations 

and studies discussed above. Because canyon channels are only part of the features found on 

the Atlantic continental margin, a broad overview of the evolution, processes and features of the 

Atlantic continental margin is provided in the next chapter for context. This also enables the 

assessment of the factors that could influence channel morphology. Important processes such as 

riverine input, glaciations and major currents are highlighted. Further canyon and canyon channel 

background is also provided, with specific emphasis on their formation, evolution, ages and 

proximity to rivers. 
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CHAPTER 2 

BACKGROUND 

2.1. U.S. Atlantic Margin Geologic History: Jurassic to Miocene 

Rifting between North America and Africa began in the Late Triassic and Early Jurassic. 

The rifting began to create the North Atlantic Ocean and initiated the formation of the North 

American passive continental margin. Rifting formed a series of platforms and basins along the 

margin; from north to south the basins are Georges Bank Basin, Baltimore Canyon Trough, 

Carolina Trough, Blake Plateau Basin and the Bahamas Basin (Fig 2.1; Grow and Sheridan, 

1988). Georges Bank Basin is separated from Baltimore Canyon Trough by the Long Island 

Platform and the Baltimore Canyon Trough is separated from the Carolina Trough by the Carolina 

Platform (Fig 2.1; Grow and Sheridan, 1988; Poag, 1991). The basins have since been filled with 

several kilometers of sediment. For example, nearly 13 km of post-rift sediments have 

accumulated in Baltimore Canyon Trough (Grow et al., 1988). However, the sediments, 

provenance and environments under which they were deposited have varied throughout the 200 

Ma of the geologic evolution of the margin and have been influenced by tectonism, subsidence, 

sea level and climate. 
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Figure 2.1.An overview map that shows the major features of the eastern United States and adjacent continental 
margin, which includes the rift basins and platforms. Map is from Grow and Sheridan (1988) 

Initially, synrift sediments were deposited simultaneously with continental rifting (Klitgord 

et al., 1988; Poag, 1991). Triassic redbeds and evaporites comprise the synrift deposits of the 

Scotian and Georges Bank basins (Jansa, 1981). It has been inferred from seismic data that 

evaporite deposition also occurred along the entire Atlantic continental margin (Poag, 1991). The 

deposition of evaporites and red beds indicates that the climate during the Triassic was warm and 

arid (Jansa, 1981). Following synrift sedimentation, postrift sediments were deposited once 
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seafloor spreading had begun (Klitgord et al., 1988; Poag, 1991). Poag (1991) suggested a 190 

to 187 Ma range for the initiation of seafloor spreading and simultaneous postrift deposition. 

During the Early Jurassic, the rift basins subsided while there was landward uplift (Poag 

and Sevon, 1989). In addition, the climate remained arid (Poag and Sevon, 1989). The uplift 

contributed to the production of sediment and the climate promoted mechanical weathering. Poag 

and Sevon (1989) recognized a period of time in the Early Jurassic when the ancient Hudson and 

Delaware Rivers delivered sediment from the central Appalachian and Adirondack Highlands 

(Fig. 2.2) to the adjacent submarine basins. Considerable terrigenous material accumulated in the 

Baltimore Canyon Trough seaward of New Jersey at this time (Poag and Sevon, 1989). 

In addition to the Hudson and Delaware Rivers, reconstructions of major sediment 

depocenters along the middle Atlantic continental margin indicate that the ancient James, 

Potomac, and Connecticut Rivers were also established in the Jurassic (Poag and Sevon, 1989). 

Several other major rivers including the Schuylkill and Susquehanna Rivers were likely 

established even earlier in the Triassic. These major rivers have incised into resistant rock 

formations and have drained the Appalachian Highlands via the Delaware, James, Potomac and 

Susquehanna Rivers, the Adirondack Highlands via the Hudson River and the New England 

Highlands via the Connecticut River and rivers in eastern Massachusetts throughout the 

formation of the margin (Fig. 2.2; Poag and Sevon, 1989). 
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Figure 2.2. Map that shows the Atlantic multibeam bathymetric data collected in 2004, 2005 and 2008 by 
CCOM/UNH with ETOP01 background (Amante and Eakens, 2009). Locations of the major rivers and features of 
the margin, such as sediment drifts and the New England Seamounts, are shown. O.C. = Oceanographer Canyon, 
BI.C. = Block Canyon, H.C. = Hudson Canyon, W.C. = Wilmington Canyon, B.C.= Baltimore Canyon, Wa.C. = 
Washington Canyon, N.C. = Norfolk Canyon, C. Bay = Chesapeake Bay, D. Bay = Delaware Bay, L.I. = Long Island, 
HSV = Hudson Shelf Valley. Location of the ice margin (shown as dashed black line) at 18 ka is from Dyke and 
Prest(1987). 

Carbonate deposition was widespread along the margin in the early Middle Jurassic 

(Poag, 1991). A series of discontinuous carbonate platforms developed that extended from the 

Scotian shelf to the Bahamas (Jansa, 1981). Poag (1991) called the extensive carbonate build-up 

the Bahama-Grand Banks gigaplatform. The gigaplatform was in excess of 5000 km in length by 

the late Middle Jurassic (Poag, 1991). Siliciclastic sediment accumulated landward of the 
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carbonate platform (Poag, 1991). However, gaps in the shelf-edge carbonate platform allowed 

siliciclastic sediments to bypass the shelf edge and be deposited on the middle Atlantic 

continental margin that was developing at this time (Poag and Sevon, 1989; Poag, 1991). Primary 

dispersal routes included the ancient Delaware, Hudson, Susquehanna and Potomac Rivers 

(Poag and Sevon, 1989). 

The narrow proto-Atlantic seaway that separated eastern North America from western 

Africa expanded during this time and by the end of the Late Jurassic the seaway was not only 

connected to the Tethys Sea to the east but to the Gulf of Mexico and the Pacific Ocean to the 

west (Poag, 1991). The resultant improved oceanic circulation coincided with peak carbonate 

production of the gigaplatform during the Late Jurassic (Poag, 1991). Although the carbonate 

bank has been interpreted to have been an effective barrier to terrigenous material to the deep 

sea (Jansa, 1981), siliciclastic sediment continued to be deposited in offshore fan complexes 

along the middle Atlantic margin (Poag and Sevon, 1989; Poag, 1991). Carbonate deposition was 

even more widespread along the southeastern U.S. Atlantic margin and the entire Blake Plateau 

(Fig. 2.2) was a broad carbonate platform prior to Early Cretaceous (Dillon and Popenoe, 1988). 

The termination of growth of the carbonate platform north of the Blake Plateau occurred 

at the end of the Jurassic (Poag, 1991). However, carbonate production continued in the Blake 

Plateau region, which Poag (1991) has called a megabank, into the Early Cretaceous (Dillon and 

Popenoe, 1988). The Carolina Trough (Fig. 2.1) appears to represent the transition between the 

northern and southern zones, between the Baltimore Canyon Trough on the north and the Blake 

Plateau Basin on the south, and no significant reef features have been recognized in the seismic 

record for the Carolina Trough (Dillon and Popenoe, 1988). 

Jansa (1981) proposed that the termination of carbonate production was caused by the 

movement of the continent northward (Jansa, 1981). However, Poag and Sevon (1989) and Poag 

(1991) suggest that the termination of carbonate production was related to environmental factors 

associated with reef drowning. In addition, terrigenous input to the middle Atlantic margin was 

generally high throughout the Early and Middle Cretaceous (Poag and Sevon, 1989). The 

carbonate banks were eventually buried by Cretaceous terrigenous deposits (Folger at al., 1979; 
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Poag and Sevon, 1989). Although the termination of carbonate production on the Blake Plateau 

followed an early Late Cretaceous sea level lowstand and subsequent rise, Dillon et al. (1985) 

suggested that other environmental factors were responsible for the lack of reef reestablishment. 

Sedimentation then switched from shallow carbonate deposition to deep-water marl deposition 

over the Blake Plateau, which still exists as a deep-water plateau (Dillon and Popenoe, 1988). 

The formation of the New England Seamounts (Fig. 2.2) also occurred during the Late 

Cretaceous between 80 and 100 Ma (Duncan, 1984). The New England Seamount chain is a 

linear chain that extends from Georges Bank in the northwest to the Corner Seamounts in the 

southeast. The seamounts formed as the North American Plate moved progressively 

northwestward over a stationary hotspot that was positioned near the Mid-Atlantic Ridge 

(Duncan, 1984). According to Duncan (1984), the hotspot was responsible for the formation of the 

White Mountain intrusives of New England, the New England Seamount chain, and the Corner 

Seamounts. However, there are no presently active volcanoes in the chain. Duncan (1984) also 

suggested that the Mid-Atlantic Ridge passed over the hotspot and formed a chain of seamounts 

on the eastern side of the ridge that ends with Great Meteor Seamount. In addition, most of the 

Monteregian province in Quebec has been inferred to have formed -124 Ma (Foland et al., 1986) 

as a result of the hotspot. According to Foland et al. (1986), the age data as well as the location 

of the province is in agreement with the hotspot theory and hotspot path of Duncan (1984). 

There was extensive siliciclastic sedimentation in the middle Atlantic region of the margin 

during the Late Cretaceous and dominate source terrains switched from the Central Appalachians 

to the New England Highlands (Poag and Sevon, 1989). Poag and Sevon (1989) suggested that 

this was indicative of uplift in the New England Highlands. In addition, although eustatic sea level 

was high, there was a predominance of deep-water depocenters as sediment bypassed the shelf 

of the Long Island Platform (Poag and Sevon, 1989). Dominate source terrains to the Baltimore 

Canyon Trough region switched from the New England Highlands to the Central Appalachians 

during the Paleocene to Early Miocene, and the Potomac, Susquehanna and Delaware Rivers 

were the dominate dispersal routes (Poag and Sevon, 1989). The continent had reached its 

approximate present latitudes by the Paleocene, but the environments that developed were 
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tropical to subtropical, eustatic sea level was high and the upland terrains were stable (Poag and 

Sevon, 1989). During this time, carbonate deposition dominated in deep water and diminished 

terrigenous sediment loads were deposited on the shelf (Poag and Sevon, 1989). However, 

Mountain and Tucholke (1985) concluded that there was significant movement of sediment down-

slope during the Paleocene and Eocene. 

The Blake Plateau region became a drowned carbonate platform in the Late Cretaceous 

and continued to accumulate deep-water sediments throughout the Paleocene (Dillon and 

Popenoe, 1988). Quiet, deep-water sedimentation over the Blake Plateau during the Late 

Cretaceous has been inferred to preclude the presence of a northward flowing Gulf Stream in the 

region (Dillon and Popenoe, 1988). Throughout the Late Cretaceous and Paleocene, the flow of 

water from the Gulf of Mexico to the Atlantic Ocean was through the Suwannee Strait between 

Florida and Georgia (Fig. 2.3; Dillon and Popenoe, 1988). However, a major unconformity 

between Paleocene and Eocene strata on the Blake Plateau has been attributed to erosion by a 

northerly flowing Gulf Stream (Paull and Dillon, 1980). Pinet and Popenoe (1985) have also 

concluded that the northerly flow of the Gulf Stream over Blake Plateau was initiated in the Early 

Paleogene, based on erosional features in Paleocene strata. Dillon and Popenoe (1988) have 

suggested that the intensification of flow through the Straits of Florida during the Late Paleocene 

and Early Eocene was due to a drop in sea level. This alteration in flow pattern changed the 

entire depositional regime along the southeastern U.S. continental margin (Dillon and Popenoe, 

1988). The Gulf Stream became an effective barrier to sediments reaching the Blake Plateau, 

and the Florida-Hatteras Shelf (Fig. 2.2) built landward of the current (Dillon and Popenoe, 1988). 
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Figure 2.3. Location of current flow through the Suwannee Strait during the Late Cretaceous between Georgia 
and Florida (black arrows) and the Late Paleocene-Early Eocene track of the Gulf Stream through the Straits of 
Florida (white arrows). Locations of currents are from Dillon and Popenoe (1988). 

An additional change in oceanic circulation also occurred during this time that involved 

the formation of an abyssal western boundary current along the North American continental 

margin. Data from the Grand Banks and Iberia regions (Fig. 2.4) have indicated that the North 

American and Eurasian Plates had begun to separate in the Late Cretaceous. Spreading 

continued to propagate north through the Rockall Trough, which ceased before spreading began 

in the Labrador Sea between 85 and 90 Ma (Fig. 2.4; Srivastava and Tapscott, 1986). Spreading 

along the Mid-Atlantic Ridge between 60 and 63 Ma (Early Paleocene) initiated the opening of the 

Norwegian-Greenland Sea (Fig. 2.4). Although this spreading continued, spreading in the 

Labrador Sea ceased approximately 38 Ma (Talwani and Edholm, 1977; Srivastava and Tapscott, 

1986). 
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Figure 2.4. Map of the North Atlantic region showing the Labrador, Norwegian, and Greenland Seas as well as the 
Rockall Trough and the Arctic Ocean. Map is modified from Srivastava and Tapscott (1986) and the red lines 
indicate magnetic lineations; fracture zones are also shown. 

Seafloor spreading opened the Norwegian-Greenland Sea to the Arctic Ocean and 

enabled cooler water to enter the North Atlantic (Mountain and Tucholke, 1985). This formed a 

southward flowing abyssal boundary current along the North American continental margin. 

Erosion of the North American continental margin by the proto-Western Boundary Undercurrent 

during the Late Eocene to Early Oligocene formed the regional seismic unconformity Horizon Au 
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(Mountain and Tucholke, 1985). This unconformity is also evident along the southeastern U.S. 

continental margin where major erosional retreat formed the present morphologic expression of 

the Blake Escarpment (Figs. 2.1, 2.2; Dillon and Popenoe, 1988). The margin had been 

dominated by down-slope, gravity-controlled processes until the Late Paleogene. However, a 

combination of down-slope processes and abyssal currents has strongly influenced the 

sedimentation of the margin since the Au unconformity (Tucholke and Laine, 1982; Mountain and 

Tucholke, 1985; Locker and Laine, 1992). These are the conditions under which the present 

features of the continental margin developed (Mountain and Tucholke, 1985). 

2.2. U.S. Atlantic Margin Geologic History: Miocene to Recent 

The present morphology of the U.S. Atlantic continental margin includes a variety of 

features such as submarine canyons and canyon channels, slump and slide deposits, seamounts 

and sediment drifts. These have been formed by, and continue to be modified by, a combination 

of sedimentary, current and climate-controlled processes. Dominant sedimentary processes 

during the Cenozoic include down-slope and contour current-controlled sedimentation (Mountain 

and Tucholke, 1985; Pratson and Laine, 1989). These processes are influenced by the dominant 

northward flowing Gulf Stream current and southward flowing Western Boundary Undercurrent 

(WBUC). Siliciclastic sedimentary deposition along the continental margin resumed in the Late 

Oligocene and Early Miocene and has dominated the middle Atlantic offshore basins from the 

Middle Miocene to the present (Poag and Sevon, 1989). Deposition was enhanced by source-

terrain uplift and a cooler climate (Poag and Sevon, 1989). 

Dispersal routes from the central Appalachians contributed large volumes of sediment to 

the shelf edge (Poag and Sevon, 1989) and significant shelf-edge deltas existed in the Middle 

Miocene off of the Delaware Bay region (Fig. 2.2) even though sea level was high (Poag, 1987). 

During the Late Miocene, the deltaic progradation was concentrated farther seaward on the 

continental margin (Poag, 1987). These and Pliocene sediments were redistributed by bottom 

currents and formed sediment drifts (Mountain and Tucholke, 1985; Poag and Sevon, 1989). 

The cooling climate culminated in the formation of Northern Hemisphere glaciations 

during the Pliocene (Zimmerman et al., 1985). In addition, there was a major eustatic sea-level 
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regression during the Late Pliocene (Vail et al., 1977). The Gulf of Maine region, which had been 

below sea level since the Eocene, was again exposed above sea level. Fluvial erosion created 

the topographic low Gulf of Maine and the topographic high Georges Bank (Fig. 2.2; Uchupi and 

Bolmer, 2008). The New England Highlands and the central Appalachians were primary source 

terrains during the Pliocene and all the highland source terrains and dispersal routes became 

important in the Quaternary (Poag and Sevon, 1989). The high terrigenous sediment 

accumulation rates in the middle Atlantic, which fluctuated especially in the Pleistocene, have 

been attributed to the North American glaciations (Poag and Sevon, 1989). 

2.2.1. Morphologic Features and Processes 

Shelf-edge deltas and submarine-fan complexes developed during the Miocene (Poag 

and Sevon, 1989). This sediment contributed to the formation of large-scale sediment drifts along 

the continental margin at this time (Fig. 2.5; Mountain and Tucholke, 1985; Poag and Sevon, 

1989). The sediment drifts were formed by a combination of down-slope and contour-current 

processes and are recognized by thicker sediments than the surrounding deposits, thicker 

bedding at the axis of the drift and thinner bedding at the margins, weak internal reflectors, and 

sediment waves that are often superimposed on the feature (McCave and Tucholke, 1986.) 
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Figure 2.5 . Atlantic bathymetry with ETOPOI background. Data is overlain by a map showing the location and 
thickness of the Chesapeake Drift and the Hatteras Outer Ridge along the central continental margin and the 
Blake and Bahama Outer Ridges to the south. Overlay map is from Tucholke and Mountain (1986). 

The Chesapeake Drift (Figs. 2.5 and 2.6) formed along the middle continental margin of 

the Baltimore Canyon Trough near 36°N 73°W (Mountain and Tucholke, 1985). Concurrently, an 

additional sediment drift called the Hatteras Outer Ridge (Fig. 2.5), formed seaward of the 

Chesapeake Drift (Tucholke and Laine, 1982; Locker and Laine, 1992). Tucholke and Laine 

(1982) interpreted Hatteras Outer Ridge to have formed from two fan systems that originated 

from Hudson and Norfolk-Washington Canyons during the Late Miocene and Pliocene. The 

sediment delivered by Hudson and Norfolk-Washington Canyons was reworked by the abyssal 

western boundary current and formed the ridge (Tucholke and Lame, 1982; Locker and Laine, 

1992). The Chesapeake Drift and the Hatteras Outer Ridge were both well developed by the Late 

Pliocene and affected down-slope processes (Locker and Laine, 1992). Sediments have since 
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mostly buried the Chesapeake Drift and have created a seaward dipping terrace off of New 

Jersey (Mountain and Tucholke, 1985). O'Leary and Dobson (1992) recognized a similar terrace 

feature along the southeastern New England margin and have attributed the feature to a possible 

extension of the Chesapeake Drift (Fig. 2.6) 

Figure 2.6. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI background. Data is 
overlain by a map that shows the location of the Chesapeake Drift and the terrace front along the southeastern 
New England margin. Overlay map is from O'Leary and Dobson (1992). 

Both down-slope and contour-parallel processes have been important during the 

Quaternary (Locker and Laine, 1992; Pratson and Laine, 1989). Deposits from mass wasting are 

dominant on the upper continental margin whereas turbidite deposits are dominant on the lower 

continental margin and abyssal plain (Pratson and Laine, 1989). Contour-current processes 

appear to have had a less dominant affect during the Pleistocene and evidence, such as the 

sediment waves along the Hatteras Outer Ridge, are mostly confined to between channels and 

along the lower continental margin (Pratson and Laine, 1989). Pratson and Laine (1989) 
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attributed the dominance of down-slope deposits to low stands of eustatic sea level during the 

Pliocene and Pleistocene. 

Turbidity currents have been an important down-slope process along the North Atlantic 

continental margin that are often related to a triggering mechanism, such as an earthquake or 

high river discharge (Pilkey and Geary, 1986). Turbidity currents are generally associated with 

submarine canyons and canyon channels and the highest percentage of sand layers within cores 

are located near canyon axes and on a terrace feature that has formed landward of Hatteras 

Outer Ridge (Pilkey and Cleary, 1986). Pilkey and Cleary (1986) interpreted the formation of the 

terrace to be from the coalescence of submarine fans. Locker and Laine (1982) and Pratson and 

Laine (1989) have shown that the terrace was formed by turbidites that have ponded behind the 

ridge since the peak of drift formation in the Pliocene. 

Additional down-slope processes, collectively called mass wasting that include slumps, 

slides and debris flows, have also been important processes along the continental margin (Laine 

et al., 1986). Slides occur along the walls of submarine canyons and canyon channels as well as 

on the open slope (Laine et al., 1986; Twichell et al., 2009). O'Leary and Dobson (1992) identified 

two major slide complexes along the New England continental margin: the Munson-Nygren slide 

complex and the Southeast New England slide complex. Three major slide complexes have also 

been recognized off of Cape Hatteras: the Albermarle-Currituck Slide, the Cape Lookout Slide, 

and the Cape Fear Slide (Popenoe and Dillon, 1996). Twichell et al. (2009) identified 48 

submarine landslides along the continental margin and defined them as either open-slope or 

canyon sourced slides. Open-slope submarine slides were found to be more common off regions 

affected by glaciers or influenced by large river systems (Twichell et al., 2009). 

Although several processes have contributed to the formation of the U.S. Atlantic 

continental margin, there has been some discrepancy in the determination of active and relict 

processes. Pratson and Laine (1989) inferred that the debris flows on the margin between Cape 

Hatteras and Georges Bank are recent features because they have not been buried by sediment. 

However, an area along the New Jersey margin has been interpreted as relict morphology 

because there is a layer of Pleistocene and Holocene sediment drape 3 to 5 m thick that covers 
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the underlying relief (Prior et al., 1984). Additionally, although there is evidence of 100 m of 

sediment accumulation between Wilmington Canyon (Fig. 2.2) and an adjacent canyon, the axes 

of the canyons appear to be free of sediment accumulation (McGregor et al., 1982). McGregor et 

al. (1982) attributed this lack of sediment in the canyons to either active erosion or that sediment 

accumulation has not yet covered the pre-existing morphology. Schlee and Robb (1991) also 

observed hemipelagic drape in the area seaward of North Carolina to New York but showed that 

some large channels cut through the drape. Schlee and Robb (1991) interpreted that the 

channels postdate the drape; however, this could be an indication of active channel processes. 

Schlee and Robb (1991) suggested that GLORIA II sidescan sonar imagery shows features that 

were formed at the end of the Pleistocene. O'Leary (1996) also interpreted that the canyons 

along the New England continental margin were active during the end of the last deglaciation. 

Although the systems are not considered to be presently active, they could be reactivated under 

certain environmental conditions (O'Leary, 1996). 

2.2.2. Currents 

The Gulf Stream has continued to be a powerful current that flows northeastward across 

the Blake Plateau (Dillon and Popenoe, 1988) and has been a barrier to sediments reaching the 

Blake Plateau (Pinet et al., 1981); there is no substantial seismic unit of Neogene/Quaternary age 

over the Blake Plateau (Paull and Dillon, 1980). Additionally, the present surface of the Blake 

Plateau exhibits recent erosional features (Paull and Dillon, 1980). According to Kaneps (1979), 

there has been a general increase in the velocity of the Gulf Stream since the Miocene that has 

been attributed to the gradual emergence of the Central American Isthmus. Kaneps (1979) also 

related Gulf Stream velocity fluctuations to global glacial phenomena. The location of the Gulf 

Stream has also been shown to vary with the position of sea level during the Cenozoic; during 

periods of high sea level, the Gulf Stream moved westward and shoreward, whereas during 

periods of low sea level, the Gulf Stream shifted eastward and seaward (Pinet et al., 1981; Pinet 

and Popenoe, 1985; Dillon and Popenoe, 1985). 

The Gulf Stream leaves the Blake Plateau at Cape Hatteras and continues northeastward 

across the continental margin (Popenoe and Dillon, 1996). Also near Cape Hatteras, the WBUC 
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flows beneath the Gulf Stream (Popenoe and Dillon, 1996). The WBUC has continued to be a 

high-velocity bottom current that flows southward along the eastern North American continental 

margin (Bulfinch et al., 1982). Two pulses of intensified abyssal currents have occurred that are 

recognized by erosional reflectors in seismic profiles of (1) late Middle Miocene and (2) Late 

Pliocene age (Mountain and Tucholke, 1985). The latter reflector has been related to the onset of 

Northern Hemisphere glaciation (Mountain and Tucholke, 1985). The WBUC has also been 

studied with current meters deployed as part of the High-Energy Benthic Boundary Layer 

Experiment (HEBBLE) along the Nova Scotian continental margin (Richardson et al., 1981). The 

current meters indicated an increase in the velocity of a southwestward-flowing current between 

the 4400 and 5000 m isobaths, although both a northern and southern source appeared to 

contribute to the bottom current (Richardson et al., 1981). Additionally, sedimentological analysis 

of samples from four contour-perpendicular profiles along the continental margin between North 

Carolina and Nova Scotia (Fig. 2.2) led Bulfinch and Ledbetter (1984) to conclude that there is a 

high-velocity zone of the WBUC between the 4500 and 5200 m isobaths in the area. 

2.2.3. Glaciations 

The history of the North American glaciations has been complex, and often only the 

penultimate glaciation and deglaciation can be reconstructed with confidence on land because 

ice-sheet advances and retreats have eroded or modified the previous deposits (Ruddiman and 

Wright, Jr., 1987). However, oxygen-isotope analyses of deep-sea sediment cores have provided 

a much more complete and detailed record of the Northern Hemisphere glaciations (Ruddiman 

and Wright, 1987). Analyses of oxygen isotopes, nannofossils, magnetostratigraphy, and ice-

rafted debris from DSDP site 552 have shown that the Northern Hemisphere glaciations initiated 

in the Late Pliocene, approximately 2.4 Ma (Zimmerman et al., 1985). More recent dating of 

terrestrial tills has also shown that the northern hemisphere ice sheets had advanced to their full 

extent during the period of 2.7 to 2.4 Ma (Balco et al., 2005). Rea and Shrader (1985) 

summarized several hypotheses regarding the onset of Northern Hemisphere glaciations that 

included volcanic activity, Himalayan uplift, and the closure of the Central American seaway by 

the rise of the isthmus. They suggested that the rise of the isthmus deflected equatorial water to 
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higher latitudes and increased precipitation at higher latitudes. Enhanced temperature contrast 

and the formation of a halocline in the Pacific Ocean that provided precipitation to northern 

latitudes has also been related northern hemisphere glaciation -2.7 Ma (Haug et al., 2005). 

There were at least 40 full climatic cycles during the first 1.6 to 1.7 Ma since the onset of Northern 

Hemisphere glaciation (Ruddiman and Wright, 1987) and according to Zimmerman et al. (1985), 

there have been at least 13 cycles since 0.98 Ma. 

The maximum extent of the Laurentide Ice Sheet during the most recent glaciation 

occurred between 20 and 21 ka, according to Licciardi et al. (1999) and 18 ka, according to Dyke 

and Prest (1987). The southern extent of the ice reached Long Island and northern New Jersey 

(Fig. 2.2) and much of the shelf was subaerial (Dyke and Prest, 1987). However, by 14 ka, the ice 

margin had retreated from Long Island and the Gulf of Maine (Dyke and Prest, 1987). The Gulf of 

Maine presently separates Georges Bank from the mainland of New England and has had a 

complex glacial and sea-level history because of both isostatic rebound and the influence of a 

peripheral bulge (Barnhardt et al., 1995). The ocean remained in contact with the ice front during 

initial glacial retreat and flooded the depressed New England crust around 14 ka (Barnhardt et al., 

1995). This was followed by a rapid relative sea-level regression to a lowstand of 55 m below 

present approximately 11 to 10.5 ka because a forebulge passed beneath the area (Barnhardt et 

al., 1995). A variable rise in relative sea level followed the regression to the present-day level 

(Barnhardt et al., 1995). 

The region south of the ice also experienced a degree of deformation because of the 

subsidence of the peripheral bulge as the ice sheet retreated (Dillon and Oldale, 1978). Dillon and 

Oldale (1978) recognized a hinge zone off of New Jersey where ancient shorelines have 

subsided from the collapse of the forebulge. They reconstructed a regional sea-level curve from 

the paleoshorelines and concluded that local sea level did not drop below 100 m in the last 25 ky 

between Chesapeake Bay and Long Island. Carey et al. (2005) also related a change in the 

course of the Hudson River from a more southerly route across the continental shelf to the 

present Hudson Shelf Valley (Fig. 2.2) to the advance of the ice sheet and a peripheral bulge. 

Although the final deglaciation of the icesheet around 8 ka established the present river drainage 
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patterns, the Hudson River represented one of five major routes of meltwater throughout the last 

deglaciation (Licciardi et al., 1999). The Hudson River was an especially prominent route for 

delivering meltwater to the Atlantic between 16.5 to 15.2 ka, 13.5 to 13 ka and 12.3 to 11.7 ka, 

each of which was separated by a glacial readvance (Licciardi et al., 1999). The highest sediment 

supply to the margin occurred during the Middle Miocene to Holocene and the growth of the North 

American ice sheet facilitated large amounts of glaciofluvial and glaciomarine sediments to be 

delivered to the margin (Poag and Sevon, 1989). 

2.3. Atlantic Margin Canyon and Canyon-Channel Background 

2.3.1. Models of Evolution 

According to Daly (1936), the origin of submarine canyons had been under consideration 

for nearly half a century at the time his manuscript was written. However, a general model of 

canyon-channel evolution had not been developed. Models proposed for submarine canyon and 

canyon-channel origin included bottom-current erosion, tectonic origins, riverine processes and 

formation during continental shelf uplift. Daly (1936) was the first to suggest density currents as a 

mode of formation. Evidence cited for the presence and erosiveness of turbidity currents has 

included well-sorted sands found in cores near the deep-sea terminus of Hudson Canyon 

(Ericson et al., 1951) and the presence of gravels and shallow water shells in Hudson Canyon 

and the lack of these sediments outside the canyon (Ericson et al., 1951). Additional evidence of 

coarse material in deep-sea channels has been cited as evidence for turbidity currents by 

Chough and Hesse (1976) and Shepard (1981), as well as the presence of submarine valleys 

that are thousands of miles long (Shepard, 1981) and the presence of a meandering thalweg in 

the Northwest Atlantic Mid-Ocean channel (Chough and Hesse, 1976). Additionally, submarine-

channel morphology has been associated with the activity of turbidity currents, including levees 

formed from the overspill of turbidity currents (Clark and Pickering, 1996). 

A modern sedimentation model was presented by Vail et al. (1977) and related to the 

formation of submarine canyons. According to this model, sediment can bypass the shelf during 

sea-level lowstands. Rivers are able to traverse the continental shelf during sea-level lowstands 

and the Hudson and Delaware Rivers have been associated with the development of submarine 
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canyons along the U.S. Atlantic continental margin (Twichell et al., 1977; Swift et al., 1980; 

McGregor, 1981). In addition, a river that crossed the shelf could have meandered, and thereby 

have created several canyon heads at the shelf edge. For example, Knebel et al. (1979) has 

suggested that the Hudson River migrated across the shelf during the Pleistocene. The model of 

Vail et al. (1977) suggested that during sea-level highstands sediments are mainly trapped on the 

continental shelves and riverine input across the shelf ceases. However, it has been recognized 

that this highstand-lowstand sedimentation model does not apply on all continental margins. 

Some submarine canyon systems are still active during sea-level highstands. Examples include 

canyons that receive sediment input from rivers, such as the Zaire Canyon that connects to the 

Zaire River estuary (Babonneau et al., 2002) and those that receive sediment from longshore 

and/or tidal transport such as canyons off of southeastern Australia (Boyd et al., 2008) and the La 

Jolla canyon system in California (Covault et al., 2007). In addition, turbidity currents in canyons 

have been generated by storm events, such as those recorded in the Eel submarine canyon 

(Puig et al., 2004). 

It has been recognized that not all submarine canyons along the Atlantic continental 

margin have formed with a connection to the shelf edge (Twichell and Roberts, 1982; Farre et al., 

1983). Twichell and Roberts (1982) observed that the depth below sea level of some canyon 

heads, in combination with the distance from riverine systems, would argue for the initiation of 

canyons by submarine processes. Although a connection to the shelf is therefore not thought to 

be a necessity for the initiation of canyon development, Farre et al. (1983) proposed an upslope 

erosion model to account for both types of canyons. In this model, canyon formation is initiated by 

localized slope failure and the canyons erode headward. Continued erosion could eventually 

cause the canyon to breach the shelf break, whereas if erosion ceased, the canyon could be 

buried. If the canyon breaches the shelf break, it could then become a transportation route for 

sediments from the shelf to the abyssal plains. Farre et al. (1983) called the canyons that indent 

the shelf edge 'mature' canyons. 

In contrast to the upslope erosion model, Pratson et al. (1994) proposed a down-slope 

erosion model for the formation of submarine canyons. Subbottom data has shown that modern 
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canyons have re-excavated down-slope reaches of buried canyons but not the upslope reaches 

(Pratson et al., 1994). In this model, turbidity currents or sediment flows that are initiated on the 

upper margin erode a new headward portion but re-excavate buried canyons farther down-slope 

where sediment cover is thinner. However, Pratson et al. (1994) noted that both slope failure and 

sediment-flow erosion likely have a role in submarine canyon formation. Pratson and Coakley 

(1996) combined the down-slope and upslope models. Their model resulted in headward erosion 

through initial down-slope sediment-flow erosion. A model used to simulate canyon formation 

showed a sequence in which the sediments on the upper continental margin oversteepened and 

failed, which caused narrow rills to form. Over time, the walls of some of the deepest rills failed 

and developed into retrogressive failures. The model suggested that a few large retrogressive 

failures can be erosive enough to establish canyon morphologies. Failures at the headwall of the 

canyon continued the headward growth of the canyon as well as initiated sediment flows that 

served to further excavate the thalweg and lower portion of the canyon (Pratson and Coakley, 

1996). 

In contrast to the canyon-formation models discussed above, O'Leary and Dobson (1992) 

argued that the canyons along the New England margin did not form by deposition along the shelf 

edge, nor were they transport paths for sediment from low-stand shelf-edge deltas, but were 

caused by de-watering episodes during glacial lowstands. They suggested that springs in 

fractures and permeable layers created a freshwater slurry of marine silts from the upper 

continental margin and the channels that formed followed pre-existing fractures. O'Leary (1996) 

suggested that canyon development and mass movement on the New England margin were 

associated with Pleistocene environmental conditions, such as the migration of a forebulge, 

glacial outwash, clathrate destruction and/or earthquake activity from isostatic rebound. 

McGregor et al. (1982) proposed a more indirect method of relative age determination 

and canyon formation based on the morphology of several canyons in the vicinity of Wilmington 

Canyon (Fig. 2.2). Canyons that begin below the shelf edge were observed to have scarps at 

their heads. These features may indicate formation by the process of headward erosion. In 

contrast, Wilmington Canyon indents the shelf edge. This difference may indicate that canyons 
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that indent the shelf are older, if they were formed by the same process of headward erosion. 

Another distinct morphologic difference identified was that Wilmington Canyon meanders while 

canyons that begin below the shelf edge trend straight down-slope. The authors implied that the 

differences may be due to differences in canyon age, if differences in initial canyon gradient and 

underlying sediment type are excluded (McGregor et al., 1982). 

2.3.2. Ages 

Mountain and Tucholke (1985) discussed short pulses of intense bottom-current activity 

that occurred twice during the Neogene. This activity is inferred from erosional reflectors in 

seismic-reflection profiles. Two prominent reflectors were referred to as Merlin and Blue. 

Reflector Merlin is the result of erosion during the late Middle Miocene and erosion that created 

reflector Blue occurred during the Late Pliocene. Hudson Canyon (Fig. 2.2) has cut through the 

upper portion of the Chesapeake Drift and incised nearly to reflector Blue on the upper 

continental margin (Mountain and Tucholke, 1985). The canyon has also cut into Pliocene and 

older sediments farther down-slope (Mountain and Tucholke, 1985). Mountain and Tucholke 

(1985) concluded that the seismic data provided no indication that either Hudson Canyon or 

those in the vicinity existed prior to Late Pliocene time. Locker and Laine (1992) identified two 

erosional paleochannels in seismic data in the vicinity of the Chesapeake Drift. One was referred 

to as the paleo-Wilmington Valley and inferred to be of Late Pliocene age. The position of the 

channel appeared to have been controlled by the relief of the Chesapeake Drift. An additional 

channel of Early Pliocene age identified near the Chesapeake Drift indicates that there was an 

active Norfolk-Washington channel system at this time (Locker and Laine, 1992). According to 

Mountain (1987), the channels off of Cape Hatteras do not appear to be incised into sediments 

that are older than Pliocene. However, an investigation of several canyons along the New 

England continental margin, including Oceanographer Canyon (Fig. 2.2), with the research 

submersible, Alvin, showed that the oldest rock exposed is Early Cretaceous in age. This study 

led Ryan et al. (1978) to the conclusion that several canyons along the New England margin may 

have began to be eroded during the Late Cretaceous, but that there have been multiple stages of 

erosion. 
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2.3.3. Proximity to Rivers 

The major rivers along the Atlantic margin have been able to traverse the subaerially 

exposed shelf during eustatic sea-level low stands (Twichell et al., 1977). This provided the 

opportunity for sediments to bypass the shelf and be delivered directly to the continental margin 

(Vail et al., 1977). However, channels that incised into the shelf during sea-level lowstands are 

subsequently modified, partially buried, or completely buried as sea-level transgresses (Twichell 

et al., 1977; Swift et al., 1980). Because of modifications that occurred during transgressions and 

sea-level highstands, such as erosion and/or sedimentation on the shelf, the modern bathymetry 

may not reflect ancient bathymetry. Thus, few channels have been traced across the continental 

shelf (Twichell et al., 1977; Swift et al., 1980). 

The Hudson River does have a surface expression across the continental shelf that is 

called the Hudson Shelf Valley (Fig. 2.2; Emery and Uchupi, 1972; Thieler et al., 2007). The 

Hudson Shelf Valley traverses the continental shelf for 150 km and has not been completely filled 

with sediment during the most recent sea-level transgression (Thieler et al., 2007). The head of 

Hudson Canyon begins near the terminus of the Hudson Shelf Valley but the canyon is separated 

from the valley by a shelf edge delta (Emery and Uchupi, 1972). Knebel et al. (1979) suggested 

that the Hudson River may not have always followed the shelf valley and that the river migrated 

over the shelf during the Pleistocene. Seismic data has shown a buried valley to the south of the 

present Hudson Shelf Valley and Knebel et al. (1979) suggested that it is associated with an 

alternate course of the Hudson River. Swift et al. (1980) acknowledged that the Hudson Shelf 

Valley still has a surface expression that trends in the same direction as the present estuary 

mouth, but they also identified two additional shelf valleys that have surface expressions on the 

shelf. One shelf valley is associated with the Great Egg River, which received drainage from the 

ancient Schuylkill River, and the other shelf valley is associated with the ancestral Delaware 

River. However, the buried river valleys that are linked to these rivers do not follow the present 

shelf valleys. Swift et al. (1980) reconciled this difference through the suggestion that there is a 

difference between eroded river valleys that were formed during sea-level lowstands and estuary 

retreat paths that were formed during sea-level transgressions. The retreat of the Hudson River 
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estuary during the Holocene transgression remained within the subaerially eroded shelf valley. 

However, the shelf valleys of the Delaware and Great Egg Rivers represent the estuary retreat 

paths that did not follow the subaerially eroded river valleys. These now-buried river valleys, 

which include the southern branch of the Hudson River (Knebel et al., 1979), were formed prior to 

the Holocene transgression (Swift et al., 1980). 

The investigations of buried, subaerially eroded river valleys from seismic data have been 

undertaken in order to better understand the relationships between paleodrainage and submarine 

canyon heads (Twichell et al., 1977; Swift et al., 1980; McGregor, 1981). Pratson and Laine 

(1989) inferred that the close association of buried channels, forset bedding of Pleistocene deltaic 

sediment and the heads of large canyons that indent the shelf edge indicate that the canyons 

transported sediment from the shelf to the deep sea. Twichell et al. (1977) and McGregor (1981) 

concluded that the ancestral Delaware River contributed to the development of Wilmington 

Canyon. Seismic-reflection profiles have shown that the buried ancestral Delaware valley trends 

eastward toward Wilmington submarine canyon (Twichell etal., 1977). Seismic-reflection profiles 

have also shown evidence of four large buried valleys and several smaller valleys in the vicinity of 

the head of Wilmington Canyon and McGregor (1981) inferred that the canyon received input 

from the west. The ages of the buried valleys may range from Late Miocene to Pleistocene, with 

the youngest valley corresponding to the ancestral Delaware River (McGregor, 1981). This is in 

general agreement with the conclusions of Kelling and Stanley (1970), whose study of seismic-

reflection profiles in the region of Wilmington and Baltimore submarine canyons (Fig. 2.2) showed 

several buried channels in the vicinity of the canyon heads. Kelling and Stanley recognized older, 

southeast-trending portions of the canyon heads and attributed them to an ancient Delaware Bay 

drainage. However, they have associated the present morphology of the canyon heads with a 

south-flowing drainage during Pleistocene eustatic sea-level lowstands. 

Drowned river valleys have also been recognized on the southeastern margin of New 

England (McMaster and Ashraf, 1973). Seven channel systems were mapped between acoustic 

basement and Holocene deposits with a series of seismic-reflection profiles that were collected in 

a region from New York to southeastern Massachusetts and between Block Island and the shelf 
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edge (McMaster and Ashraf, 1973). Channel systems have been present since the Cretaceous 

and an ancient Block Channel may have provided sediment to Block Canyon (Fig. 2.2) since the 

Eocene. Although Block Channel presently has a submarine surface expression that originates 

between Long Island and Block Island, the channel ends at Block Delta and there is no distinct 

channel that connects Block Channel to Block Canyon at the shelf edge (McMaster and Ashraf, 

1973). Submarine canyons are also present farther north off of Georges Bank. However, the 

canyons are not associated with rivers because the Gulf of Maine separates the New England 

coast form Georges Bank (Shor and McClennen, 1988). The canyons on the continental margin 

north of Hudson Canyon have been associated with Pleistocene glacial processes such as 

outwash and mass wasting during times of peak glacial extent (Pilkey and Cleary, 1986) as well 

as de-watering episodes during lowstands of sea-level (O'Leary and Dobson, 1992). 

2.4. Summary 

To reiterate, the term canyon channel as used here refers to the channels that traverse 

the less steep lower continental margin that have evolved from canyons incised into the upper 

continental margin. In addition to the canyons and canyon channels, the present morphology of 

the U.S. Atlantic continental margin includes slump and slide deposits and sediment drifts. 

Prominent features include the New England Seamounts, Georges Bank, and Blake Plateau. 

Dominant sedimentary processes during the Cenozoic include down-slope and contour current-

controlled sedimentation (Mountain and Tucholke, 1985; Pratson and Laine, 1989). During the 

Late Miocene and Pliocene, sediments delivered by down-slope processes were redistributed by 

bottom currents (the WBUC) and formed sediment drifts (Mountain and Tucholke, 1985; Poag 

and Sevon, 1989). In addition to the southward flowing WBUC , the Gulf Stream has also 

continued to be a dominate current system. The prominent river systems have contributed large 

volumes of sediment to the continental margin throughout the evolution of the margin (Poag and 

Sevon, 1989). In addition, the above processes have been further influenced by Northern 

Hemisphere glaciations. The processes and features of the Atlantic continental margin discussed 

in detail in this chapter provide insights into the factors that may have influenced the morphology 

of the canyon channels, and will be evaluated through quantifying canyon-channel morphology. 
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CHAPTER 3 

METHODS 

3.1. Data Acguisition 

The U.S. Atlantic continental margin was mapped using multibeam echo sounding in 

2004, 2005 and 2008 by the Center for Coastal and Ocean Mapping/Joint Hydrographic Center 

(CCOM/JHC) at the University of New Hampshire (Fig. 2.2; Gardner, 2004; Cartwright and 

Gardner, 2005; Calder and Gardner, 2008). Surveys completed during 2004 consisted of Legs 1 

through 3 and took place from August 23 to November 30 aboard the U.S. Navy hydrographic 

ship USNS Henson. These surveys focused on the northeastern and central portions of the 

margin and mapped a total area of-130,000 km2 (Gardner, 2004). The 2005 surveys consisted of 

Legs 4 and 5 with the USNS Pathfinder. These surveys focused on the southern portion of the 

margin (Cartwright and Gardner, 2005). Leg 6 focused on extending the eastern edge seaward of 

the 2004 and 2005 surveys in water depths of 5000 m (Calder and Gardner, 2008). 

The USNS Henson and Pathfinder were equipped with hull-mounted Kongsberg Simrad 

EM121A multibeam systems and ODEC Bathy2000 3.5-kHz chirp sub-bottom profilers. The 

EM121A is a 12-kHz multibeam echosounder (MBES) system that generates 121-1° receive 

beams over a 120° swath and was operated in equiangular beamforming mode and deep-water 

mode with 15-ms pulses. In equiangular mode, although each receive beam grows in angle away 

from nadir, overlap is ensured between beams. In addition, according to the manufacturer, the 

system has depth accuracies of 0.3% to 0.5% of the water depth when operated in deep-water 

mode. For precise beamforming, the sound speed at the array was measured by two hull-

mounted Applied Microsystems Ltd Smart SV&T sound-velocity sensors. Depth values were 

determined by center of mass amplitude detection for near nadir beams and by phase 

comparison for the majority of off-nadir beams. In addition to the collection of bathymetric data, 
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the Simrad EM121A simultaneously collected full time-series acoustic backscatter (Gardner, 

2004; Cartwright and Gardner, 2005). 

A Hippy motion reference unit (MRU) aboard the Henson and Pathfinder was used for 

heave and pitch and a Sperry Model Mark 39 gyro for yaw. An Applanix POS/MV 320 version 3 

inertial motion unit (IMU) was integrated with a Wide Area Differential-Aided GPS (DGPS) and 

provided position fixes to an accuracy of less than ±5 m. Horizontal positions were referenced to 

the WGS84 ellipsoid and vertical positions were referenced to instantaneous sea level. 

Throughout the surveys, water column sound-speed profiles were calculated using information 

from expendable bathythermographs (XBTs) that measure water column temperature as a 

function of depth. The Sippican model T-10 XBT had a 200-m maximum depth and the Deep Blue 

T-7 XBT had a 760-m maximum depth. These were used routinely every 6 hours and as required 

(Gardner, 2004; Cartwright and Gardner, 2005). Throughout the 2005 surveys, water column 

sound speed profiles were also calculated using a SeaBird model SBE-19 CTD, which obtained 

profiles of conductivity and temperature as a function of depth (Cartwright and Gardner, 2005). A 

12 to 14 kt mapping speed allowed at least 3 soundings to fall within each footprint, which ranged 

from a maximum of about 600 m at the outer beams to a maximum of 150 m at nadir at 5000 m 

water depth. The bathymetric data was gridded with a 100-m cell size (Gardner, 2004; Cartwright 

and Gardner, 2005). 

The sixth leg of mapping the U.S. Atlantic continental margin was completed in 2008. The 

survey utilized the RA/ Roger Revelle, operated by Scripps Institution of Oceanography (SIO), 

and focused on mapping in water depths of 5000 m. The RA/ Roger Revelle was equipped with a 

hull-mounted Kongsberg Simrad EM 120 (12-kHz) multibeam echosounder and a Knudsen 

320B/R 3.5-kHz subbottom profiler. The EM120 MBES is capable of generating as many as 191 

2° receive beams over a 150° swath. However, because of technical problems, the swath width 

was only 90° to 120°. The system was continuously operated in 'deep' mode with a 15-ms pulse 

length. Offsets were determined through a patch test and applied in real time to the Simrad 

software, as was the speed of sound in the water at the MBES transducer that was measured 

using a hull-mounted thermosalinograph. Position for the MBES was provided by a Furuno GP-90 
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and attitude from an iXSea PhlNS INS, fed by a Leica MX420 GPS. Sippican Deep Blue 

expendable bathythermographs were taken throughout the cruise, generally every 4 hours, to 

calculate sound speed. The sound speed was applied at the Simrad control station immediately 

after verification. The sub-bottom profiler was operated continuously throughout the survey and 

acoustic backscatter was collected in addition to bathymetry and processed using CCOM's 

GeoCoder software. Grids of bathymetry at 100-m to 200-m resolution were created during the 

survey and final products created after completion of the survey (Calder and Gardner, 2008). 

Full cruise reports are available at: 

http://www.ccom.unh.edu/index.php?p=51|56|58&page=unclos/atlantic.php. 

3.2. Data Processing 

The bathymetric data for the U.S. Atlantic continental margin were originally collected in 

unprojected latitude and longitude (geographical) coordinates and referenced to the WGS84 

ellipsoid. In order to increase the accuracy of distance measurements, the data were converted 

into the Universal Transverse Mercator (UTM) projection. The UTM projection divides the world 

into 60 zones from 84° north to 80° south. Each zone covers 6° of longitude and is subdivided 

along the equator into a northern and southern half. The projection in each zone is a variation of 

the Transverse Mercator projection, which is a conformal projection that preserves shape, but 

distorts size (McDonnell, 1991). However, having a unique variation of the projection in each 

zone helps minimize the distortion, which will be no more than 1 in 1000 (e.g., a distance of 1000 

m measured in a UTM zone will have an error no worse than ±1 m compared to the actual Earth 

distance at any location within a zone) (DiBiase, 2008). In this project, because measurement of 

distances constitutes a significant portion of the analyses, minimizing the associated errors was a 

necessity. 

The bathymetric data spans three UTM zones in the northern hemisphere, 18N, 19N, and 

20N (Fig. 3.1). Zone 18N covers longitude 72° to 78°, zone 19N covers 66° to 72° and zone 20N 

covers 60° to 66°. It is evident in three instances that certain canyon channels overlap two zones. 

This occurs with Nygren canyon channel in the far north (Fig. 3.2) and with Wilmington and 

Norfolk canyon channels in the central portion of the study area (Fig. 3.3). 

35 

http://www.ccom.unh.edu/index.php?p=51%7c56%7c58&page=unclos/atlantic.php


38°0'N-

34°0'N-

30°0'N-

76°0'W 
i 

74°0W 
I 

72°0'W 70°0'W 
I 

68°0'W 
1 

ee'ow 

wi 

UTM Zone 18N 

76°0'W 
1 

74'ff\N 

Atlantic Bathymetry 
Horizontal datum WGS84 ellipsoid 
Vertical datum instantaneous sea level 

^m Kjlometers 
400 

UTM Zone 19N 

72'0'W 
1 

70°0'W 
1 

es-o'w 

64°0'W 
I 

-38°0'N 

66°0'W 

UTM Zone 20N 
T 

-34°0'N 

•30°0'N 

64"0'W 

Figure 3.1. The entire extents of the Atlantic bathymetric data; the data spans three UTM zones, 18N, 19N and 
20N. Black lines indicate UTM boundaries and black boxes indicate regions where canyon channels overlap UTM 
zones; box 1 is in the far north and contains Nygren canyon channel and box 2 is the central portion that 
contains Wilmington and Norfolk canyon channels. 
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Figure 3.2. Nygren canyon channel in the far north region of the data spans zones 19N and 20N. This is an 
enlarged view of box 1 shown in Figure 3.1. Black line indicates UTM boundary. 

37 



39°0'N-

38°0'N-

37°0'N-

36°0'N-

35"0'N-

74°0'W 
__1 

73°0'W 
i 

72°0'W 

UTM Zone 18N 

Central Atlantic 
Bathymetry 

0 15 30 60 90 120 

74°0*W 
1 

73°0'W 

71°0'W 
• 

70°0'W 
l_ 

UTM Zone 19N 

-39°0'N 

-38°0'N 

-37°0'N 

Wilmington Canyon Channel 
Horizontal datum WGS84 ellipsoid 
Vertical datum instantaneous sea level 

72°0'W 
1 

7ro'w 

-36"0'N 

-35°0'N 

70°0'W 

Figure 3.3. Wilmington and Norfolk canyon channels in the central region of the data span zones 18N and 19N. 
This is an enlarged view of Box 2 in Figure 3 .1 . Black line indicates UTM boundary. 

To avoid unnecessary errors and distortions, the bathymetry of the Atlantic margin was 

divided into five regions for analysis purposes (Fig. 3.4). Two criteria were used to determine 

these areas: 1) UTM zone and 2) location of canyon channels. Three sections of the Atlantic 

margin were delineated based on UTM zone alone: the Far South, South, and North regions. The 

Far South and South regions are completely within UTM zone 18N. The Far South region 

remains its own entity due to a lack of canyon channels and will not be considered further in the 
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analysis. The South region contains Albermarle, Hatteras and Pamlico canyon channels. The 

North section is located entirely within UTM zone 19N and contains Hudson, Jones Valley, 

Veatch and Hydrographer canyon channels. 

The central and far north regions of the margin contain canyon channels that span more 

than one UTM zone. In these scenarios, the basic criterion for the determination of which zone 

the entire area would be projected into was how much of the canyon channel fell into which zone. 

Although portions of Wilmington and Norfolk canyon channels occur within UTM zones 18N and 

19N (Fig. 3.3), because the majority of the length of the channels occurs within zone 18N, the 

entire region that contains the extents of these canyon channels was projected into UTM zone 

18N. This region is a separate section of the margin called the Central region. In the far northern 

region of the margin, Nygren canyon channel overlaps UTM zones 19N and 20N (Fig. 3.2). 

However, because the majority of the length of Nygren canyon channel falls into UTM zone 19N, 

as do the lengths of the other canyon channels in the region (Munson, Powell, Lydonia and 

Oceanographer canyon channels), the entire region was projected into zone 19N. In addition, the 

extents of this Far North region were chosen to encompass all canyon channels that fall within 

the region of the New England Seamounts. These regions were further subdivided, although 

remaining within the projected UTM zone, to encompass single canyon channels for more 

detailed analyses. 
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Figure 3.4. Atlantic bathymetry with ETOPOI background; polygons encompass the five sections of the 
continental margin: Far North, North, Central, South and Far South. 

The multibeam data was processed with the University of New Brunswick - Ocean 

Mapping Group's SwathEd and the processed bathymetric data in latitude, longitude and depth 

(x,y,z) format was brought into Fledermaus Interactive Visualization System (IVS 3D) DMagic 

software module and gridded at 100-m resolution in the appropriate UTM zone. Digital terrain 

models were created from the processed multibeam ASCII grids using Fledermaus software. 

Shading and colormaps were applied to create sun-illuminated, color-shaded digital terrain 

models. Maps that are shown for the entire margin are generally in the Mercator projection. 

However, analyses were solely performed using the data that had been projected into an 

appropriate UTM zone. 
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3.3. Accuracy and Precision 

Accuracy is the extent to which a measurement agrees with the true value, whereas 

precision is the extent to which a given set of measurements agree with their mean. Precision is 

also a measure of the reproducibility of the measurements. When collecting bathymetric data, the 

'true depth' value is typically unknown. However, the MBES manufacturers often provide a 

measurement of the depth accuracies that can be achieved with a certain system. Precision, or 

reproducibility, can be determined through cross-check analyses. 

According to manufacturer specifications, the hull-mounted Kongsberg Simrad EM121A 

MBES system, operated in deep mode with a 15-ms pulse length, is capable of depth accuracies 

of 0.3% to 0.5% of the water depth (Gardner, 2004; Cartwright and Gardner, 2005). The product 

description of the Kongsberg Simrad EM120 system states that the total RMS accuracy is 0.2% 

of the water depth from the vertical to 45°, 0.3% of the water depth up to 60° and 0.5% of the 

water depth between 60° and 70° (Kongsberg Simrad EM 120 Product Description). For 

purposes of this study, a conservative accuracy for depth determination of 0.5% of water depth 

has been used. Anything below the accuracy for depth determination may not be considered a 

real feature. 

Precision, or reproducibility, of the multibeam data collected was determined by cross

check analyses. Shipboard cross-check analyses between survey lines and diplines (crosslines) 

were conducted for all three surveys. Cross-check analyses conducted during the 2004 and 2005 

surveys consistently produced results better than ±0.5% of the water depth (Gardner, 2004; 

Cartwright and Gardner, 2005). Although the behavior of the multibeam system used during the 

2008 survey was anomalous, cross-check analyses were performed to ensure data quality and 

reproducibility between the dip lines and regular survey lines. In almost all cases, the data were 

shown to be within ±0.5% of the water depth (Calder and Gardner, 2008). 

Repeat cross-check analyses were performed for this study using the IVS Fledermaus 

3D Crosscheck software tool prior to data conversion into specific UTM zones. A total of 15 

crosslines were analyzed (Table 3.1) that span the length of the U.S. Atlantic bathymetric data 

(Fig. 3.5). The 15 dip lines crossed over a total of 202 survey lines. A digital terrain model (DTM) 
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of each crossline was created in IVS Fledermaus 3D DMagic in geographic coordinates 

referenced to the WGS84 ellipsoid and gridded at 0.001° resolution. This DTM was imported into 

the IVS Crosscheck tool as the reference surface. The processed, but ungridded, XYZ files of the 

soundings from each survey line that intersects the crossline were also imported. The sounding 

data is called the source data. For each XYZ file of soundings that intersects the crossline, 

Crosscheck finds the reference surface value that corresponds to each sounding from the source 

data file. Crosscheck then calculates the difference between corresponding values of the 

reference surface depths and the sounding depths. 

Table 3.1.1 

JD 

248 

253 

253 

269 

286 

286 

287 

317 

329 

330 

128 

Crosslines used for IVS Crosscheck analyses. 

Data Folder 

040904 

040909 

040909 

040925 

041012 

041012 

041013 

041112 

0411124 

041125 

080507 

UNH file name (raw.all) 

Atlantic_line_16 

Atlantic_line_47* 

Atlantic_line_48b* 

Atlantic_line_88 

Atlantic_line_135 

Atlantic_line_136 

Atlantic _line_137* 

Atlantic_line_214 

Atlantic_line_252 

Atlantic_line_253 

Atlantic_line_390 

Atlantic_line_446* 

Atlantic_line_447 

Atlantic_line_499 

Atlantic_line_500 

*Used .gsf instead of .all files to make dtm. 
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Figure 3.5. Screen capture from IVS 3D DMagic showing the software user platform and the extent of the 
bathymetric data with the distribution of crosslines; these are overlain as the white lines. 

The Crosscheck tool provides output statistics: the mean depth of the reference surface, 

the mean depth of the intersecting sounding values, the mean difference between the reference 

surface and sounding values and the standard deviation of the differences between the reference 

surface and sounding values. The values of primary interest are the mean reference surface and 

the standard deviations of the differences. 

Ideally, if the multibeam system is working properly in identical situations and conditions 

the mean difference between sounding points of the crossline and the sounding points of the 

survey line should be zero. However, Crosscheck compares a surface and a sounding point to 

one another. The surface has been smoothed and gridded by a weighted moving average 

algorithm. Due to this difference, it cannot always be expected that the depth value of the 

reference surface and the depth value of the corresponding sounding point would be identical. It 

was found that the mean differences between the reference surface and sounding points were 

often not zero. However, although it cannot be expected that the mean differences between a 
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surface and a sounding point would be zero, if the mean differences between the sounding points 

and the reference surfaces were large enough and significantly different from zero, this could 

indicate a bias in the data. Biases could arise due to refraction, ship position or attitude calibration 

issues. 

For each mean difference between the sounding points of the survey line and the 

reference surface (crossline), one-sample t-tests were performed. The one-sample t-test 

evaluates whether data is from a normal distribution with a mean of zero and was used to 

determine whether the mean differences between the sounding points and the reference surface 

values are significantly different from zero. The test was constructed with a null hypothesis of H0 

= 0 and an alternative hypothesis of HA# 0. The t-statistic is computed from Equation 3.1, where 

X is the sample mean, // is the population mean, n is the population size and s is the standard 

deviation of X. 

. x-n 
Equation 3.1 t — g 

An example was computed manually (Equation 3.2) for Atlantic line 19 that is crossed 

over by Atlantic crossline 16. The mean of the differences between the reference surface and 

sounding points is X = 2 m, the assumed mean of the distribution is / /= 0, the sample size, which 

is the number of points used for comparison and calculation of the mean difference, is n = 19487 

and the sample standard deviation is s= 7.0497, with n-1 degrees of freedom (19486). 

2 - 0 
Equation 3.2 t — 70497 / — 3 9 . 6 

W19487 

For large degrees of freedom, the normal distribution can be substituted for the t-

distribution and for the normal distribution at a 5% significance level, z = 1.96 marks the upper 

2.5% of the distribution and z = -1.96 marks the lower 2.5% of the distribution (Pagano and 

Gauvreau, 2000). Therefore, for any calculated t value that falls between -1.96 and 1.96, the null 

hypothesis would fail to be rejected at the 5% significance level. However, because the value 

39.6 is much greater than 1.96, the null hypothesis that the mean of the differences is from a data 
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distribution with a mean of zero is rejected. This indicates that the difference mean is significantly 

different from zero. This could indicate a bias. In this example, the sounding points are an 

average of 2 m above the reference surface. Matlab was used to calculate the rest of the t-tests 

(See Appendix A). 

Although these differences may represent actual biases in the data, with such large 

datasets, the t-test is likely to pick out even very small biases, which may not be significant within 

the context of the data. In water depths between the 1675 and 5375 m isobaths, the difference 

means ranged from -6 to 10 m. In order to determine what percent of water depth the difference 

mean represents, the absolute value of the difference mean was divided by the absolute value of 

the reference surface mean and multiplied by 100. These range from 0.00% to 0.23%. However, 

the average was (0.05% ± 0.09%) at the 95% confidence level. Even the highest value of 0.23% 

is within the accuracy for depth determination of 0.5% of the water depth. Therefore, the bias is 

considered negligible and the original standard deviations are used as the amount of variance 

around the reference surface. 

An example of one analysis is as follows. For the reference surface of crossline Atlantic 

Iine135 (Fig. 3.6), the mean depth of the reference data is -2105 m and for the source survey line 

data soundings (from Atlantic line 155) that intersect the reference surface, the mean depth is -

2107 m. The standard deviation of the depth differences is 5 m, which represents the dispersion 

of soundings around the reference surface. With an approximate Gaussian distribution (Fig. 3.6), 

± 2 standard deviations encompasses 95.4% of the area under the curve (Pagano and Gauvreau, 

2000). This indicates that 95.4% of the data is within ± 10 m of the reference surface. To find the 

percent of the mean water depth that aforementioned value (10 m) represents, the absolute value 

of the two standard deviation value was divided by the reference surface mean and multiplied by 

100. The percent of water depth (2105 m) that 10 m represents is -0.5%. Therefore, 95.4% of the 

data are within ±0.5% of the reference mean water depth. 
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Figure 3 6 Example IVS Crosscheck analysis; the reference surface is Atlantic_hne_135 and the intersecting data 
is from Atlantic_lme_155 The histogram provides the frequency of occurrence of the difference values It is 
approximately Gaussian, therefore, 95 4% of the data will fall within 2a (two standard deviations) of the reference 
surface 

Table 3 2 shows the average 2a values (in m) and the percent of water depth that this 

value represents for 500 m depth intervals These are an indication of the reproducibility between 

the dip lines (crosslines) and regular survey lines The average value that includes all the 

crosslines is 0 42% Appendix B shows all the crosslines and lines that intersect each crossline, 

along with the data mean, reference mean, standard deviation (a), two standard deviations (2a) 

and the percent water depth that 2a represents This is further subdivided into 500 m depth 

increments in Appendix C 
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Table 3.2. Average 2a values (m) and the percent of water depth that this value represents for 500 m depth 
intervals with the number points of comparison that were used in the Crosscheck calculations. 

Depth Interval 

1500-2000 
2000-2500 
2500-3000 
3000-3500 
3500-4000 
4000-4500 
4500-5000 
5000-5500 

Average 2o (m) 

16 
12 
11 
13 
15 
17 
19 
17 

Average Percent Water 
Depth 2a represents (%) 

0.9 
0.5 
0.4 
0.4 
0.4 
0.4 
0.4 
0.3 

Number of lines 

3 
28 
42 
41 
31 
32 
15 
10 

Number of 
comparison points* 

58102 
477692 
772202 
726867 
548897 
654194 
308502 
218216 

'Between the reference surface and sounding points 

3.4. Synthetic Channel Comparison 

The data were gridded at 100 m resolution and projected into a pre-determined UTM 

zone. The gridding algorithm used a weighted moving average with a weight of 3. Therefore, the 

morphologic parameters of the canyon channels are not calculated from the raw data, but from 

gridded data that has been averaged and smoothed due to the gridding algorithm used. To 

visually evaluate the degree to which the channel shape may be modified by gridding, a synthetic 

channel was created in Matlab with known widths and depths. Arbitrary eastings and northings in 

UTM zone 19N were chosen for the channel, although coordinates were in the vicinity of Hudson 

and Wilmington Canyons. Easting values ranged from 100000 to 6000000 m with an interval 

spacing of 50 m for a total of 10000 data points along the channel cross section. Northing values 

ranged from 4300000 to 4320000 m with an interval spacing of 33 m, for a total of 607 

replications of the channel. This spacing ensured more than 3 points within any given 100-m cell 

when imported into DMagic. 

Three synthetic channels were created in Matlab with identical relief values of 200 m. 

This is the vertical distance between the floor of the channel and the channel rim. However, the 

channels were created with varying top widths of 5000, 500, and 200 m. The bottom width of the 

channel is necessarily (due the spacing of eastings) 100 m shorter than the top width (Table 3.3). 

The (x, y, z) data points of the synthetic channels were brought into DMagic and gridded at 100-

m resolution using a weighted moving average with weights of 3, 5, and 7, for a total of 3 

separate grids for each of the 3 synthetic channels. DTM's were created and brought into 

Fledermaus (IVS3D) software and the channel rims and deepest part of the channel were 
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digitized. These points were exported and the relief and top width were calculated from the points 

using a Matlab script. The calculated values were then compared to the known values. 

Respective cross profiles for each channel at each averaging weight are shown in Figures 3.7 to 

3.9. 

It is evident that at all gridding weights, the measured top width is greater than the 

original width as constructed in Matlab (Table 3.4). The measured top width also increases with 

increased averaging weight and increases with decreased channel widths. The relief of the widest 

channel (5000 m) is unchanged, and the relief of the 500-m wide channel when gridded with a 

weight of 3, is also unchanged (Table 3.5). However, the relief of the 500-m wide channel 

decreases with increased averaging weight. The narrowest channel (200 m wide) shows the most 

change when gridded, which increases with increased averaging weight. The top width increased 

by 150% to 400% (Table 3.4) and the relief decreased by 30% to 60% (Table 3.5). 

All of the raw data of the Atlantic continental margin was gridded at 100-m resolution with 

a weighted moving average of weight 3. Due to the gridding algorithm used, if the channels along 

the margin are narrow and/or near the resolution of the data, the top widths are likely stretched, 

and the bottoms may be shallower than that of the actual data. 

Table 3.3. Sample channel top and bottom coordinates and corresponding top and bottom width. 

Channel 1 

Channel To P 

Channel Bottom 

easting 

350000 

355000 

350050 

354950 

northing 

4300000 

4300000 

4300000 

4300000 

Depth 

-2000 

-2000 

-2200 

-2200 

Width 

5000 

4900 

Channel 2 

Channel To 3 

Channel Bottom 

easting 

350000 

350500 

350050 

350450 

northing 

4300000 

4300000 

4300000 

4300000 

Depth 

-2000 

-2000 

-2200 

-2200 

500 

400 

Channel 3 

Channel To 3 

Channel Bottom 

easting 

350000 

350200 

350050 

350150 

northing 

4300000 

4300000 

4300000 

4300000 

Depth 

-2000 

-2000 

-2200 

-2200 

200 

100 
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Figure 3.7. Cross profiles of the 5000-m wide synthetic channel. A respective profile is shown from each of the 
different DTM's created with different gridding weights. Profile of channel as constructed in Matlab is shown for 
comparison. Cross profiles have vertical exaggeration of 10. 
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Figure 3.8. Cross profiles of the synthetic 500-m wide channel. Profiles are shown from each of the different 
DTM's that were created with different gridding weights. Profile of channel as constructed in Matlab is shown for 
comparison. Cross profiles have vertical exaggeration of 10. 
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Figure 3.9. Cross profiles of 200-m wide synthetic channel. Profiles are shown from each of the different DTM's 
that were created with different gridding weights. Profile of channel as constructed in Matlab is shown for 
comparison. Cross profiles have vertical exaggeration of 10. 
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Table 3.4. Synthetic channels with known and calculated top widths, the differences, and percent errors. 

Channel 

'200mwide 200mdeep weight3' 

'200mwide 200mdeep weight5' 

'200mwide 200mdeep weight7' 

'500mwide 200mdeep weight3' 

'500mwide 200mdeep weight5' 

'500mwide 200mdeep weight7' 

'5000mwide 200mdeep weight3' 

'5000mwide 200mdeep weight5' 

'5000mwide 200mdeep weight7' 

Top Width 

510.20 

723.98 

944.35 

880.07 

1065.58 

1217.37 

5387.58 

5557.97 

5815.62 

Known Width 

200.00 

200.00 

200.00 

500.00 

500.00 

500.00 

5000.00 

5000.00 

5000.00 

Width Difference 

310.20 

523.98 

744.35 

380.07 

565.58 

717.37 

387.58 

557.97 

815.62 

Percent Error 

155.10 

261.99 

372.18 

76.01 

113.12 

143.47 

7.75 

11.16 

16.31 

Table 3.5. Synthetic channels with known and calculated reliefs, the differences, and percent errors. 

Channel 

'200mwide 200mdeep weight3' 

'200mwide 200mdeep weight5' 

'200mwide 200mdeep weight7' 

'500mwide 200mdeep weight3' 

'500mwide 200mdeep weight5' 

'500mwide 200mdeep weight7' 

'5000mwide 200mdeep weight3' 

'5000mwide 200mdeep weight5' 

'5000mwide 200mdeep weight7' 

East Relief 

134.89 

97.49 

73.86 

200.00 

192.39 

175.17 

200.00 

200.00 

200.00 

West Relief 

134.89 

97.49 

73.86 

200.00 

192.39 

175.17 

200.00 

200.00 

200.00 

Known Relief 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

200.00 

Relief 
Difference 

-65.11 

-102.51 

-126.14 

0.00 

-7.61 

-24.83 

0.00 

0.00 

0.00 

Percent Error 

32.56 

51.26 

63.07 

0.00 

3.81 

12.42 

0.00 

0.00 

0.00 

3.5. Canyon-Channel Classification 

Submarine canyons and canyon channels have long been associated with and compared 

to subaerial, fluvial systems. Morphologic similarities between submarine canyons and canyon 

channels and riverine systems have been drawn with respect to drainage patterns (Twichell and 

Roberts, 1982; McGregor et al., 1982), meander patterns (McGregor et al., 1982; Damuth et al., 

1988) and sinuosity and meander cutoff loops (Damuth et al., 1988). Longitudinal profiles that plot 

the length of a river (channel) over the distance over which it flows (Knighton, 1998) have also 

been used to describe submarine channels and have been shown to adjust to a base level, 

similar to that of fluvial systems (Pirmez et al., 2000). Entrenchment, a form of adjustment, was 



studied by O'Connell et al. (1991) for an avulsion event on the Rhone Fan, and they concluded 

that many of the same factors that affect entrenchment in fluvial systems, such as a steeper slope 

and the constriction of flow, may also be applied to submarine systems. In addition, quantitative 

analyses of submarine channels have used similar parameters as those used to analyze fluvial 

systems (Flood and Damuth, 1987; Clark et al., 1992). 

Due to the tendency to compare submarine systems to fluvial systems and the history of 

using similar parameters to analyze such systems, it seems appropriate as a first order approach 

to use riverine classification schemes as guidelines for developing submarine classifications. 

Rosgen (1994) described rivers according to 3 levels: a broad geomorphic classification (Level I), 

a morphological description (Level II) and a more detailed verification level (Level III). Level I 

described fluvial features on a broad scale with the use of remote sensing information and 

general regional and background information such as landforms, lithology, depositional history, 

basin relief, valley morphology, river profiles and river patterns. Particular emphasis at this level 

was concentrated on longitudinal, cross-sectional and plan-view profiles. Level II focused on the 

morphological description where specific stream types are delineated that exhibit similar 

parameters such as the degree of entrenchment, width-depth ratios, sinuosity, lithologic material 

and slope. Level III described the existing conditions of a fluvial system with details such as 

vegetation, flow regime and habitat. Because existing conditions within submarine canyons, such 

as flow regime, cannot be easily measured, the description of the Atlantic continental margin 

canyon channels will broadly follow the more generalized geomorphic approach using Rosgen's 

(1994) Levels I and II. 

It is clear from the submarine canyon-channel cross-sectional profiles that several 

different types of channel morphologies exist and need to be treated separately at the channel 

and/or segment level. The Washington State Department of Natural Resources (2004) identified 

sections of streams and rivers based on several parameters such as confinement, gradient and 

channel pattern. Confinement of streams ranges from unconfined (a wide floodplain) to confined 

(a canyon). Unconfined segments can contain a simple floodplain, simple terraces, or be more 

complex with multiple terraces (Washington State Department of Natural Resources, 2004). 
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Based on canyon-channel cross-sectional geometry, the degree of confinement seems to be the 

foremost differentiating parameter. For simplicity, canyon channels and/or canyon channel 

segments are categorized into two groups with distinct morphologic characteristics, called Type I 

and Type II. Type I canyon channels are either U-shaped (Fig. 3.10a) or V-shaped (Fig. 3.10b) 

and have distinct channel morphology bounded by well-defined channel walls. These channels 

may or may not have an incised thalweg (Fig. 3.10c). Type II canyon channels consist of a main 

channel bordered by terrace-like features within confining bathymetry (Fig. 3.11). It should be 

noted that canyon channels were not necessarily categorized as distinctly one type, and the 

morphology of several channels varied in type down their length. 

Figure 3.10. Channel morphologies classified as Type I. Black arrow points to channel axis and purple arrow 
points to incised thalweg. Profiles have a vertical exaggeration of 10. 
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Figure 3.11. Channel morphologies classified as Type II. Black bracket encompasses confining bathymetry, red 
double-headed arrows indicate terrace-like features and purple arrow points to the main incised channel. Profiles 
have a vertical exaggeration of 6. 

3.6. Parameter Measurements 

Recently, attention has been given to the quantification of morphometric parameters of 

submarine canyons and canyon channels around the world using a variety of data that consists of 

multibeam bathymetry, sidescan-sonar imagery, and subbottom-seismic data. These studies 

have aimed to describe canyon channels quantitatively for a variety of purposes that include 

detailed morphologic analysis (Babonneau et al., 2002; Noda et al., 2008), insight into the 

hydraulic processes that operate in fan-channels (Flood and Damuth, 1987), examination of 

avulsions and incised thalwegs (O'Connell et al., 1992), evaluation of structural controls on 

channel morphology (Clark and Cartwight, 2009; Wood and Mize-Spansky, 2009), assessment of 

equilibrium in submarine channels (Pirmez et al., 2000) and insight into the initiation and 

evolution of submarine channels (Gee et al., 2007). Parameters that were quantified in various 

studies includes channel thalweg depth (Babonneau et al., 2002), sinuosity (Ferry et al., 2005; 

Heinio and Davies, 2007; Gee et al., 2007; Noda et al., 2008; Clark and Cartwight, 2009), 

gradient (Gee et al., 2007; Noda et al., 2008), channel width (Clark et al., 1992; Babonneau et al., 

2002; Heinio and Davies, 2007), thalweg width (Babonneau et al., 2002), channel relief 

(Babonneau et al., 2002; Noda et al., 2008), channel wall slopes (Heinio and Davies, 2007), as 

well as the identification of knickpoints (Heinio and Davies, 2007) and certain parameters 
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regarding meanders such as meander-arc height, meander-belt width, and meander wavelength 

(Wood and Mize-Spansky, 2009). These parameters were used as guidelines for channel 

parameters identified and measured in this study. 

The thalwegs (channels floor) of the 15 canyon channels were digitized using the 

Fledermaus Interactive Visualization System (IVS 3D) Route Planner program, a tool for 

visualizing and analyzing bathymetric data. It is also a tool for interactively creating, editing and 

profiling along routes that are digitized on bathymetric data. Using a combination of the 

Fledermaus IVS 3D Route Planner and the IVS 3D visualization program, cross profiles were 

constructed at 5000 m intervals down the length of each channel, perpendicular to the channel 

axis. Points were digitized on each cross profile to delineate the parameter of interest (various 

forms of relief, top widths and floor widths that are described in the following sections). The points 

were exported in (x, y, z) format, which are the values of easting, northing and depth, 

respectively, and subsequently imported into Matlab for calculation of the parameters. 

3.6.1. Type I Parameters 

For each Type I channel or segment of channel, as many as 5 individual points were 

digitized on each cross profile. Two points indicate the channel rims, one point defines the 

deepest part of the channel, and two additional points delineate the base of the channel walls, if 

applicable. The channel wall relief is the vertical distance from the channel floor to the channel 

rim and was calculated for both sides of the channel (Fig. 3.12). The top width is the horizontal 

distance between the channel rims (Fig.3.13). The channel rims from which the relief and width 

parameters were calculated were determined on the basis of three criteria: 

A. If a sharp break in slope exists from the channel rim to the adjacent seafloor, the 

break in slope is chosen to define the top of the channel (Fig. 3.14a). The break, 

although generally the first and sharpest break in slope, was ultimately chosen so 

that the point did not fall on the inside of the channel walls, but at the top of the 

channel wall. This was best determined by the examination of the bathymetry in IVS 

3D visualization software in conjunction with the cross profiles. 
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B If the channel rim is peaked or crested, the top of the peak/crest is used for defining 

the rim of the channel (Fig. 3.14b). 

C. If no peak and no sharp break in slope exists, then the point where the channel wall 

slope becomes level with the adjacent seafloor is used as the top of the channel (Fig. 

3 14c) 
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Figure 3.12. Channel cross profiles with arrows indicating the channel wall relief for Type I channels. 
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Figure 3.13. Channel cross profiles with arrows indicating top widths of Type I channels. 
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Figure 3.14. Channel cross profiles indicating the criteria used to delineate the top of the channel. 
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If the channel is flat-floored and U-shaped, then the bottom width was measured. The 

points from which the bottom widths were calculated were generally consistent with the sharpest 

break in slope where the channel wall intersects the channel floor (Fig. 3.15a). However, in some 

cases, the bottom is complicated by an incised thalweg with adjacent horizontal surfaces (i.e., 

terrace-like features). These surfaces were included in the floor width so that the incision of the 

thalweg, if it exists, was preserved (Fig. 3.15b). Where the thalweg abuts one of the channel 

walls, and no clear terrace feature exists, the height of the incised thalweg was projected onto the 

abutting channel wall for calculation of the floor width (Fig. 3.15c). Slumps are generally not 

included because they protrude into/onto what was considered the channel floor before the slump 

occurred. For V-shaped channels and channel cross-sections, the width of the channel floor is 

either at or below the 100-m resolution of the data. A floor width of 100 m was chosen to 

represent the floor width in these instances. 

Figure 3.15. Cross profiles showing arrows that delineate the bottom widths of Type I canyon channels. 
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3.6.2. Type II Parameters 

Significantly more parameters were measured for the Type II canyon channels because 

these channels and segments of channels display more complicated morphologic 

characteristics. As many as 7 points were digitized for each profile (Fig 3.16 and 3.17). Two 

points delineate the top of the confining bathymetry, and one point defines the deepest part of 

the main incised channel. Two points define the rims of the main channel and two additional 

points delineate the base of the abutting valley walls where the walls of the confining bathymetry 

intersect the terrace-like features. These points are shown in Figure 3.17 in the order that they 

were digitized and location names are given in Table 3.6. Note that some of these points may 

not exist for all cross profiles that display Type II morphology. 

£ 

a* 
Q 

R 
-MOO 

-2S00 

-MOO 

2OT 

-2109 

-2900 

3O0Q 

0 

Oceanographer Canyon Channel 
Profile IB 

• i i t i 
i i i i t 
• i i i i 

2000 -MOO 6000 8000 10000 12000 11000 

Distance (m) 

• 
i 

16000 16000 

H 

20000 

Figure 3.16. Dashed lines indicating the points that were digitized for Type II channels. Black dashed lines 
indicate the top of the confining valley walls, the yellow dashed line defines the deepest part of the main incised 
channel, the blue dashed lines indicate the rims of the main channel and the red dashed lines delineate the base 
of the abutting valley walls where the walls of the confining bathymetry intersect the terrace-like features. Profile 
has a vertical exaggeration of 6x. 
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Figure 3.17. Points that were digitized for Type II channels. (T) indicates points saved in a 'Top' data file and (B) 
indicate points saved in a separate 'Bottom' data file. 

Table 3.6. Top and Bottom point locations that correspond to locations in Figure 3.17. 
Location Number 
T1 
T2 
T3 
B1 
B2 
B3 
B4 

Location 
Top of Confining Bathymetry 
Deepest part of Main Channel 
Top of Confining Bathymetry 
Base of Abutting Wall 
Channel top 
Channel top 
Base of Abutting Wall 
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A maximum of 7 widths were calculated for Type II channels (Fig. 3.18, Table 3.7). The 

width between the tops of the confining bathymetry was calculated, as well as the widths of the 

terrace-like features adjacent to the main incised channel. These were calculated from points that 

represent the top of the main channel and the points that represent the base of the abutting valley 

walls. The total floor width that includes the terrace-like features and main channel was also 

calculated, as were the widths of the abutting valley walls and the width of the top of the main 

incised channel. The floor widths of the main incised channels were consistently below the 100 m 

resolution of the data and were not considered further. 

Figure 3.18. The various width parameters measured for Type II channels. The red double-headed arrow indicates 
the width between the tops of the confining bathymetry, the blue double-headed arrow indicates the widths of the 
terrace-like features, the green double-headed arrow indicates the total floor width, the black double-headed 
arrows indicate the width of the valley walls and the yellow double-headed arrow indicates the width of the main 
incised channel. 

Table 3.7. Width parameters determined for Type II channel morphologies. 
Relief 
Parameter 
Width 1 
Width2 
Width 3 
Width 4 
Width5 
Width 6 
Width 7 

Color in 
Figure 3.18 
Blue 
Yellow 
Blue 
Green 
Black 
Black 
Red 

Definition 

Width of level surface (terrace-like feature) 
Width of incised channel 
Width of level surface (terrace-like feature) 
Total width from between bases of abutting wall 
Width between the top and base of abutting wall 
Width between the top and base abutting wall 
Total width between the tops of the confining 
bathymetry. 

Mathematical Definition 
from Figure 3.17 
Length between B l and B2 
Length between B2 and B3 
Length between B3 and B4 
Length between B l and B4 
Length between T l and B l . 
Length between T3 and B4. 
Length Between T l and T3 

A maximum of 6 reliefs were calculated for Type II channels (Fig. 3.19, Table 3.8). These 

include the overall vertical distance between the top of the confining bathymetry and the deepest 

part of the main channel and the vertical distance between the base and top of the abutting valley 

walls. The channel wall relief of the main channel was also calculated for both sides of the 

channel as the vertical distance from the deepest part of the channel to each channel rim in order 

to determine if the relief of the main channel is greater than the inherent depth uncertainty in the 

data. 
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Figure 3.19. The various relief parameters measured for Type II channels. The red double-headed arrows indicate 
the overall relief from the top of the confining bathymetry to the deepest part of the main channel, the blue 
double-headed arrows indicate the relief of the abutting valley walls and the yellow double headed arrows 
indicate the relief of the main channel. 

Table 3.8. Relief parameters determined for Type II canyon channels. 
Relief 
Parameter 

Reliefl 

Relief2 

Relief3 

Relief4 

Relief 5 

Relief 6 

Color in Figure 
3.19 
Blue 

Blue 

Yellow 

Yellow 

Red 

Red 

Definition 

Vertical distance from the base of abutting wall to 
the top of confining bathymetry 
Vertical distance from the base of abutting wall to 
the of confining bathymetry 
The vertical distance from the base of the channel 
to the top of the channel 
The vertical distance from the base of the channel 
to the top of the channel 
The vertical distance from the base of the channel 
to the top of the confining bathymetry 
Vertical distance from the base of the channel to 
the top of the confining bathymetry 

Mathematical Definition 
from Figure 3.17 

Bl(depth)-Tl(depth) 

B4(depth)-T3(depth) 

T2(depth)-B3(depth) 

T2(depth)-B2(depth) 

T2(depth)-Tl(depth) 

T2(depth)-T3(depth) 

3.7. Analysis 

3.7.1. Parameter Analysis - Individual Canyon Channels 

The 3D distance between the deepest points digitized on each cross-profile were 

calculated and summed to provide the distance down the length of each channel. Longitudinal 

profiles were constructed by plotting the deepest point of each cross-section against the distance 

down-channel. Relief and width values were plotted against channel floor water depth in order to 

determine how the parameter changed down the length of each canyon channel. Matlab scripts 

were used for both the calculation of the parameters and plotting. 

3.7.2. Parameter Analysis - Comparison between Canyon Channels 

An additional cross profile was constructed at the 2550 m isobath for each canyon 

channel so that the parameters of different canyon channels could be compared to one another 

with a common start point. This isobath was used because it is the shallowest whole-number 
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isobath that could be delineated for Norfolk canyon channel, although many of the canyon 

channels start in shallower depths. New longitudinal profiles and relief and width plots were 

created. For this portion of analysis, mainly Type I channels were compared to one another due 

to the consistency of parameters down the length of the channels. Each parameter from each 

canyon channel was plotted together against distance down-channel and channel floor water 

depth in order to determine if patterns exist between canyon channels down their length or 

between a common channel floor water depth interval. Parameters of several Type II channel 

segments were also compared to one another, but due to inconsistency of parameters down-

channel, the parameters could not be tied to a common start depth and were only plotted against 

channel floor water depth. 

3.7.3. Canyon-Channel Sinuosity and Slope 

The lengths of the canyon channels were digitized using Fledermaus Interactive 

Visualization System (IVS 3D) Route Planner. A schematic of the organization of the points in a 

route is shown in Figure 3.20. PB is the start node (the first point of a route) and PT is the first 

node that intersects a user-specified circle. The circle is created by a user-specified bend radius, 

if curvature rather than straight lines are required for the route. PI is the intersection point and 

represents the point where if there was no bend (or where if the circle radius is equal to zero) the 

two straight lines would intersect. CC is the circle center, which is the center point of the circle 

created by the bend radius. PC (not shown) would be the second tangent point on the circle and 

PE (not shown) is the end node (the end point of the route). When the canyon channels were 

digitized, the radius of the circle was kept as small as the software would allow (generally 1) in 

order to keep the lines between successive points as straight as possible and bends to a 

minimum. All of the values (PB, PT, PI, CC, PC and PE) are exported in the route file, however, 

the start node, end node and intersection points are the only points necessary for the 

representation of the digitized channel. These easting and northing coordinate points were 

extracted with a Matlab script. 
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Figure 3.20. Schematic of RoutePlanner point organization in a route, courtesy of IVS Fledermaus training 
module. 

From the files of the easting and northing (x, y) coordinate points that were extracted 

from the RoutePlanner file, polyline files were created in an ESRI ArcMap readable format. The 

CreateFeaturesFromTextFile command in the Samples toolbox was then used to import the line 

files into ArcMap as line shapefiles of the channels. A raster grid of the bathymetry was also 

imported into ArcMap and contours created on the bathymetry at 250 m depth intervals. Contours 

were used so that the sinuosity and slope of channel segments could be compared to each other 

within specific intervals. Each channel was divided into segments at the intersection of each 

contour and the planimetric length of each segment was calculated in the attribute table using the 

Calculate Geometry option. The SurfaceLength tool in the 3D analyst toolbox was used to 

calculate the surface length of each segment based on the bathymetric raster data. This tool 

samples the lines for height using bilinear interpolation along a sample distance; the default was 

used and was set equal to the raster cell size (100 m). The start and end coordinate points of 

each line were extracted in the attribute table using the Calculate Geometry option and the 

planimetric distance between the start and end points calculated using the distance formula. This 
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is the straight line distance between each contour. From these length and depth measurements, 

sinuosity and slope were calculated. 

Sinuosity (Equation 3.3) is a measure of how much the channel plan form deviates from a 

straight line from a start point to an end point. The planimetric length of channel segments divided 

by the straight length between successive contours provides a measure of the sinuosity of the 

channel segments. The sinuosity was also calculated for the entire channel utilizing the same 

method. 

. . channel length 
Equation 3.3 sinuosity = —-—-—s— 

valley length 

Slope is a measure of the steepness of a channel or section of channel and a higher 

value indicates a steeper incline. The arctangent of the depth difference divided by the length of 

channel segments between successive contours provides a measure of the slope of the 

segments of channel (Equations 3.4 - 3.6). 

depth difference . _ Equation 3.4 m = -7 = tan0 
length between contours 

Equation 3. 5 tan - 1 m = 0 

-1 Idepth difference\ n Equation 3.6 tan 1 ( t tfc J = # 

However, some difficulty arose in the digitization process in the Fledermaus Interactive 

Visualization System (IVS 3D) Route Planner tool, due to the plan-view of the data in the software 

program. Even if the digitized channel route followed the shape of the channel, the line would not 

always lie exactly on the floor of the channel. If the channel route does not lie exactly on the floor 

of the channel, this could affect the calculated surface length of the channel that is based on the 

bathymetric data. The slope was calculated between 250 m contours using the planimetric length 

of the channel, which takes into account the shape of the channel, but not any surface 

irregularities. The slope was also calculated between 250 m contours using the surface length of 

the channel segment, which takes into account both the shape of the channel and surface 

irregularities. The slope was calculated using the two different length values to assess if there 
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was a difference between the slope calculated from the planimetric lengths and surface lengths. 

In addition to calculating the slope within successive contour intervals, the slope of the entire 

channel was calculated using the planimetric length between the start and end points of the 

channel and the surface length of the entire channel. 

There are 5 instances in which there is a difference between the slope calculated from 

the planimetric length and the slope from the surface length. This difference was calculated as 

the surface length slope minus the planimetric slope and therefore a negative value indicates that 

the slope calculated with the planimetric length is greater than the slope calculated from the 

surface length (Table 3.9). There 6 instances in which there is a negative difference between the 

planimetric lengths and the surface lengths (Table 3.9). This indicates that the planimetric length 

is longer than the surface length. However, the surface length should always be greater than the 

planimetric length because surface irregularities are taken into account, and in all but one case a 

longer planimetric length occurs within segments where the channel intersects gaps in the 

bathymetric data. This would likely account for the discrepancy. The one occurrence where a 

channel does not intersect gaps is the difference between the 3000 and 3250 m isobaths for 

Oceanographer canyon channel. However, the lowermost portion of this segment of channel is 

very close to gaps in the data and perhaps the sampling algorithm of the surface length took 

these into account. 

Discrepancies in the slopes in 3 instances correspond to negative discrepancies in the 

surface length/planimetric length differences (Table 3.9). These mainly occur for short lengths of 

channel and it seems that the discrepancy between the surface length and planimetric length is 

enough to affect the slope calculation at shorter lengths of channel. In contrast, there are 4 

instances in which differences in the surface length and planimetric length do not correspond to 

any discrepancy in the slope calculated for the same interval (Table 3.9). These are likely long 

enough segments of channel so that small differences in lengths do not affect the overall slope of 

the segment. 
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Table 3.9. Differences between the slopes calculated from the planimetric length and from the surface length. A 
negative difference indicates that the slope calculated from the planimetric length is greater than that calculated 
from the surface length. A negative difference between the planimetric lengths and the surface lengths indicates 
that the planimetric ler 

Canyon channel 

Oceanographer 

Oceanographer 

Veatch 

Norfolk 

Albermarle 

Hatteras 

Hatteras 

Pamlico 

Pamlico 

igths are longer tr 

Contour 
Interval (m) 

3000 - 3250 

3250 - 3500 

4250 - 4500 

4250 - 4500 

3250 - 3500 

1750-2000 

2000 - 2250 

2000 - 2250 

2250 - 2500 

ian the surface 
Difference 

in slope 
(degrees) 

0.0 

0.4 

0.0 

0.0 

0.0 

-1.5 

0.7 

-0.7 

-0.1 

lengths. Location of channe 
Difference between 
the planimetric and 
surface length (m) 

-189 

-3403 

-679 

-392 

-234 

59 

-315 

37 

22 

s shown in Figure 1.1. 

Corresponds to gaps 
in data 

gaps are in the 
vicinity 

Yes 

No 

Yes 

Yes 

No 

Yes 

No 

No 

Overall, it appears that for the majority of segments of channels between 250 m contour 

intervals there are no differences in the slopes that are calculated from the planimetric and 

surface lengths. To be consistent, the slope calculated from the surface length will generally be 

used. However, when a discrepancy in slope corresponds with a negative discrepancy in the 

lengths (i.e., the planimetric length is greater) then the slope from the planimetric length will be 

used. Because of gaps in the data in the majority of these instances, the planimetric length is 

likely more representative of the true length. (See Results Section 5.7 and Appendix E for full 

slope values). 

3.7.4. Regional Slope 

A map of the slope of the Atlantic continental margin was generated in ArcMap. For each 

cell, the slope algorithm calculates the maximum rate of change in all directions between the cell 

and the 8 surrounding cells. The slope was calculated using a grid cell size of 100 m and a grid 

cell size of 1000 m. The 1000-m cell size provides a smoothed version of the slope values 

because it calculates the slope over a wider area. This averaging provides a broader perspective 

of the regional slope. In addition, several profiles were constructed perpendicular to the contours 

of the margin using IVS Fledermaus 3D visualization software to obtain specific slope values in 

particular regions of the margin. 
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3.8. Canyon-Channel Descriptions 

The canyon-channel systems are initially described individually in the following section 

(Chapter 4). Each canyon channel is subdivided into segments based on similar cross-sectional 

and plan-shape morphology for qualitative description purposes. Locations of segments and 

features within a canyon-channel system are described with respect to the isobaths of the 

channel floor axis. The channels are then described qualitatively through the measurement of 

certain morphologic parameters that were detailed in sections 3.6 and 3.7. 
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CHAPTER 4 

CANYON-CHANNEL DESCRIPTIONS AND SUMMARIES OF 
CANYON-CHANNEL CROSS PROFILES 

4.1. Far North Canyon Channels 

Five canyon channels are located in the Far North region on the continental margin off of 

Georges Bank (Fig. 3.4). From north to south they are Nygren, Munson, Powell, Lydonia and 

Oceanographer canyon channels (Fig. 1.1). The channels evolve from canyons that have incised 

into the upper continental margin; several indent the shelf edge. This portion of the margin has 

been characterized by O'Leary (1996) as having deep, narrow canyons that begin near the 300 m 

isobath. 

Primary riverine locations and dispersal patterns delineated by Poag (1992) have shown 

that ancient river systems in eastern Massachusetts contributed to the formation of the 

southeastern New England continental margin. However, although the maps constructed by Poag 

(1992) did not extend northward to Georges Bank, eastern Massachusetts river systems do not 

appear to have influenced the margin off of Georges Bank. Shor and McClennen (1988) have 

also stated that the canyons off of Georges Bank and New England are not related to existing 

riverine systems. Maps compiled by Uchupi and Bolmer (2008) showed fluvial drainage in the 

Pliocene through the Great South and Northeast channels that are located on either side of 

Georges Bank, but the drainage of Georges Bank is unknown. Pratt (1967) has suggested that 

the formation of most of the Georges Bank canyons may be related to glacial outwash from the 

Pleistocene deglaciations. In contrast, according to O'Leary and Dobson (1992), the canyons 

along the New England margin formed from dewatering during sea-level lowstands and have 

been inactive since the end of the Pleistocene. However, the evolution of Oceanographer 

Canyon, for instance, has been interpreted to be the result of several periods of incision, possibly 

initiated as early as the Cretaceous (Ryan et al., 1978). 
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4.1.1. Nygren Canyon Channel 

4.1.1.1. Channel Description and Cross-Sectional Geometry. Nygren canyon channel is 

the northernmost canyon channel in the study area and located on the continental margin off of 

Georges Bank (Fig. 4.1). Nygren canyon channel evolves from Nygren Canyon. Most canyons in 

the region begin near the 300 m isobath (O'Leary, 1996). This is consistent with the Coastal 

Relief Model (http://www.nqdc.noaa.qov/mqq/coastal/crm.html). although the NOAA chart 13003 

(http://www.charts.noaa.gov/OnLineViewer/13003.shtml) shows an indentation of head of Nygren 

Canyon near the 500 m isobath. 

The Nygren canyon-channel system begins near the 2360 m isobath and traverses for 

nearly 100 km to its terminus near the 4120 m isobath. A total of 21 cross profiles were 

constructed at 5000 m intervals down the length of Nygren canyon channel (Fig. 4.2). The canyon 

channel is generally straight and the shallowest segment surveyed, between the 2360 and 3165 

m isobaths, is well-constrained by confining channel walls and broadly U-shaped in cross profile. 

A confluence with a smaller and shallower channel from the northeast occurs between profiles 5 

and 6, near the 3000 m isobath. The channel then grades into a segment that is bounded by a 

feature that appears to be a large slump scar on the southwestern side of the channel between 

the 3250 and 3550 m isobaths. In the same general area, between the 3460 and 3550 m 

isobaths, the northeastern channel rim becomes more rounded and lacks a clear break in slope 

from the channel rim to the adjacent seafloor. This trend continues down-channel to the 3860 m 

isobath and the northeastern channel wall slopes upward more gently to a bathymetric high, 

although the southwestern channel wall and rim is relatively well-defined. The channel becomes 

more distinct near the 3900 m isobath, albeit with low channel wall relief. The channel then 

widens and becomes more irregular before becoming indistinguishable from the adjacent seafloor 

near the 4100 m isobath. Nygren canyon channel was subdivided into 4 subsections for further 

description based on cross-sectional geometry and channel morphology. 
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Figure 4.2. Overview of Nygren canyon channel with cross profiles shown in white and numbered. The numbered 
black brackets indicate the sections that the channel was subdivided into for further discussion. 

The uppermost section of Nygren canyon channel surveyed is located between the 2360 

and 3165 m isobaths and encompasses profiles 1 through 6 (Fig. 4.3). The channel is well-

defined and U-shaped with a broad and generally flat channel floor. Profiles 1 through 5 show a 

smaller and shallower channel as a depression on the northeastern side of Nygren canyon 

channel. This channel joins Nygren canyon channel near the 3000 m isobath, down-slope from 

profile 5. 
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Figure 4.3. Profiles 1 through 6 that comprise the first section of Nygren canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, red arrow points to additional channel feature. 
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The second section of Nygren canyon channel is located between the 3250 and 3550 m 

isobaths and encompasses profiles 7 through 11 (Fig. 4.4). This length of segment is 

characterized by what appears to be a large slump scar on the southwestern side of the channel. 

Although the southwestern rim of the channel is generally clearly defined at the base of the scar, 

the northeastern channel rim becomes more rounded and less well-defined near the end of the 

section. This is evident in profiles 10 and 11. 

Figure 4.4. Profiles 7 through 11 that comprise section 2 of Nygren canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, red bracket encompasses slump scar. 
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The third section of Nygren canyon channel is located between the 3550 and 3860 m 

isobaths and encompasses profiles 12 through 16 (Fig. 4.5). The slump scar does not extend into 

this section and although the southwestern channel wall and channel rim are relatively well-

defined, the northeastern channel wall slopes upward more gently to a bathymetric high. 

Figure 4.5. Profiles 12 through 16 that comprise section 3 of Nygren canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, red arrow points to bathymetric high. 
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The lowermost section of Nygren canyon channel is located between the 3860 and 4100 

m isobaths and encompasses profiles 17 through 21 (Fig. 4.6). The upper portion of this section, 

between the 3900 and 3965 m isobaths, shows a distinct channel with low channel wall relief and 

distinguishable channel rims on either side. This is evident in profiles 17 and 18. The channel 

then widens and the channel floor becomes more irregular and hummocky near the 4000 m 

isobath, which is evident in profiles 19 and 20. The channel becomes indistinguishable from the 

adjacent seafloor at the end of the section near the 4100 m isobath and profile 21. 
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Figure 4.6. Profiles 17 through 21 that comprise the lowermost section of Nygren canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis. 
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4.1.1.2. Quantitative Morphologic Parameters. A longitudinal profile and plots of channel 

wall relief, channel top width, and channel floor width against the channel floor water depth were 

constructed for Nygren canyon channel. The longitudinal profile (Fig. 4.7) was constructed by 

connecting the deepest depths of the channel axis from each cross section. The profile of Nygren 

canyon channel is gently concave and lacks major irregularities. 
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Figure 4.7. Longitudinal profile of Nygren canyon channel. 

Channel wall relief (Fig. 4.8) is defined as the vertical distance between the channel floor 

and channel rim. It is calculated as the difference between the measured water depth to the 

channel floor and the water depth to each channel rim. The channel wall relief ranges from 66 to 

364 m on the southwestern side and from 14 to 424 m on the northeastern side. The low 14-m 

relief on the northeastern side corresponds to profile 20 near the 4050 m isobath. This profile 

occurs near the terminus of the channel where the channel is less well-defined. The stated 

accuracy for depth determination of 0.5% of water depth (Gardner, 2004; Cartwright and Gardner, 

2005; Kongsberg Simrad EM 120 Product Description) is -20 m for the depth of 4050 m. The 

77 



measured relief of 14 m at this depth is less than the depth accuracy and therefore, this relief may 

not be considered a real feature. 

The channel wall relief is high (-300 to 425 m) in the uppermost section between the 

2400 and 2850 m isobaths. There is a general decrease in channel wall relief with increased 

channel floor water depth. Two distinct low channel wall relief measurements are present on the 

southwestern side near the 3000 and the 3300 m isobaths. The northeastern channel rim was 

more difficult to define, and several alternate rim positions were delineated that have 

correspondingly different relief values. Two of these alternate relief measurements occur between 

the 3000 and 3200 m isobaths and correspond to profiles 6 and 7. This area is the site of a slump 

feature and the alternate relief values represent the location where the channel rim seems to be 

well-defined below the top of the slump scar (Fig. 4.9). Down-slope from the 3400 m isobath the 

northeastern channel rim was also difficult to determine and was mainly defined by where the 

channel wall rose to a general bathymetric high. However, 3 locations in the vicinity of the 3600 m 

isobath that correspond to profiles 11,12 and 13, show inflections below the bathymetric high that 

could also be interpreted as the channel rim (Fig 4.10). 

Figure 4.8. Change in channel wall relief with increased channel floor water depth for Nygren canyon channel. 
The black squares represent alternate rim positions. See text for further explanation. 
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Figure 4.9. Alternate channel rims on the northeastern side of Nygren canyon channel. Profiles have a vertical 
exaggeration of 10. The red arrow indicates the top of a slump scar and the black arrow indicates possible 
channel rim locations below the slump scar. 
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Figure 4.10. Alternate channel rims on the northeastern side of Nygren canyon channel; profiles have a vertical 
exaggeration of 10. The red arrow indicates a bathymetric high and the black arrow indicates an inflection of a 
possible channel rim located below the bathymetric high. 
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The top width of the channel (Fig. 4.11) is defined as the horizontal distance between the 

tops of the channel rims. The main profile (Fig. 4.11, blue line) shows top widths measured where 

the channel was either 1) well-defined, 2) defined as the top of a slump scar on the northeastern 

side between the 3000 and 3200 m isobaths or, 3) where the northeastern rim was mainly 

determined by where the seafloor rose to a general bathymetric high down-slope from the 3400 m 

isobath. The top width of the main profile varies from 3670 to 9794 m. The channel top width is 

generally low in the uppermost, most well-defined segment of channel between the 2400 and 

3000 m isobaths. Where the northeastern rim was mostly determined by where the channel wall 

rises to a general bathymetric high between the 3400 and 3750 m isobaths, the channel is much 

wider. From the 3750 m isobath to the terminus of the channel near the 4100 m isobath, the top 

width decreases. Top widths were also determined for the portions of channel where the alternate 

rim positions were delineated (Fig. 4.11, black lines) and show much decreased channel top 

widths. 

Figure 4.11.Change in top width with increased channel floor water depth for Nygren canyon channel. 
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The channel floor width (Fig. 4.12) is defined as the horizontal distance between the 

bases of the channel walls and varies from 618 to 2628 m for Nygren canyon channel. The floor 

width is relatively constant and between 1200 and 1850 m wide for the uppermost, well-defined 

portion of the channel between the 2400 and 3000 m isobaths. Down-slope, between the 3000 

and 3300 m isobaths, the channel floor width increases and is between 2180 and 2650 m wide. 

The channel floor width then decreases to 600 m near the 3700 m isobath; this is the narrowest 

channel floor width. The channel floor width then increases slightly to the 3850 m isobath. This is 

followed by an anomalously large and brief increase in floor width to 2000 m near the 3900 m 

isobath, after which the floor width narrows. The floor width was not measured for the last profile. 
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Figure 4.12. Change in channel floor width with increased channel floor water depth for Nygren canyon channel. 

4.1.1.3. Summary of Cross-Sectional Profiles. Nygren canyon channel is located along 

the Georges Bank continental margin and evolves from Nygren Canyon. It is the northernmost 

channel in the study area. The channel was subdivided into 4 sections for detailed qualitative 

description based on cross-sectional geometry. The uppermost section, between the 2360 and 

3165 m isobaths, is characterized by a well-defined and U-shaped channel. A smaller channel 
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merges with Nygren canyon channel from the northeast just down-slope from profile 5 near the 

3000 m isobath. The second section is characterized by a large slump scar on the southwestern 

side of the channel between the 3250 and 3550 m isobaths. Although the southwestern rim of the 

channel is generally clearly defined at the base of the slump scar, the northeastern channel rim 

becomes more rounded. The slump scar does not extend into the third section, which is located 

between the 3550 and 3860 m isobaths. The southwestern channel rim remains relatively well-

defined, but the northeastern channel wall slopes upward more gently to a bathymetric high. The 

lowermost section shows a distinct channel with low channel wall relief between the 3860 and 

4100 m isobaths. The channel widens and becomes more irregular before becoming 

indistinguishable from the adjacent seafloor near the 4100 m isobath. 

In plan view, the channel is generally straight and the longitudinal profile is gently 

concave, without major inflections. For the entire length of channel there is a general decrease in 

channel wall relief with increased channel floor water depth. However, this trend appears affected 

by the confluence with a smaller channel, slump scars, and ambiguous channel rims. The 

uppermost portion of Nygren canyon channel, between the 2400 and 3165 m isobaths, is well-

defined with high channel wall relief of between 300 and 425 m. The channel wall relief then 

decreases markedly on both sides of the channel just upslope from the 3000 m isobath. There is 

also a confluence with a smaller channel from the northeast near this location. The subsequent 

two profiles between the 3000 and 3250 m isobaths appear positioned on the site of a slump 

along the northeastern channel wall. Although the top of the slump scar was used for the majority 

of parameter calculations, it could be argued that the channel is also well-defined below the top of 

the slump scar. The low relief on the southwestern side near the 3300 m isobath is associated 

with the start of what appears to be a large slump scar on the southwestern side. The slump scar 

extends down-slope to the 3550 m isobath. In this portion, and for the remainder of the channel, 

the northeastern rim was difficult to determine and was mainly defined by where the channel wall 

rose to a general bathymetric high. However, there are 3 locations in the vicinity of the 3600 m 

isobath that correspond to profiles 11,12 and 13 and show inflections below the bathymetric high 

that could also be interpreted as an alternate channel rim. 
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The channel top width also reflects some of the local geologic complications. The 

channel widens after the confluence with the smaller channel from the northeast. Additionally, two 

alternate top widths are shown for locations where the channel rim was defined as the top of a 

slump scar between the 3000 and 3250 m isobaths and where a well-defined channel rim is 

evident below the slump scar. Down-slope, between the 3400 and 3700 m isobaths, the 

northeastern channel rim was mainly determined by where the seafloor rose to a general 

bathymetric high, which explains the very wide channel top at this location. The three alternate 

channel rim locations that are inflections below the bathymetric high, identified near the 3600 m 

isobath, show correspondingly much decreased channel top widths. 

The channel floor width is relatively constant for the upper portion of the channel between 

the 2400 and 3000 m isobaths and is 1200 to 1800 m wide between. As with the top width, the 

channel floor then widens just past the confluence with the smaller channel on the northeastern 

side of the channel near the 3000 m isobath. The channel floor width decreases to a minimum of 

-600 near the 3700 m isobath. The channel floor width then increases toward the terminus of the 

channel, punctuated once by an anomalously large floor width of 2000 m near the 3900 m isobath 

that corresponds to profile 17. However, no geomorphic anomalies are readily evident that might 

explain the increase in floor width. 

Several trends in channel morphology are apparent for Nygren canyon channel, such as 

the general decrease in channel wall relief with increased channel floor water depth. However, 

superimposed on the trends are the influences of several geologic and geomorphic features. 

These include the confluence with a smaller channel, slump scars, and ambiguous channel rims. 

4.1.2. Munson Canyon Channel 

4.1.2.1. Channel Description and Cross-Sectional Geometry. Munson canyon channel is 

the second-most northern channel in the study area and is located on the continental margin off 

Georges Bank (Fig.4.13). The channel evolves from Munson Canyon, which indents the upper 

continental margin between the 100 and 500 m isobaths as indicated by the Coastal Relief Model 

and the NOAA nautical chart 13003. 
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Munson canyon channel begins near the 2300 m isobath and traverses for approximately 

62 km to its terminus near the 3510 m isobath. A total of 12 cross profiles were constructed at 

5000 m intervals down the length of the channel (Fig. 4.14). For the majority of the length of the 

channel the morphology is characterized by an incised channel thalweg-axis at the base of a 

distinct and generally U-shaped channel valley. The channel was subdivided into 3 sections 

based on cross-sectional geometry for further description. 

Figure 4.13. Overview of Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI 
background. The yellow box indicates location of Munson canyon channel. Ny =Nygren, M=Munson, Po = Powell, 
L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, 
Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure 4 .14 . Overview of Munson canyon channel; the 12 cross profiles are in white and numbered. Black 
brackets indicate the sections that Munson canyon channel was subdivided into for further discussion. 

The shallowest section of Munson canyon channel surveyed is located between the 

2300 and 2600 m isobaths and encompasses the first three cross profiles (Fig. 4.15). The 

channel is well-defined and the channel rim is delineated by crests on both sides. The channel 

floor is entrenched with a thalweg that traverses close to the southwestern channel wall in profiles 

1 and 2, between the 2350 and 2485 m isobaths. The thalweg abruptly cuts across the channel 

floor to become entrenched along the northeastern side of the channel floor between profiles 2 
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and 3 and the 2485 and 2530 m isobaths; the thalweg remains entrenched as such for the 

remainder of the section. Distinct terrace-like features are evident on the channel floor opposite 

the incised thalweg. A wide and shallow channel-like feature merges with Munson canyon 

channel from the northeast between profiles 2 and 3 and the 2485 and 3600 m isobaths. The 

sloped northeastern channel wall in profile 3 is part of this confluence. 

Figure 4.15. Profiles 1 through 3 that comprise the first section of Munson canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to thalweg axis and red bracket 
encompasses terrace-like features. 

The second section of Munson canyon channel is located between the 2600 and 3050 m 

isobaths and encompasses cross profiles 4 through 8 (Fig. 4.16). The entrenched thalweg is still 

evident at the base of a U-shaped channel and is most prominent in profile 5 where the thalweg is 

at the center of the channel near the 2800 m isobath. A slump feature on the northeastern 
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channel wall also occurs at this location. Crests similar to those that clearly delineate the channel 

rims in the first section are evident on the southwestern rim of the channel in many of the profiles 

between the 2800 and 3000 m isobaths. These include profiles 5, 6 and 7. However, crest 

features are mainly absent on the northeastern rim. 
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Figure 4.16. Profiles 4 through 8 that comprise the second section of Munson canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to thalweg axis. 
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The deepest section of Munson canyon channel is located between the 3050 and 3500 m 

isobaths and encompasses profiles 9 through 12 (Fig. 4.17). Profiles 9 and 10 cross the channel 

down-slope from a confluence with a wide gully-like feature that enters Munson canyon channel 

from the northeastern side near the 3150 m isobath (Fig. 4.14). Although the floor of the channel 

is hummocky in profile view, there ceases to be evidence of an entrenched thalweg at the base of 

the U-shaped channel. The generally well-defined channel widens into a broadly U-shaped 

depression near the 3320 m isobath, evident in profiles 11 and 12, and the southwestern rim of 

the channel becomes indistinct. 

Figure 4.17. Profiles 9 through 12 that comprise the lowermost section of Munson canyon channel; profiles have 
a vertical exaggeration of 10. Black arrow points to channel axis. 
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4.1.2.2. Quantitative Morphologic Parameters. A longitudinal profile and plots of channel 

wall relief, channel top width, and channel floor width against thalweg water depth were 

constructed for Munson canyon channel. The longitudinal profile (Fig. 4.18) was constructed by 

connecting the deepest depths of the channel axis from each cross section. The profile of 

Munson canyon channel is generally straight and lacks major inflections. 
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Figure 4.18. Longitudinal profile of Munson canyon channel. 

Channel wall relief (Fig. 4.19) is defined as the vertical distance between the thalweg, or 

channel floor, and the channel rims. It is calculated as the difference between the measured 

water depth to the thalweg and the water depth to each channel rim. The channel wall relief 

varies from 103 to 455 m on the southwestern side and from 120 to 392 m on the northeastern 

side of the channel. There is a general decrease in channel wall relief with increased thalweg 

depth, although two peaks in northeastern channel wall relief are evident near the 2800 and 3250 

m isobaths. The first peak is mirrored by a minor peak on the southwestern side and just upslope 

of the second peak on northeastern side a minor peak in the southwestern channel wall relief is 
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also present. The southwestern channel wall becomes indistinct at the end of the channel 

although the northeastern channel wall is still well- defined. 
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Figure 4.19. Change in channel wall relief with increased thalweg water depth for Munson canyon channel. 

The top width of the channel (Fig. 4.20) is defined as the horizontal distance between the 

top of one channel wall to the other and varies from 3232 to 7254 m for Munson canyon channel. 

There is a marked peak where the channel is -7250 m wide between the 2500 and 2600 m 

isobaths, and a lesser peak where the channel is -5200 m wide near the 2800 m isobath. After a 

decrease in channel top width between the 2800 and 3000 m isobaths to the narrowest top width 

of -3200 m, the width increases to nearly 7200 m just down-slope from the 3200 m isobath. The 

channel top width could not be measured for the last two profiles because only the northeastern 

channel wall remained well-defined. 
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Figure 4.20. Change in channel top width with increased thalweg water depth for Munson canyon channel. 

The floor width of the channel (Fig. 4.21) is generally defined as the horizontal distance 

between the bases of the channel walls. However, for several canyon channels, Munson canyon 

channel included, adjustments were made because it is clear that there is an incised thalweg at 

the base of a U-shaped channel. In order to preserve the incised thalweg and entire channel 

floor, when the thalweg was directly adjacent to the northeastern or southwestern channel walls, 

the relief of the incised thalweg was projected onto the wall that abuts the thalweg. This was the 

location from which the floor width was measured. 

The floor width varies from 1265 to 3500 m for Munson canyon channel. In the 

uppermost portion of channel the floor width decreases from 1500 to 1265 m between the 2350 

and 2600 m isobaths. The floor width increases to 1800 m near the 2800 m isobath, then 

decreases to 1600 m near the 3000 m isobath. There is then a sharp increase in floor width to 

-3500 m near the 3200 m isobath. The floor width of the channel was not be measured for the 

last two profiles because the southwestern channel wall was undefined and there were no sharp 

contacts between the channel floor and northeastern channel wall. 
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Figure 4.21. Change in channel floor width with increased thalweg water depth for Munson canyon channel. 

4.1.2.3. Summary of Cross-Sectional Profiles. Munson canyon channel is located on the 

continental margin off Georges Bank and is a relatively short channel that evolves from Munson 

Canyon. Munson canyon channel is characterized for most of its length by an incised thalweg-

axis at the base of a distinct, generally U-shaped channel and was subdivided into three sections 

for a detailed discussion based on cross sectional geometry. 

The shallowest section of Munson canyon channel surveyed (between the 2300 and 

2600 m isobaths) is characterized as a well-defined channel and the channel rims delineated by 

crests. The valley floor is entrenched with a thalweg and adjacent terrace- like features are 

evident. The middle section of channel, between the 2600 and 3050 m isobaths, remains U-

shaped with an entrenched thalweg, but the thalweg is not as deeply incised as it is in the 

uppermost section. Crests similar to those that clearly delineate the channel rims in the first 

section are evident on the southwestern rim of the channel between the 2800 and 3000 m 

isobaths, but are generally absent on the northeastern rim. The lowermost section of channel is 

located between the 3050 and 3500 m isobaths and encompasses a section mainly down-slope 
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from the confluence with a gully feature that enters from the northeast near the 3150 m. The floor 

of the channel is hummocky in the cross profiles and there ceases to be an entrenched thalweg 

at the base of the channel. The generally well-defined channel then widens into a broad U-

shaped depression and the southwestern rim of the channel becomes indistinct at the terminus of 

the canyon channel near the 3500 m isobath. 

The longitudinal profile is generally straight and lacks major inflections. A general 

decrease in channel wall relief with increased thalweg water depth is evident, although two peaks 

in the northeastern channel wall relief are present near the 2800 and 3250 m isobaths. These 

peaks correspond to profiles 5 and 10, respectively. It appears that the northeastern wall of profile 

5 encompasses a slump feature and the channel rim was defined at the top of the slump feature. 

However, the northeastern wall of profile 10 had a more ambiguous transition from the channel 

wall to the adjacent seafloor. Although there was some ambiguity as to the location of the channel 

rim (Fig. 4.22), the greater height was chosen. This accounts for the spike in the northeastern 

channel wall relief near the 3250 m isobath. The southwestern channel wall then becomes 

indistinct at the end of the channel although the northeastern relief is still well-defined. 

Figure 4.22. The ambiguity of channel rim locations for Profile 10 shown with red and blue arrows. 

Although the channel top width generally decreases with increased thalweg water depth 

to the 3000 m isobath, there are noticeable peaks. The top of the channel is widest, -7250 m 

wide, between the 2500 and 2600 m isobaths. This corresponds to profile 3 and an area of 

irregular bathymetry that appears to be a region of confluence with a broad and shallow channel 

from the northeast. A lesser peak in top width near the 2800 m isobath corresponds to profile 5, 

which is the site of a slump feature. After a decrease in channel top width between the 2800 and 

3000 m isobaths the top width increases to just past the 3200 m isobath. This corresponds to the 
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section of channel down-slope from the confluence with a wide gully feature that enters the 

northeastern side of Munson canyon channel near the 3150 m isobath. The floor width also 

shows a sharp increase in this interval, between the 3000 and 3200 m isobaths. Widths were not 

measured for the last two profiles because the southwestern channel wall is undefined and there 

were no sharp contacts between the channel floor and northeastern channel wall. 

It is evident that there are general morphologic trends for Munson canyon channel, such 

as a decrease in channel wall relief with increased thalweg water depth for the entire length of 

channel and a decrease in channel top width with increased thalweg water depth to the 3000 m 

isobath. However, there are noticeable inflections that are attributed to local geologic features, 

such as slumps and confluences. It is particularly apparent that both the top width and floor width 

increases between the 3000 and 3200 m isobaths at the end of the channel, which may be due to 

the interaction with a gully-feature that merges with Munson canyon channel near the 3150 m 

isobath. 

4.1.3. Powell Canyon Channel 

4.1.3.1. Channel Description and Cross-Sectional Geometry. Powell canyon channel is 

located on the continental margin off Georges Bank (Fig. 4.23) and evolves from Powell Canyon, 

which indents the shelf edge near the 100 m isobath as indicated by the NOAA nautical chart 

13003 and the Coastal Relief Model. The canyon-channel system is nearly 83 km in length 

between the 1750 m isobath and its terminus near the 3690 m isobath. 

A total of 17 cross profiles were constructed at 5000 m intervals down the length of the 

canyon channel (Fig. 4.24). The uppermost section of Powell canyon channel is V-shaped with 

steep channel walls but the channel becomes U-shaped down-slope between the 2550 and 2650 

m isobaths. An incised thalweg becomes evident at the base of the channel near the 2750 m 

isobath. Farther down channel, near the 3100 m isobath, the well-defined channel loses its 

bathymetric expression and a small channel continues across the lower continental margin. The 

small channel appears to be deflected by Physalia Seamount, which is on the eastern side of the 

channel between the 3330 and 3550 m isobaths. The small channel becomes indistinguishable 
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from the adjacent seafloor near the 3650 m isobath. Based on cross sectional geometry, the 

channel was subdivided into 3 sections to further describe the morphology of the channel. 
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Figure 4.23. Overview of the Atlantic margin between Cape Hatteras and Georges Bank with ETOPOI 
background. The location of Powell canyon channel is shown in the yellow box. Ny =Nygren, M=Munson, Po = 
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The shallowest section of Powell canyon channel surveyed is located between the 1750 

and 2550 m isobaths and encompasses profiles 1 through 5 (Fig. 4.25). The channel is V-shaped 

with steep walls. The channel may have an incised thalweg at the base, but it is difficult to 

determine at the scale (10x) used. However, there is evidence of a terrace-like feature on the 

northeastern side of the channel floor in profile 2, near the 2000 m isobath. Crests define the 

channel rim on both sides of the channel for profiles 1 and 2 and on the southwestern side of the 

channel for profiles 3 through 5. 

Figure 4.25. Profiles 1 through 5 that comprise the first section of Powell canyon channel; profiles have a vertical 
exaggeration of 10. Black arrows point to channel axis, red bracket in profile 2 encompasses terrace-like feature. 
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The second section of channel is located between the 2550 and 3100 m isobaths and 

encompasses profiles 6 through 10 (Fig. 4.26). The channel becomes U-shaped between the 

2550 and 2650 m isobaths and an entrenched thalweg becomes evident at the base of the 

channel in cross profile 7, near the 2750 m isobath. There what appears to be a slump feature on 

the southwestern side of Powell canyon channel between profiles 6 and 7 and the 2650 and the 

2750 m isobaths. From profile 7, near the 2750 m isobath, through profile 10, near the 3100 m 

isobath, the channel is characterized by an incised thalweg at the base of a distinct, generally U-

shaped channel. 

Figure 4.26. Profiles 6 through 10 that comprise section 2 of Powell canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, red arrow points to thalweg axis. 
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The lowermost section of Powell canyon channel is located between the 3100 and 3650 

m isobaths and encompasses profiles 11 through 17 (Figs. 4.27 and 4.28). The well-defined 

channel loses its bathymetric expression down-slope from the 3100 m isobath. Between the 3180 

and 3260 m isobaths the channel morphology becomes more similar to a Type II channel, which 

is characterized by a main incised channel bounded by terrace-like features within confining 

bathymetry. This is evident in profiles 11 through 13. Down-slope from profile 13, near the 3260 

m isobath, the Type II channel morphology loses its bathymetric expression. It is appears that a 

small channel, only slightly incised into the adjacent seafloor, continues to traverse across the 

lower continental margin (Fig. 4.24). The small channel appears to be deflected around Physalia 

Seamount, which is to the east of the channel between the 3350 and 3550 m isobaths. However, 

at the vertical exaggeration used (10x), the channel is nearly indistinguishable from the adjacent 

seafloor and manifested as a very small depression in the seafloor in profiles 14 through 17. 

Figure 4.27. Profiles 11 through 13 that comprise the first part of section 3 of Powell canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.28. Profiles 14 through 17 that comprise the second part of section 3 and the terminus of Powell canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

4.1.3.2. Quantitative Morphologic Parameters. A longitudinal profile and plots of channel 

wall relief, channel top width, and channel floor width against thalweg water depth were 

constructed for Powell canyon channel. Relief and width plots were only made from profiles up to 

the 3260 m isobath, which encompasses profiles 1 through 12. Near the 3260 m isobath the Type 

II channel morphology loses its bathymetric expression, and no parameters were calculated for 

the small channel that appears to continue down-slope to its terminus near the 3650 m isobath. 

However, the small channel is likely a real feature due to its consistency and continuity 

with the rest of Powell canyon channel and two longitudinal profile plots were constructed, one for 

profiles 1 through 12 (Fig. 4.29) and one that encompasses all the profiles (1 through 17; Fig. 
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4.30). The longitudinal profiles were constructed by connecting the deepest depths of the channel 

axis from each cross section. The first profile of Powell canyon channel (Fig. 4.29) is generally 

straight and lacks major inflections, however, the longitudinal profile that includes all the cross 

profiles (Fig. 4.30) exhibits a more gently concave trend. 
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Figure 4.29. Longitudinal profile of Powell canyon channel for profiles 1 through 12. 

1800,. 

2000 

2200 

,-.2400 

1.2600 
0) 

Q 

| 2800 

1 
|>3000 

H 3200 

3400 

3600 

3800 
C 

I ' 

\ 

X. 
X , 

" 
-

10 20 

' ' 

30 40 50 60 
Distance Down-Channel (km) 

-

-

70 8 0 

Figure 4.30. Longitudinal profile for Powell canyon channel that includes all profiles (1 - 17). 
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Channel wall relief (Fig. 4.31) is defined as the vertical distance between the thalweg and 

the channel rim, and is calculated as the difference between the measured water depth to the 

thalweg and the water depth to each channel rim. The channel wall relief varies from 60 to 454 m 

on the southwestern side and from 54 to 449 m on the northeastern side. There is a general 

decrease in channel wall relief with increased thalweg water depth. The southwestern channel 

wall relief is high (390 to 450 m) in the uppermost section of channel between the 1800 and 2600 

m isobaths. From near the 2500 m isobath to the 2600 m isobath there is a sharp decrease in 

channel wall relief to -200 m. After a slight increase near the 2800 m isobath, the southwestern 

channel wall relief decreases to a minimum of 60 m near the 3260 m isobath. The northeastern 

channel wall relief is also high (350 to 450 m) in the uppermost portion between the 1800 and 

2600 m isobaths, then shows a sharp decrease to -180 m near the 2900 m isobath. After a brief 

increase near the 3000 m isobath, the northeastern channel wall relief decreases to a minimum of 

-54 m near the 3260 m isobath. 
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Figure 4.31. Change in channel wall relief with increased thalweg water depth for Powell canyon channel. 



The top width (Fig. 4.32) of the channel is defined as the horizontal distance from the top 

of one channel rim to the other. The top width of Powell canyon channel varies from 3002 to 7129 

m. The channel top width is between 3000 and 4500 m for the majority of the channel, between 

the 1800 and 3100 m isobaths. However, the channel top width increases dramatically to a 

maximum of -7130 m near the 3200 m isobath, which is followed by a decrease to 5200 m near 

the 3260 m isobath. 
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Figure 4.32. Change in channel top width with increased thalweg water depth for Powell canyon channel. 

The channel floor width (Fig. 4.33) is generally defined as the horizontal distance 

between the bases of the channel walls. Because Powell canyon channel has an incised thalweg 

at the base of a U-shaped channel for the majority of its length, adjustments were made in order 

to preserve the nature of the incised thalweg and the channel floor. When the thalweg was 

located directly adjacent to the either channel wall, the height of the incised thalweg was 

projected onto the abutting channel wall and this point was used in calculations of the floor width. 

The uppermost section of channel between the 1800 and 2550 m isobaths is V-shaped 

and the floor width cannot be resolved at the 100 m resolution of the data, so a floor width of 100 
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m was assigned to this section of channel (Refer to Methods section 3.6.1). The floor width 

became U-shaped between the 2550 and 2650 m isobaths and the channel floor width between 

profile 6 and the end of the channel varies from 527 to 2392 m. There is an increase in floor width 

from 527 m near the 2650 m isobath to -1400 m near the 2900 m isobath followed by a decrease 

to -830 m near the 3100 m isobath. The floor width subsequently increases to a maximum of 

nearly 2400 m near the 3260 m isobath. 
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Figure 4.33. Change in channel floor width with increased thalweg depth for Powell canyon channel. The region 
of 100 m data points indicates a V-shaped region of channel. 

4.1.3.3. Summary of Cross-Sectional Profiles. Powell canyon channel is located along 

the continental margin off of Georges Bank and evolves from Powell Canyon. The channel 

traverses for -83 km between the 1750 and 3650 m isobaths. The canyon channel was 

subdivided into 3 sections based on cross-sectional geometry for further description. The 

shallowest section surveyed, between the 1750 and 2550 m isobaths, is V-shaped with steep 

channel walls and crests that define the channel rim. An incised thalweg may exist at the base of 

the channel, but it is difficult to determine with such steep channel walls and the scale (10x) used. 

However, there is evidence of a possible terrace on the northeastern side of the channel floor in 
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profile 2, near the 2000 m isobath. The middle segment of channel is located between the 2550 

and 3100 m isobaths and the channel becomes U-shaped in cross section. An entrenched 

thalweg is evident at the base of the channel in cross- profile 7, near the 2750 m isobath, and 

continues to be present at the base of a distinct, U-shaped channel to the end of the segment 

near the 3100 m isobath. The first emergence of the incised thalweg co-occurs with the location 

of a possible slump feature on the southwestern side of Powell canyon channel between profiles 

6 and 7 and the 2650 and the 2750 m isobaths and appears to have incised around a debris pile 

in the channel. In the lowermost section of channel, between the 3100 and 3650 m isobaths, the 

well-defined channel loses its bathymetric expression and the channel morphology becomes 

more characteristic of a Type II channel. Down-slope from the 3260 m isobath, however, a small 

channel that is only slightly incised into the seafloor and lacks confining bathymetry becomes 

evident. The small channel appears to be deflected by Physalia Seamount, which is to the east of 

the channel between the 3350 and 3550 m isobaths. The small channel becomes 

indistinguishable from the adjacent seafloor near the 3650 m isobath. 

Longitudinal profiles as well as profiles of channel wall relief, channel top width, and 

channel floor width plotted against thalweg water depth were constructed for Powell canyon 

channel. Two longitudinal profiles were constructed, one that encompasses only profiles 1 

through12, because down-slope from the 3260 m isobath the small channel is nearly 

unresolvable in the cross profiles. However, the small channel is likely a real feature due to its 

consistency upslope with the rest of Powell canyon channel and a longitudinal profile was also 

constructed that includes all profiles (1 - 17); this profile exhibits a more gently concave trend. No 

parameters were calculated for the small channel that continues to traverse down-slope to near 

the 3650 m isobath and profiles of channel wall relief, top width and floor width were constructed 

only from profiles between the 1750 and 3260 m isobaths. 

Though variable, there is a general decrease in channel wall relief with increased thalweg 

water depth. The southwestern and northeastern channel wall relief is high (350 to 450 m) in the 

uppermost portion from the 1800 m isobath to between the 2500 and 2600 m isobaths. This 

corresponds to the portion of channel that is V-shaped with steep channel walls and crests that 
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define the channel rim. There is a sharp decrease in the southwestern channel wall relief to -200 

m between the 2500 and 2600 m isobaths. This is just upslope from a slump feature on the 

southwestern side of Powell canyon channel. After a slight increase in channel wall relief near 

the 2800 m isobath, just down-slope from the slump feature, the southwestern channel wall relief 

decreases a minimum of 60 m near the 3260 m isobath. The northeastern channel wall shows the 

same general trend, and the relief decreases sharply to -180 m near the 2900 m isobath, which 

is followed by a brief increase near the 3000 m isobath and then a decrease to a minimum of -54 

m near the 3260 m isobath. 

The top of the channel is between 3000 and 4500 m wide for the majority of the channel. 

However, the channel top width increases dramatically to a maximum of -7130 m near the 3200 

m isobath. This occurs where the channel becomes less well-defined. The uppermost section of 

channel between the 1800 and 2550 m isobaths is V-shaped and the floor width is either at or 

below the 100 m resolution of the data; 100-m floor widths were used for these sections. The 

channel becomes U-shaped between the 2550 and 2650 m isobaths and the floor width generally 

increases with increased thalweg water depth between the 2650 and 3260 m isobaths, although 

the floor width narrows once to -830 m near the 3100 m isobath. The increase in both channel 

top width and channel floor width corresponds to the section where the channel becomes less 

well-defined and more characteristic of a Type II channel. 

Although some morphologic trends are apparent for Powell canyon channel, such as the 

decrease in channel wall relief with increased distance down-channel, it is evident that local 

factors affect the morphology of the channel and these are superimposed on the general trends. 

For example, it is evident that the transition from a well-defined to a less well-defined channel 

impacts both the top and floor widths and both show an increase. 

4.1.4. Lydonia Canyon Channel 

4.1.4.1. Channel Description and Cross-Sectional Geometry. Lydonia canyon channel is 

located on the continental margin seaward of Georges Bank (Fig. 4.34). The canyon-channel 

system is the complex product of the confluence of four canyons upslope that merge into a single 

channel near the 2850 m isobath. According to McGregor (1985), the canyons that contribute to 
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the formation of Lydonia canyon channel are, from north to south, Lydonia, Jigger, Gilbert and 

Chebacco Canyons (Fig. 4.35). Lydonia and Gilbert Canyons indent the shelf edge and each 

merge with an additional channel. Jigger Canyon merges with Lydonia Canyon and Chebacco 

Canyon merges with Gilbert Canyon (McGregor, 1985). Although McGregor (1985) observed that 

Jigger and Lydonia Canyons merge near the 2400 m isobath and Gilbert and Chebacco Canyons 

merge near the 2600 m isobath, from bathymetry used in this study, it appears that the merges 

occur near the 2600 and 2400 m isobaths, respectively. The two resultant canyon channels then 

merge to form one channel near the 2850 m isobath. This is consistent with McGregor (1985), 

who located the confluence between the 2800 and 2900 m isobaths. The single canyon channel 

is then deflected by Bear Seamount, which is to the east of the channel. McGregor (1985) noted 

that a terrace flanks the channel floor at this location, and that the channel has incised into the 

sediments along the side of Bear Seamount, but not into the seamount itself. 

The canyon-channel system studied here is called Lydonia canyon channel in its entirety 

and begins near the 1700 m isobath. The channel traverses for -80 km to merge with 

Oceanographer canyon channel just upslope from the 3500 m isobath. A total of 16 cross 

sections were constructed at 5000 m intervals down the length of the channel (Fig. 4.35). The 

uppermost portion is located between the 1700 and 2400 m isobaths and is narrowly U-shaped 

with steep side walls. This segment may consist of a portion of Gilbert Canyon that has incised 

into the upper continental margin. Chebacco Canyon then merges with Gilbert Canyon from the 

northwest near the 2400 m isobath and the resultant canyon-channel system merges with the 

Lydonia/Jigger canyon-channel system farther down-slope near the 2850 m isobath. The portion 

of channel between the confluences of the Gilbert/Chebacco and Jigger/Lydonia canyon 

channels has morphology that is transitional between Type I and Type II morphologies and in 

some places there appears to be a distinct channel that has incised into a narrow, sloping 

surface. Down-slope from the confluence with the Jigger/Lydonia canyon-channel system from 

the northeast, the channel thalweg is deflected by Bear Seamount, which is on the eastern edge 

of the channel between the 3000 and 3300 m isobaths. Down-slope from the seamount the 

channel displays morphology characteristic of a Type II channel. There is a main incised channel 
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bordered by relatively wide and level surfaces of adjacent seafloor within broad, confining 

bathymetry. The channel continues to display Type II channel morphology until the channel 

merges with Oceanographer canyon channel near the 3490 m isobath. The Lydonia canyon-

channel system is subdivided into 4 sections for further morphologic description based on cross-

sectional geometry and morphology. 

Figure 4.34. Overview of Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI 
background and the location of Lydonia canyon channel in the yellow box. Ny =Nygren, M=Munson, Po = Powell, 
L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, 
Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure 4.35. Enlarged map of Lydonia canyon channel with cross profiles in white and numbered. Black brackets 
delineate sections that the channel was subdivided into for further description. 

The uppermost segment of Lydonia canyon channel surveyed is located between the 

1700 and 2400 m isobaths and encompasses the first three profiles (Fig. 4.36). This segment 

likely comprises a portion of Gilbert Canyon that has incised into the upper continental margin. 

The canyon is narrowly U-shaped with steep channel walls. The uneven and irregular bathymetry 

of the third cross section corresponds to the confluence with a smaller canyon/gully feature that 

enters Lydonia canyon channel from the northwest near the 2330 m isobath. 
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Figure 4.36. Profiles 1 through 3 that comprise the uppermost segment of Lydonia canyon channel, which 
consists primarily of a portion of Gilbert Canyon; profiles have a vertical exaggeration of 6. Black arrow points to 
channel axis. 

The second section of channel is located between the 2400 and 2950 m isobaths and 

encompasses profiles 4 through 9 (Figs. 4.37 and 4.38). The start of the segment occurs near the 

confluence of Gilbert and Chebacco Canyons. The segment ends just down-slope from where the 

Gilbert/Chebacco and the Jigger/Lydonia canyon-channel systems merge near the 2850 m 

isobath. The length of channel between these confluences displays morphology that is 

transitional between Type I and Type II channel morphologies. There are sporadic level surfaces 

adjacent to an incised thalweg, but these occur within a relatively well-defined channel. Profile 4 

displays a level surface on the southwestern side that is adjacent to a small channel, and profile 5 

appears to have a small incised channel within confining bathymetry. Profile 6, however, has two 
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distinct, albeit slightly sloping, surfaces that border an incised channel. The northeastern channel 

rim for profiles 4 to 6 is often difficult to determine because the bathymetry rises to a bathymetric 

high. Profile 7 exhibits a sloped surface on the northeastern side of an incised channel. The 

anomalously wide and sloped eastern side in Profile 8 is attributable to the confluence with 

Lydonia/Jigger canyon channel from the northeast. Profile 9 appears to have an incised thalweg, 

but the channel system in its entirety is broadly V-shaped with no definable level surfaces 

adjacent to the thalweg. 

Figure 4.37. Profiles 4 through 6 that comprise the upper portion of Section 2 of Lydonia canyon channel; profiles 
have a vertical exaggeration of 6. Black arrow points to channel axis, red arrows indicate level surfaces and 
purple arrow points to thalweg axis. 
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Figure 4.38. Profiles 7 through 9 that comprise the lower portion of section 2 of Lydonia canyon channel; profiles 
have a vertical exaggeration of 6. Black arrow points to channel axis, red arrows indicate level surfaces and 
purple arrow points to thalweg axis. 

The third section of Lydonia canyon channel encompasses profiles 10 through 13 

between the 2950 and 3250 m isobaths (Fig. 4.39) and Bear Seamount is to the east of the 

channel. An incised thalweg is evident with adjacent level terrace-like features present on the 

northeastern side between the 2950 and 3020 m isobaths, shown in profiles 10 and 11. A wide 

sloped surface is adjacent to the thalweg on the southwestern side between the 3020 and 3250 

m isobaths, evident in profiles 12 and 13. The northeastern channel wall of profile 10 

encompasses the northern flank of Bear Seamount and the northeastern channel walls in profiles 

11 and 12 consist of the western wall of Bear Seamount. The end of seamount interaction in the 

section is represented by the hummocky bathymetry on the northeastern side of profile 13, which 

is the southern flank of Bear Seamount. 
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Figure 4.39. Profiles 10 through 13 that comprise section 3 of Lydonia canyon channel; profiles have a vertical 
exaggeration of 6. Black arrow points to channel axis, red arrows indicate level horizontal surfaces, purple arrow 
points to thalweg axis and blue bracket encompasses the hummocky flank of Bear Seamount. 

The lowermost section of Lydonia canyon channel is located between the 3250 and 

3490 m isobaths and encompasses profiles 14 through16 (Fig. 4.40). This segment is between 

Bear Seamount and the confluence with Oceanographer canyon channel near the 3490 m 

isobath. The channel-system displays characteristics typical of Type II channel morphology and 

there is a main incised channel bordered by relatively wide and level surfaces of adjacent 

seafloor within broad, confining bathymetry. 
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Figure 4.40. Profiles 14 through 16 that comprise the last section of Lydonia canyon channel upslope from the 
confluence with Oceanographer canyon channel; vertical exaggeration of profiles is 6. Black bracket 
encompasses the extents of the channel system, red arrows indicate level horizontal surfaces and purple arrow 
points to thalweg axis. 

4.1.4.2. Quantitative Morphologic Parameters. Due to the morphologic complexity of 

Lydonia canyon channel and the transition from Type I to Type II channel morphology with 

increased depth and distance down-channel, only the longitudinal profile, total channel wall relief 

and total channel top width were evaluated for the channel in its entirety. Total channel wall relief 

is defined as the vertical distance between the deepest part of the channel axis and the top of the 

channel (for Type I segments) or between the deepest part of the incised thalweg and the top of 

the confining bathymetry (for Type II segments). The total channel top width is defined as the 

horizontal distance between the top rims of the channel (for Type I segments) or between the 

tops of the confining bathymetry (for Type II segments). The direction the profiles were drawn 

varied from northwest to southeast, west to east, and southwest to northeast. For the plots that 
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include the entire length of channel, the sides of the channel will be simply called west and east, 

looking upslope. Additional parameters such as bottom width, terrace width and the top width of 

the incised channel were evaluated at a profile to profile and segment to segment basis. 

The longitudinal profile (Fig. 4.41) was constructed by connecting the deepest depths of 

the channel axis from each cross section. The profile is slightly concave near the start of the 

channel to between the 2800 and 3000 m isobaths, but appears to become fairly straight from the 

3000 m isobath to the end of the channel. 
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Figure 4.41. Longitudinal profile of Lydonia canyon channel. 

The total channel wall relief (Fig. 4.42) varies from 185 to 954 m on the western side of 

the channel and from 172 to 819 m on the eastern side of the channel. There is very high relief in 

the uppermost portion of channel of -800 to 1000 m. However, the relief decreases rapidly 

between the start of the channel near the 1700 m and the 2200 m isobath on the western side 

and the 2400 m isobath on the eastern side to a relief of -200 to 300 m. There is an anomalously 

high eastern channel wall relief of nearly 800 m near the 3000 m isobath and the subsequent gap 

in channel wall relief between the 3000 and 3300 m isobaths on the eastern side corresponds to 

the section of channel directly adjacent to Bear Seamount. The western channel wall relief 

115 



increases between the 2200 and 3000 m isobaths, but the total channel wall relief remains below 

500 m. The western channel wall relief shows two step-like features of decreased channel relief 

toward the end of the channel, separated by portions of relatively uniform relief. One section 

occurs between the 3000 and 3300 m isobaths, where the relief remains between 350 and 400 m 

and one from the 3300 m isobath to the terminus of the channel where the relief remains near 

300 m. 
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Figure 4.42. Change in total channel wall relief with increased thalweg water depth for Lydonia canyon channel. 

The total top width (Fig. 4.43) varies from 378 to 16439 m. Although variable, there is a 

general decrease in the top width from the start of the channel near the 1700 m isobath to near 

the 2400 m isobath and a general increase from the 2400 m isobath to the terminus of the 

channel. The gap (Fig. 4.43; black double headed arrow) corresponds to the area of interaction 

with Bear Seamount for which no top width was measured. 
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Figure 4.43. Change in top channel width with increased thalweg water depth for Lydonia canyon channel. 

The uppermost section of channel surveyed between the 1700 and 2400 m isobaths is 

interpreted to comprise a portion of Gilbert Canyon that has incised into the upper continental 

margin and encompasses the first three cross profiles. In addition to extremely high channel wall 

relief, the channel floor width is very narrow with floor widths of 496, 240 and 425 m for Profiles 1, 

2 and 3, respectively. 

Profiles in the second section, which is located between the 2400 and 2950 m isobaths, 

of particular interest are those that appear to have a thalweg incised into a broad valley. These 

are profiles 6 and 7. The southwestern and northeastern terrace-like features adjacent to the 

incised channel are 1050 and 989 m wide, respectively (labeled 1 and 3 on Profile 6 in Figure 

4.44). The top width of the incised channel is 957 m and the total width of the adjacent terrace

like features and incised channel is 2990 m (labeled 2 and 4 on Profile 6 in Figure 4.44). Only one 

terrace-feature on the northeastern side of an incised thalweg was indentified in Profile 7, which 

is 608 m wide and the top width of the incised channel is 824 m (labeled 3 and 2 on Profile 7 in 

Figure 4.44, respectively). 
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Figure 4.44. Parameters measured for profiles 6 and 7 as indicated by the black doubled headed arrows. Refer to 
text for explanation. 

An incised thalweg and adjacent level surfaces (terrace-like features are present in the 

third section between the 2950 and 3250 m isobaths. Terrace features are present on the 

northeastern side of the incised thalweg in profiles 10 and 11 (Fig. 4.45) and wider, sloped 

surfaces are present on the southwestern side of the incised thalweg in profiles 12 and 13 (Fig. 

4.46). The widths of these surfaces are 1439, 1226, 4639, and 3428 m for profiles 10 through 13, 

respectively. 

Figure 4.45. Level surface widths measured for profiles 10 and 11 as indicated by the black doubled headed 
arrows. 
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Figure 4.46. Level surface widths measured for profiles 12 and 13 as indicated by the black doubled headed 
arrows. 

The last 3 profiles of Lydonia canyon channel, between the 3250 and 3490 m isobaths, 

display Type II channel morphology. A representative profile from Oceanographer canyon 

channel (Fig. 4.47) shows the parameters of interest that also pertain to Lydonia canyon channel 

(For full explanation, refer to Methods section 3.6.2). A total of four relief parameters in addition to 

the total channel wall relief previously described were defined for the last three profiles. These 

are the relief of the abutting valley walls and the channel wall relief of the incised thalweg. The 

relief measurements are shown in Table 4.1. 
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Figure 4.47. A representative profile from Oceanographer canyon channel that shows the relief parameters of 
interest: total relief from the incised channel floor to the top of each abutting wall (red double-headed arrows), 
relief of the abutting valley walls (blue double-headed arrows) and the channel wall relief of the incised thalweg 
(yellow double-headed arrows). 

Table 4.1. Relief values calculated for the last three profiles of Lydonia canyon channe 

Profile 14 

Profile 15 

Profile 16 

West Abutting 
Wall (m) 

132 

202 

157 

East Abutting 
Wall (m) 

91 

162 

106 

East wall of incised 
channel (m) 

49 

80 

70 

I. 

West wall of incised 
channel (m) 

41 

71 

50 
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A total of 6 width parameters were measured for the last three profiles of Lydonia canyon 

channel in addition to the total width previously described. A representative profile from 

Oceanographer canyon channel (Fig. 4.48) shows the parameters of interest that also pertain to 

Lydonia canyon channel. Widths that were calculated are: the width of the level surfaces (terrace-

features) adjacent to the incised thalweg, the width of the incised thalweg, the total width from the 

base of the abutting walls, and the width of the abutting valley walls. These widths are shown in 

Table 4.2. 

Figure 4.48. A representative cross profile from Oceanographer canyon channel that shows the width parameters 
of interest: the total width measured from the tops of the abutting walls (red double-headed arrow), the width of 
the level surfaces (blue double-headed arrows), the width of the incised channel (yellow double-headed arrow), 
the total width from the base of each abutting wall (green double-headed arrow), and the width of the abutting 
valley walls (black double-headed arrows). 

Table 4.2. Width values calculated for the last three profiles of Lydonia canyon channel. 

Profile 14 

Profile 15 

Profile 16 

Width of 
western level 

surface (m) 

4018 

1873 

4594 

Width of 
incised 

channel (m) 

1586 

1398 

1015 

Width of 
eastern level 

surface (m) 

3615 

4589 

6001 

Width from 
bases of abutting 

walls (m) 

9219 

7860 

11609 

Width of west 
abutting wall 

(m) 

821 

4166 

1581 

Width of east 
abutting wall 

(m) 

1204 

4413 

815 

4.1.4.3. Summary of Cross-Sectional Profiles. Lydonia canyon channel is the complex 

product of the confluence of several canyons. The canyon channel grades from Type I 

morphology in the uppermost section to Type II channel morphology upslope of the confluence 

with Oceanographer canyon channel near the 3490 m isobath. The channel was subdivided into 

4 sections for further description. The uppermost portion surveyed, between the 1700 and 2400 

m isobaths, is a portion of Gilbert Canyon which has incised into the upper continental margin 

and is narrowly U-shaped with steep channel walls. At the end of the first segment and the start 

of the second segment, Chebacco Canyon merges with Gilbert Canyon from the northwest near 

the 2400 m isobath. The end of the second segment is just down-slope from the location where 
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the Gilbert/Chebacco and the Jigger/Lydonia canyon-channel systems merge near the 2850 m 

isobath. The length of channel between these confluences displays morphology that is 

transitional between Type I and Type II channel morphologies. The channel passes Bear 

Seamount, which is to the east of the channel between the thalweg water depths of 2950 and 

3250 m. This section is also transitional and has level surfaces on one of the two sides which are 

adjacent to an incised thalweg. The lowermost section of channel, between the 3250 and 3490 m 

isobaths, is just upslope from the confluence with Oceanographer canyon channel and displays 

more typical Type II channel morphology. 

The longitudinal profile and plots of total channel wall relief and total top width with 

increased thalweg water depth were constructed for the channel in its entirety. The longitudinal 

profile is slightly concave near the start of the channel to between the 2800 and 3000 m isobaths, 

but appears to become fairly straight from the 3000 m isobath to the terminus of the channel and 

the confluence with Oceanographer canyon channel near the 3490 m isobath. The channel has 

very high channel wall relief at the uppermost portion of channel, on the order of 800 to 1000 m. 

This portion corresponds to a section of Gilbert Canyon that has incised into the upper continental 

margin. There is a sharp decrease in channel wall relief on the western side near the 2400 m 

isobath that corresponds to profile 3 and the confluence with a gully from the northwest near the 

2330 m isobath. There is a decrease in the eastern channel wall relief from the start of the 

channel to the 2400 m isobath. The eastern channel wall relief increases from the 2800 m isobath 

to an anomalously high relief of -800 m near the 3000 m isobath. This corresponds to a profile 

that crosses the northern flank of Bear Seamount. The eastern channel wall relief was not 

calculated between the 3000 and 3300 m isobaths; the relief would extend to the top of Bear 

Seamount. There is a general decrease in channel top width from the start of the channel to the 

2400 m isobath and a subsequent increase in channel top width to the terminus of the channel. 

The greatest widths correspond to the segment at the end of the canyon channel between the 

3300 and 3490 m isobaths where the channel is considered to have more typical Type II channel 

morphology. 
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Additional parameters were measured on a profile to profile and section to section basis 

and of most interest are terrace-like features adjacent to an incised thalweg. The terrace-like 

features occur sporadically in the second section, between the 2400 and 2950 m isobaths. In 

profile 6 there are terrace-like features evident on both sides, but for profile 7 only one terrace 

feature is evident. The terrace-like features relatively narrow and range from 600 to 1050 m. 

Terrace-like features are only present on one side of the incised thalweg in the third section. 

Terrace-like features are present on the northeastern side between the 2950 and 3020 m 

isobaths, evident in profiles 10 and 11, and a wide sloped surface is present on the southwestern 

side adjacent to the thalweg between the 3020 and 3250 m isobaths, evident in profiles 12 and 

13. The features are wider than those upslope and range from 1200 to 4700 m in width. Typical 

Type II channel morphology develops in the lowermost section, between the 3250 and 3490 m 

isobaths and terrace widths are generally wider still, ranging from 1800 to 6000 m wide. 

It is evident that Lydonia canyon channel is a complex system and is influenced by 

several local geologic and morphologic features. Steep bathymetry and high channel wall relief of 

800 to 1000 m is evident in the uppermost portion of the channel surveyed, which may be a 

portion of Gilbert Canyon. The location of Bear Seamount to the east of the channel may have 

served to deflect Lydonia canyon channel as well as influence incision. In addition, confluences 

with several channels occur in the upper portion of channel and the channel terminates at the 

confluence with Oceanographer canyon channel. 

4.1.5. Oceanographer Canyon Channel 

4.1.5.1. Channel Description and Cross-Sectional Geometry. Oceanographer canyon 

channel is located on the continental margin seaward of Georges Bank (Fig. 4.49). The channel 

evolves from Oceanographer Canyon, which indents the shelf edge (McGregor, 1985), near the 

100 m isobath as indicated by NOAA nautical chart 13003. Sidescan-sonar imagery has shown 

that the floor of Oceanographer Canyon is broad and featureless, but that the present channel is 

incised within a broad valley, which is indicative of two periods of incision (McGregor, 1985). 

Cretaceous age rocks are the oldest rocks that have been obtained from Oceanographer Canyon 

(Ryan et al., 1978; Valentine et al., 1980). Ryan et al. (1978) concluded in their study of several 
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Georges Bank canyons that their formation was not simple, but a result of several stages of 

erosion that began as early as the late Cretaceous. 

The Oceanographer canyon-channel system begins near the 1850 m isobath and 

continues for a length of 87 km to where Oceanographer and Lydonia canyon channels merge 

near the 3490 m isobath. The resultant channel continues for another 75 km to its terminus near 

the 4225 m isobath. A total of 32 cross profiles were constructed at 5000 m intervals down the 

length of Oceanographer canyon channel, which includes the lengths both upslope and down-

slope from the confluence with Lydonia canyon channel (Fig. 4.50). The majority of the length of 

channel displays Type II morphology: there is a main incised channel bordered by relatively wide 

and level surfaces of adjacent seafloor (terrace-like features) within broad, confining bathymetry. 

There is a segment of channel down-slope from the confluence with Lydonia canyon channel 

between the 3750 and 3850 m isobaths where the entire channel becomes nearly unresolvable at 

the 100 m resolution of the data. Down-slope from this portion a narrow, well-defined channel that 

displays Type I channel morphology emerges and continues down-slope until it transitions into a 

depositional lobe feature between the 4150 and 4225 m isobaths. The channel was subdivided 

into 6 sections based on cross sectional geometry for further morphologic discussion. 
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Figure 4.49. Overview of Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI 
background. The location of Oceanographer canyon channel is shown in the yellow box. Ny =Nygren, 
M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, 
Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure 4.50. Overview of Oceanographer canyon channel showing cross profiles in white and numbered. 
Sections that Oceanographer canyon channel was subdivided into for further description are shown with black 
brackets and numbered. 

The shallowest section of Oceanographer canyon channel surveyed is located between 

the 1850 and 2500 m isobaths and encompasses profiles 1 through 6 (Fig. 4.51). A mam channel 

appears to be incised into a broad valley, however, the seafloor surfaces adjacent to the incised 

channel are often at different heights on either side of the channel. This is especially evident in 

profiles 1 and 4. There are crest-like features at the rims of the incised channel, which are 
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evident in profiles 2 through 5. Two crest-like features adjacent to the incised channel on the 

northeastern side in profile 3 near the 2115 m isobath correspond to the confluence with another 

channel from the northeast, presumably originating from Filebottom Canyon (McGregor, 1985). 

According to McGregor (1985) Filebottom Canyon merges with Oceanographer Canyon near the 

2100 m isobath. The main incised channel and adjacent surfaces are further confined by peaked 

bathymetry on either side. 

Figure 4.51. Profiles 1 through 6 that comprise section 1 of Oceanographer canyon channel; profiles have a 
vertical exaggeration of 6. Black brackets encompass the extents of the channel system, red arrows indicate 
level surfaces, blue arrows point to crests that border the incised channel and the purple arrow points to incised 
channel axis. 
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The second section of Oceanographer canyon channel is located between the 2500 and 

2750 m isobaths and encompasses profiles 7 through 9 (Fig. 4.52). Although the channel 

continues to display characteristics typical of Type II channel morphology, the level seafloor 

surfaces that border the main incised channel are more irregular or nearly absent, such as on the 

northwestern side of profile 8. In addition, the bathymetric expression of the peaked bathymetry 

that confines the incised thalweg and terrace features, which were clearly present in the 

uppermost section, are subdued in this section. These profiles correspond to a change in channel 

course to a more southwesterly route that begins near the 2560 m isobath and profile 7. 

Figure 4.52. Profiles 7 through 9 that comprise section 2 of Oceanographer canyon channel; profiles have a 
vertical exaggeration of 6. Black brackets encompass the extents of the channel system, red arrows indicate 
level surfaces, purple arrow points to incised channel axis. 
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The third section of Oceanographer canyon channel is located between the 2750 and 

3400 m isobaths and encompasses profiles 10 through 17 (Figs. 4.53 and Fig. 4.54). The channel 

begins to bend back toward the southeast between profiles 10 and 11, near the 2845 m isobath. 

The channel remains relatively straight between the 2900 and 3050 m isobaths, which 

encompasses profiles 11 through 13. The level seafloor surfaces adjacent to the main incised 

channel become more pronounced, although the confining bathymetry is much subdued. Near 

profile 14 and the 3125 m isobath, the channel begins to bend even more toward the east and the 

incised channel nearly abuts the southwestern confining valley wall. The section continues a 

gradual bend toward the east for the remainder of the section and profiles 16 and 17 display more 

typical Type II channel morphology although the surfaces adjacent to the incised thalweg are 

sloped. 

Figure 4.53. Profiles 10 through 13 that comprise the upper portion of section 3 of Oceanographer canyon 
channel; profiles have a vertical exaggeration of 6. Black brackets encompass the extents of the channel system, 
red arrows indicate level surfaces, purple arrow points to incised channel axis. 
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Figure 4.54. Profiles 14 through 17 that comprise the lower portion of section 3 of Oceanographer canyon 
channel; profiles have a vertical exaggeration of 6. Black brackets encompass the extents of the channel system, 
red arrows indicate level surfaces, purple arrow points to incised channel axis. 

The fourth section of Oceanographer canyon channel is located between the 3400 and 

3750 m isobaths and encompasses profiles 18 through 23 (Fig. 4.55). This section of channel 

encompasses the confluence with Lydonia canyon channel near the 3490 m isobath and a 

concurrent change in channel course toward the south. Upslope from the confluence the incised 

channel abuts the southwestern valley wall near the 3400 m isobath. This is evident in profile 18, 

and there is no terrace feature adjacent to the incised channel on the southwestern side. Profile 

19 occurs nearly at the confluence of Oceanographer and Lydonia canyon channels and two 

distinct thalwegs are present. Down-slope from the change in channel course and confluence, 

between the 3515 and 3680 m isobaths, the level surfaces adjacent to the incised thalweg and 
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the confining bathymetry become wider and more distinct, but are hummocky. This is evident in 

profiles 20, 22 and 23; the northeastern surface in profile 23 is obscured by a hole. 

Figure 4.55. Profiles 18 through 23 that comprise section 4 of Oceanographer canyon channel; profiles have a 
vertical exaggeration of 6. Black brackets encompass the extents of the channel system, red arrows indicate 
level surfaces, purple arrow points to incised channel axis, blue arrow encompasses a hole feature. 
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The fifth section of Oceanographer Canyon channel is located between the 3750 and 

3850 m isobaths and encompasses profiles 24 and 25 (Fig. 4.56). This segment represents a 

brief section where the channel becomes nearly indistinguishable from the adjacent seafloor at 

the 100 m resolution of the data. The thalweg is still evident in profile 24, however, an additional 

channel appears present to the northeast. Although the channels may be present in profile 25, a 

wide, hummocky region of seafloor makes determination of a thalweg difficult at the 100 m 

resolution of the data. 
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Figure 4.56. Profiles 24 and 25 that comprise section 5 of Oceanographer canyon channel; profiles have a vertical 
exaggeration of 6. Black arrow points to channel axis, red arrow points to an additional channel, black bracket 
encompasses hummocky region where a distinct thalweg could not be determined at the 100-m resolution of the 
data. 

The lowermost section of Oceanographer canyon channel is located between the 3850 

and 4150 m isobaths and encompasses profiles 26 through 32 (Fig. 4.57). In the upper portion of 

the section, the channel is wide with remnant Type II channel morphology and may have a 

shallowly incised thalweg. This is evident in profile 26. For the remainder of the segment, 

however, the channel becomes a low-relief Type I channel. The channel passes Mytilus 

Seamount, which is to the northeast of the channel. Although the seafloor is nearly level on either 

side of the channel, the main channel does not appear to be incised into a broad valley. 
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Figure 4.57. Profiles 26 through 32 that comprise the lowermost section of Oceanographer canyon channel; 
profiles have a vertical exaggeration of 6. Black arrow points to channel axis. 
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4.1.5.2. Quantitative Morphologic Parameters. A longitudinal profile was constructed for 

the entirety of Oceanographer canyon channel, regardless of channel type. However, the 

complexity of Oceanographer canyon channel necessitated that a variety of width and relief plots 

be constructed. The first 23 profiles of Oceanographer canyon channel, between the 1850 and 

3750 m isobaths, display Type II channel morphology and a total of 6 relief parameters were 

calculated (Fig. 4.58): the total relief from the floor of the main incised channel to the top of the 

confining bathymetry, the relief of the abutting valley walls, and the channel wall relief of the main 

incised channel. In addition, a total of 7 width parameters were calculated for the Type II channel 

section (Fig. 4.59): the total width between the tops of the confining bathymetry, the widths of the 

terrace-like features adjacent to the incised thalweg, the width of the main incised channel, the 

total width from the base of the abutting walls, and the width of the abutting valley walls. Profiles 

26 through 32, between the 3850 and 4150 m isobaths, generally display Type I channel 

morphology. The channel wall relief for this section is calculated as the total vertical distance from 

the channel floor to the channel rim and the top width is the horizontal distance between the 

channel rims; a floor width was not measured because it was below the 100-m resolution of the 

data. The plots of the terrace widths, width and relief of the main incised channel and abutting 

valley walls are shown width and relief are shown only for the first part of the channel that 

displays Type II channel morphology. The profiles, although drawn in a variety of directions to be 

sure that they were perpendicular to the main incised channel, are generally oriented from the 

southwest to the northeast, and this will be the terminology that is used, looking upslope. 
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Figure 4.58. Representative relief parameters for a Type II channel cross section. Red double-headed arrows 
represent the total relief from the floor of the incised channel to the top of the confining bathymetry, blue double-
headed arrows represent the relief of the abutting valley walls, and the yellow double-headed arrows represent 
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Figure 4.59. Representative width parameters for a Type II channel cross section. Red double-headed arrow 
represents the total width measured between the tops of the confining bathymetry, the blue double-headed 
arrows represent the width of the terrace features, the yellow double-headed arrow represents the width of the 
main incised channel, the green double-headed arrow represents the total width from the base of each abutting 
wall, and the black double-headed arrows represent the width of the abutting valley walls. 

The longitudinal profile (Fig. 4.60) was constructed by connecting the deepest depths of 

the channel axis from each cross section, regardless of channel type. The profile is generally 

straight and lacks major concavities or convexities though there are minor inflections that 

correspond to cross profiles 9 and 17, near the 2645 and 3290 m isobaths, respectively. The 

break in the profile just beyond 100 m down-channel and between the 3750 and 3850 m isobaths 

corresponds to profile 25 where the channel was unresolvable at the 100 m resolution of the data. 
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Figure 4.60. Longitudinal profile of Oceanographer canyon channel. Arrows point to minor inflections in the 
profile. 
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Channel wall relief is shown for the entire channel (Fig. 4.61) regardless of channel type. 

For the uppermost portion the relief is that of the confining bathymetry; the relief of the main 

incised channel is shown separately. The relief varies from 35 to 486 m on the southwestern side 

and from 31 to 790 m on the northeastern side. The relief is highest near the 1890 m isobath and 

corresponds to the first profile. There is a decrease in relief from the first to second profiles, 

between the 1890 and 2000 m isobaths. Lower relief, although more variable, characterizes the 

channel between the 2000 and 3750 m isobaths. The channel section near the terminus between 

the 3850 and 4150 m isobaths has the lowest and most uniform relief. The lowest relief of -30 m 

is still well above the stated accuracy for depth determination of 0.5% of water depth (Gardner, 

2004; Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product Description) for the 

depth of 4150 m, which is ~21 m. 
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Figure 4.61 .Change in total channel wall relief with increased thalweg water depth for Oceanographer canyon 
channel. 

The total relief of the abutting valley walls (Fig. 4.62) varies from 22 to 280 m on the 

southwestern side and from 37 to 704 m on the northeastern side. The lowest 22-m relief is 

greater than the stated accuracy for depth determination of 0.5% of water depth (Gardner, 2004; 
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Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product Description) for the depth of 

-3200 m, which is 16 m. Note that profiles 8, near the 2600 m isobaths, and 23, near the 3400 m 

isobaths do not have definable level surfaces on the southwestern sides from which an abutting 

valley wall relief can be measured. 
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Figure 4.62.The change in relief of the northeastern and southwestern abutting valley walls with increased 
thalweg water depth for Oceanographer canyon channel. 

The channel wall relief of the main incised channel (Fig. 4.63) varies from 37 to 225 m on 

the southwestern side and from 32 to 177 m on the northeastern side. The southwestern channel 

wall relief is high, (-225 m) in the uppermost portion of channel, which decreases to -90 m by the 

2250 m isobath. The southwestern channel wall relief is variable between the 2250 and 3200 m 

isobaths, where there is a prominent peak that corresponds to profile 15. There is then a variable 

decrease in the southwestern channel wall relief with increased thalweg water depth to the 3750 

m isobath. The northeastern channel wall relief starts low, near 55 m, which is followed by three 

peaks of increased magnitude near the 2000, 2250, and the 2560 m isobaths with relief 

measurements of 125, 140 and 175 m, respectively. The largest peak of 175 m near the 2560 m 

isobath corresponds to profile 7. From the 2600 m isobath there is a decrease in the northeastern 
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channel wall relief with increased thalweg depth to the 3750 m isobath. Note that profile 23, near 

the 3400 m isobath, has an incised channel height defined only on the northeastern side from 

which a relief can be measured. 
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Figure 4.63. Change in channel wall relief of the main incised channel with increased thalweg water depth for 
Oceanographer canyon channel. 

The total top width is shown for the entire channel (Fig. 4.64) and varies from 822 to 

12256 m. The channel top width in the uppermost portion between the 1890 and 3290 m isobaths 

is variable, between 5500 and 10000 m. There is an anomalously low channel top width of 3225 

m near the 3400 m isobath. The lowermost Type II section between the 3460 and 3750 m 

isobaths has the widest top widths of between 9400 and 12250 m. The Type I section at the end 

of the channel, between the 3850 and 4150 m isobaths, displays the narrowest and most uniform 

top widths of between 800 and 1200 m. 
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Figure 4.64. Change in top width with increased thalweg water depth for Oceanographer canyon channel. 

The top width of the main incised channel (Fig. 4.65) ranges from 813 to 1676 m and is 

very variable. There is no distinct pattern with increased thalweg water depth. 
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Figure 4.65. Change in the top width of the main incised channel with increased thalweg water depth for 
Oceanographer canyon channel. 
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The widths of the level surfaces (i.e., terrace-like features) adjacent to the main incised 

channel (Fig. 4.66) range from 445 to 4192 m on the southwestern side and from 419 to 6586 m 

on the northeastern side. There is a variable increase in the widths of the southwestern terrace

like features with increased thalweg depth. The widths of the northeastern terrace-like features 

are consistently greater than those of the southwestern side for the middle portion of channel 

between the 2600 and 3200 m isobaths. The profile of the northeastern terrace-like features also 

shows more variability and peaks. The greatest width of nearly 6600 m is on the northeastern 

side near the 3500 m isobath. Note that profiles 8, near the 2600 m isobath, and 18, near the 

3400 m isobath, only have definable level surfaces on the northeastern side of the main channel. 

7000 

6000 

5000 

£4000 

0) 

| 3000 
(5 

2000 

1000 

0 
1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 

Thalweg Water Depth (m) 

Figure 4.66. Change in width of terrace-like features adjacent to the incised thalweg with increased thalweg water 
depth for Oceanographer canyon channel. 

The total floor width (Fig. 4.67) is calculated as the distance between the base of the 

abutting valley walls, which includes both the widths of the terrace-like features and the width of 

the main incised channel. The total floor width varies from 2632 to 9998 m. The floor width is 

variable between the 1850 and 3300 m isobaths, although generally <5000 m. The floor width is 

widest, nearly 10000 m, near the 3500 m isobath and the widths down-slope from the 3500 m 
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isobath to the 3750 m isobath remain greater than those of the upper portion of channel. Note 

that no total floor widths were measured for profiles 8, near the 2600 m isobath, or 18, near the 

3400 m isobath, which have only one terrace-like feature defined. 
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Figure 4.67. Change in total floor width with increased thalweg water depth for Oceanographer canyon channel. 

The width of the confining valley walls (Fig. 4.68) varies from 245 to 3036 m on the 

southwestern side and from 413 to 3862 m on the northeastern side. There is a decrease in width 

on both sides of the channel from the start of the channel to the 2600 m isobath. The width of the 

southwestern wall continues to decrease to a minimum near the 3200 m isobath, which is 

followed by a peak. The widths for the northeastern valley walls increase dramatically in this 

interval (between the 2600 and 3200 m isobaths) and are mainly -3000 m wide. The width of the 

northeastern valley wall is variable toward the end of the Type II section while the width of the 

southwestern valley wall shows a more steady increase down-slope from the 3400 m isobath. 
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Figure 4.68. Change in the width of the abutting walls with increased thalweg water depth for Oceanographer 
canyon channel. 

4.1.5.3. Summary of Cross-Sectional Profiles. Oceanographer canyon channel evolves 

from Oceanographer Canyon, which indents the shelf edge (McGregor, 1985). The canyon 

channel encompasses the segments both upslope and down-slope of the confluence with 

Lydonia canyon channel near the 3490 m isobath. The channel displays Type II channel 

morphology for the first 23 profiles, and after a brief section where the channel becomes hard to 

define at the 100 m resolution of the data between the 3750 and 3850 m isobaths, the channel 

displays Type I channel morphology to its terminus near the 4150 m isobath. The channel was 

divided into 6 subsections for detailed description of channel morphology. 

There is a main channel incised into a broad valley in the shallowest section of the 

channel system surveyed between the 1850 and 2500 m isobaths. Crest-features directly border 

the main incised channel and the seafloor surfaces adjacent to the incised channel (terrace-like 

features) are often at different heights on either side of the channel. There is a confluence with a 

channel from the northeast near the 2115 m isobath, which is presumably Filebottom Canyon due 
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to the consistent merge depth observed by McGregor (1985). Although the channel continues to 

display characteristics typical of Type II channel morphology in the second section between the 

2500 and 2750 m isobaths, the level surfaces that border the main incised channel are more 

irregular or nearly absent. These profiles correspond to a change in channel course toward the 

southwest near the 2560 m isobath. The channel begins to bend back toward the southeast at the 

start of the third section near the 2845 m isobath and the level seafloor surfaces adjacent to the 

incised main channel become more pronounced, although the confining bathymetry on either side 

is subdued. The channel continues a gradual bend toward the east from the 3125 m isobath 

through the remainder of the section. The fourth section of Oceanographer canyon channel 

begins just upslope from the confluence with Lydonia canyon channel near the 3490 m isobath. 

At the confluence there is a concurrent sharp change in channel course toward the south. Down-

slope from the confluence, the level surfaces adjacent to the incised thalweg widen and become 

more distinct, but are hummocky. There is a brief section where the channel becomes nearly 

indistinguishable from the adjacent seafloor at the 100-m resolution of the data between the 3750 

and 3850 m isobaths and two indistinct channels are present. The channel displays low-relief, 

Type I channel morphology in the lowermost section of the channel down-slope from the 3850 m 

isobath to the terminus of the channel near the 4150 m isobath. The channel passes Mytilus 

Seamount, which is to the northeast of the channel, and although the seafloor is nearly level on 

either side of the channel, the channel does not appear to be incised into a broad valley. 

It is evident that Oceanographer canyon channel has complicated morphology and 

displays typical Type II channel morphology with an incised thalweg and adjacent terrace-like 

features all within broad confining bathymetry for the majority of its length. Only near the end 

does a small channel characteristic of a Type I channel emerge briefly. It is clear from the total 

relief and total width plots that these segments of channels have very different morphology: the 

Type I channel is much narrower and has much lower relief. 

The description of the uppermost portion of Oceanographer canyon channel, however, is 

consistent with the suggestion of McGregor (1985) that Oceanographer canyon channel between 

the extents of the survey area of 2100 to the 2800 m isobaths has experienced two stages of 
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incision and the present channel is incised in a broad valley. The complexity of the incision into a 

broader valley necessitated a thorough description of parameters such as the width and relief of 

the main incised channel, as well as the width of the terrace-like features. Although most 

parameters are variable with increased thalweg water depth, it appears that local effects such as 

bends in the channel and confluences affect the morphology. For example, two prominent peaks 

are evident in the plot of the channel wall relief of the main incised channel. One peak occurs on 

the northeastern side near the 2500 m isobath and corresponds to profile 7 and a bend in the 

channel toward the southwest. Another peak in relief occurs on the southwestern side of the main 

incised channel near the 3200 m isobath. This corresponds to profile 15 and a bend in the 

channel back toward the east. Just upslope from the confluence with Lydonia canyon channel 

near the 2490 m isobaths where the channel bends sharply toward the south, the main incised 

channel abuts the confining valley wall on the southwestern side and the two are 

indistinguishable from each other. It appears that in two other instances, near profile 7 and 15, 

and the 2560 and 3180 m isobaths, respectively, there is a wide terrace-feature on the inside of 

the channel bends, while the channel abuts the confining valley wall on the outside of the bend. 

Additionally, both the channel top and floor widths increase at and down-slope from the 

confluence with Lydonia canyon channel. 

4.2. North Canyon Channels 

The channels located in the North section of the margin (Fig. 3.4) from north to south are 

Hydrographer, Veatch, Jones Valley and Hudson canyon channels (Fig. 1.1). Hydrographer and 

Veatch canyon channels are located along the southeastern New England continental margin 

between Georges Bank and the Middle Atlantic region. Although not connected to any modern 

river system, primary riverine locations and dispersal patterns delineated by Poag (1992) show 

that ancient river systems in eastern Massachusetts contributed to the formation of the 

southeastern New England continental margin, however, it is not clear how far north riverine 

influence affected the margin. Others have hypothesized that the formation of canyons along the 

New England margin are related to the glacial outwash drainages of the Pleistocene 

143 



deglaciations (Pratt, 1967; Pilkey and Cleary, 1986) and from dewatering during glacial lowstands 

(O'Leary and Dobson, 1992). 

Hudson and Jones Valley canyon channels are located southwest of Hydrographer and 

Veatch canyon channels, seaward of Long Island and New Jersey. Previous studies such as that 

of Pratt (1967) interpreted Hudson canyon channel to branch on the lower continental margin, but 

it has been recognized that this branch constitutes Jones Valley channel, which is a separate 

canyon channel entirely (Shor and McClennen, 1988). Jones Valley canyon channel, also called 

Carsten's Valley, is located immediately northeast of Hudson canyon channel and has been 

interpreted to lack a landward extension (Shor and McClennen, 1988). 

4.2.1. Hydrographer Canyon Channel 

4.2.1.1. Channel Description and Cross-Sectional Geometry. Hydrographer canyon 

channel is located on the continental margin off of southeastern New England (Fig. 4.69) and 

evolves from Hydrographer Canyon, which indents the shelf edge (Shor and McClennen, 1988). 

According to Pratt (1967), the channel was observed to be narrow but sharply defined and -155 

km in length. From the data used in this study, the length of Hydrographer canyon channel is 

found to be -255 km between the 2270 and 4655 m isobaths, which is much greater than Pratt's 

(1967) estimate. 

A total of 52 cross sections were evaluated at 5000 m increments down the length of 

Hydrographer canyon channel (Fig. 4.70). The channel displays Type I morphology down its 

entire length and is generally narrow with well-defined, V-shaped channel morphology. The 

shallowest portion of the channel has many terrace-like features and slumps along the floor of the 

channel. The channel then grades into a section with closely spaced scalloped edges. This 

segment is followed by a region that has larger and more irregular scalloped features along the 

edge of the channel and the space between the scalloped features increases as well. There is a 

portion of the channel where a well-defined channel becomes hard to determine at the 100-m 

resolution of the data and several indistinct channels are present, but further down-slope the 

channel displays a more pronounced Type I channel morphology to its terminus. The channel is 

144 



subdivided into a total of 8 sections to further describe the morphology based on cross-sectional 

geometry and channel plan shape. 
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Figure 4.69. Overview of Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI 
background. Location of Hydrographer canyon channel is shown in the yellow box. Ny =Nygren, M=Munson, Po : 
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Figure 4.70. Overview of Hydrographer canyon channel with cross profiles in white and numbered. Sections that 
the channel was subdivided into for further discussion are shown with black brackets and numbered. 
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The uppermost segment of Hydrographer canyon channel surveyed is located between 

the 2270 and 2800 m isobaths and encompasses profiles 1 through 8 (Figs 4.71 and 4.72). This 

portion of channel is generally V-shaped in cross section and characterized by terrace-like 

features on the edges of the channel floor that originate from slumps along the channel walls. 

These features are evident as irregularities in the cross sectional profiles, such as step-like 

features in profiles 1, 2, 4 and 8 or broadly sloping sides in profiles 5 and 10. 

Figure 4.71. Profiles 1 through 4 that comprise the upper portion of section 1 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to terrace like 
features. 
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Figure 4.72. Profiles 5 through 8 that comprise the lower section of section 1 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10 Black arrow points to channel axis, red arrow points to terrace-like 
feature. 

The second section of Hydrographer canyon channel is located between the 2800 and 

3150 m isobaths and encompasses profiles 9 through 14 (Fig 4 73) The cross sectional profiles 

become more regularly V-shaped with sharp contacts between the channel nms and the adjacent 

seafloor There are not as many slumps in this section as in the uppermost section 

148 



0 1000 2000 3000 4000 9000 10000 11000 12000 13000 HOOO 15000 16000 

2600 

2650 

2700 

2750 

2800 

2850 

2600 

2650 

2700 

2750 

2800 

2850 

2900 

2950 

2000 4000 

syvj 

2750 

2800 

2850 

2900 

2950 

3000 

3050 

2850 

^•300 

2950 

300G 

3050 

3100 

SW 

6000 8000 

10000 12000 

6000 8000 

10000 12000 14000 16000 

\m 
Profile 10 

12000 14000 16000 18000 

NE 

Profile 11 

Profile 12 

12000 14OO0 16000 18000 

NE 

Profile 13 

m 
Profile 14 

0 1000 2OQ0 3000 4000 5TJ00 6000 7000 8000 °000 10000 1 000 12000 13000 14000 15000 16000 I7O00 
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vertical exaggeration of 10. Black arrow points to channel axis. 

149 



The third section of channel is located between the 3150 and 3450 m isobaths and 

encompasses profiles 15 through 20 (Fig. 4.74). In plan view the segment is mainly straight, with 

narrow, closely spaced scalloped-features along the side walls of the channel. The cross profiles 

become very symmetrically V-shaped in morphology near profile 16 and the 3240 m isobath. The 

channel remains V-shaped and sharp contacts characterize the transition between the channel 

rim and the adjacent seafloor for the remainder of the section. 

Figure 4.74. Profiles 15 through 20 that comprise section 3 of Hydrographer canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis. 
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The fourth section of channel is located between the 3450 and 4000 m isobaths and 

encompasses profiles 21 through 31 (Figs 4.75 and 4.76) Upslope from profile 21, near the 

3465 m isobath, a small channel-like feature enters Hydrographer canyon channel from the 

northwest The cross-profile geometry of this segment of Hydrographer canyon channel is very 

similar in morphology to that of section 3 with a very symmetrical, V-shaped channel. Sharp 

contacts continue to characterize the transition from the channel rim to the adjacent seafloor. In 

this section, however, the channel wall relief decreases with increased distance and depth down-

channel and in plan view the channel shows distinctly more irregularity with wider spaced and 

larger scalloped-features along the side walls of the channel. 

Figure 4.75. Profiles 21 through 24 that comprise the upper part of section 4 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.76 Profiles 25 through 31 that comprise the lower portion of section 4 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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The fifth section of Hydrographer canyon channel is located between the 4000 and 4200 

m isobaths and encompasses profiles 32 through 37 (Fig. 4.77). This section is characterized by 

a decrease in channel wall relief and the cross-sectional geometry is no longer consistently 

symmetrical and V-shaped, but ranges between V-shaped and U-shaped. 
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Figure 4.77. Profiles 32 through 37 that comprise section 5 of Hydrographer canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis. 
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The sixth section of channel is located between the 4200 and 4310 m isobaths and 

encompasses profiles 38 through 40 (Fig. 4.78). A distinctly well-defined channel becomes hard 

to distinguish from the adjacent seafloor It appears that the main channel splits into several 

indistinct channels, which are evident in profiles 39 and 40. 
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Figure 4.78. Profiles 38 through 40 that comprise section 6 of Hydrographer canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis, red arrow is secondary channel. 
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The seventh channel segment is located between the 4310 and 4610 m isobaths and 

encompasses profiles 41 through 50 (Figs 4 79 and 4 80) Several channels that were apparent 

in the previous section appear to merge near the 4310 m isobath and a distinct single channel 

reappears The channel has low channel wall relief and inconsistent cross-sectional morphology 

that ranges between U-shaped and V-shaped. 

3900 

3950 

4000 

-1050 

-4100 

-1150 

-4200 

4250 

4300 

3S50 

-4000 

4050 

-4100 

4150 

4200 

4250 

4300 

4150 

C 

4000 

-4050 

-4100 

4150 

4200 

-1250 

-4300 

4350 

-4050 

4100 

4150 

4200 

-4250 

-4300 

-4350 

4400 

-4053 

-4100 

4150 

-4200 

•42S0 

4300 

-4350 

440Q 

C 

lIS 

4 

» 2000 

@ 

2000 

[sw] 

) 2000 

[iwl 

2000 

13 

2000 

4000 

, 

4000 

i 

4000 

^ 
4080 

4000 

-I 

^ 

6000 

_ 

6O00 

6000 

oOQO 

6000 

8000 

4 

8000 

8000 

-

8000 

8000 

. 1 _ 4 
10000 12000 

J 

I 

+ 
10000 12000 

| 
I + 

lOOOO 12000 

r 1 • 

10000 12000 

1 

1 + 
10000 12000 

_ 
•t— ™ 

14000 

1. 

14000 

I4O0O 

worn 

14000 

- i— 

16000 

_ 

16000 

16000 

16000 

16000 

1, 

* — 1 

18000 

18000 

iaooo 

t 

13000 

18000 

, m 
|jPr©ffie-4! | 

— t 

20000 22080 

H 
| frof l le42| 

2O0O0 

[N| 
[frofile-«| 

20000 

@ 
[Profile 441 

**-

20000 

H 
[profile 451 

20000 

Figure 4.79. Profiles 41 through 45 that comprise the upper part of section 7 of Hydrographer canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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The lowermost segment of channel is located between the 4610 and 4655 m isobaths 

and encompasses profiles 51 and 52 (Fig 4.81). In this section the channel becomes 

indistinguishable from the surrounding seafloor bathymetry at the 100 m resolution of the data. 
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Figure 4.81. Profiles 51 and 52 at the terminus of Hydrographer canyon channel; profiles have a vertical 
exaggeration of 10. 

4.2.1.2. Quantitative Morphologic Parameters. Hydrographer canyon channel displays 

well-defined channel morphology for most of its length. A longitudinal profile and plots of channel 

wall relief and channel top width against channel floor water depth were constructed. However, 

Hydrographer canyon channel is generally V-shaped and the floor width was generally 

unresolvable at the 100 m resolution of the data. Although there were some sporadic U-shaped 

cross-profiles, most of the floor widths would be given a value of 100 m (Refer to Methods 

Section 3.6.1) and a plot was not constructed. 

The longitudinal profile (Fig. 4.82) is constructed by connecting the deepest depths of the 

channel axis from each cross section. The profile is generally straight and lacks major concavities 

and convexities although minor inflections do exist down the length of the channel. These occur 

near the 3430, 3565, 4095, and 4450 m isobaths. 

157 



2000 

2500 

% 
^ 3 0 0 0 

Q 

ifi 
| 3500 
o o 
u. 
15 
c 4000 
CO 

o 

4500 

5000 
C 

1 1 1 1 

\ . y, ^yy 
* * » * 

^»w / 
^Su y 

^ s * * ^ 

n s ^ i 

1 1 t 1 

) 50 100 150 200 
Distance Down-Channel (km) 

/ 
V 

250 

Figure 4.82. Longitudinal profile for Hydrographer canyon channel. Arrows point to minor inflections in the 
profile. 

Channel wall relief (Fig. 4.83) is defined as the vertical distance between the channel 

floor and the channel rim and calculated as the difference between the measured water depth to 

the channel floor and the water depth to each channel rim. The channel wall relief varies from 20 

to 257 m on the southwestern side and from 11 to 220 m on the northeastern side. The channel 

wall relief increases to a maximum between the 3500 and 3900 m isobaths. The peak in channel 

wall relief is followed by a sharp decrease to <50 m near the 4000 m isobath. From the 4000 m 

isobath to the terminus of the channel, the channel wall relief is much lower, although variable. In 

addition, the southwestern channel wall relief is consistently greater than the northeastern 

channel wall relief. The 20-m lowest relief on the southwestern side is close to, but less than, the 

accuracy for depth determination of 0.5% of water depth (Gardner, 2004; Cartwright and Gardner, 

2005; Kongsberg Simrad EM 120 Product Description) for the water depth of -4300 m, which is 

-22 m. The 11-m minimum relief on the northeastern side is below the stated accuracy for depth 

determination of 0.5% of water depth for the water depth of -4200 m, which is 21 m. These relief 

measurements may not accurately portray real features. 
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Figure 4.83. Change in channel wall relief with increased channel floor water depth for Hydrographer canyon 
channel. 

The top width of the channel (Fig. 4.84) is defined as the horizontal distance between the 

tops of the channel rims. The top width of the channel varies from 1185 to 5184 m and there is no 

distinct pattern between channel top width and increased channel floor water depth. Although 

fairly variable, the channel top is generally between 1000 and 2500 m wide until near the 4250 m 

isobath where the channel widens dramatically for a brief section. After this anomalous peak, the 

channel top narrows and becomes comparable to the widths upslope from the peak. 
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Figure 4.84. Change in channel top width with increased channel floor water depth for Hydrographer canyon 
channel. 

4.2.1.3. Summary of Cross-Sectional Profiles. Hydrographer canyon channel evolves 

from Hydrographer Canyon, which indents the shelf edge (Shor and McClennen, 1988). 

Hydrographer canyon channel traverses for -255 km between the 2270 and 4655 m isobaths and 

displays well-defined, Type I channel morphology for nearly its entire length. The channel was 

subdivided into 8 sections for further description based on cross-sectional morphology. 

The uppermost section, between the 2270 and 2800 m isobaths, is characterized by 

terrace-like features on the edges of the channel floor and slumps along the side walls. The 

channel becomes more regularly V-shaped with sharper contacts between the channel rim and 

the adjacent seafloor in the second section, between the 2800 and 3150 m isobaths. The third 

section, between the 3150 and 3450 m isobaths, is a mainly straight portion of channel with 

narrow, closely spaced scalloped features along the walls of the channel. The profiles are very 

symmetrically V-shaped with sharp transitions between the channel rim and the adjacent 

seafloor. The profiles in the fourth section, between the 3450 and 4000 m isobaths, are very 

similar in morphology to those of section 3 and the channel is very symmetrical and V-shaped. In 
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plan view, however, the channel shows distinctly more irregularity with larger and more widely 

spaced scallop-shaped features along the side walls of the channel. The fifth section, between 

the 4000 and 4200 m isobaths, is characterized by a sharp decrease in channel wall relief and an 

increase in the irregularity of cross sectional morphology. The profiles become less symmetrical 

and less V-shaped. For a brief section between the 4200 and 4310 m isobaths a distinctly well-

defined channel becomes hard to distinguish from the adjacent seafloor and it appears that the 

main channel splits into several channels. These channels merge near the 4310 m isobath and 

for the remainder of the seventh section to the 4610 m isobath, a distinct single channel 

reappears. The channel walls have low relief, and the channel exhibits varying cross-sectional 

morphology between U-shaped and V-shaped. The channel becomes indistinguishable from the 

surrounding seafloor bathymetry between the 4610 and 4655 m isobaths. 

Hydrographer canyon channel generally displays a well-defined channel, which is typical 

of Type I channel morphology. A longitudinal profile was constructed, as well as plots of channel 

wall relief and channel top width against channel floor water depth. Minor inflections exist down 

the length of the longitudinal profile correspond to cross profiles 20, 23, 35 and 45, near the 3430, 

3565, 4095, and 4450 m isobaths, respectively. Although profile 20 is located just upslope from 

where a small channel-like feature enters Hydrographer canyon channel from the northwest and 

a concurrent bend in the channel, no morphologic features near profiles 23, 35, or 45 are readily 

evident that might account for the inflections and are likely due to inherent variability in the 

channel. 

The most distinct trend is apparent in the profile of channel wall relief with increased 

channel floor water depth. The channel wall relief increases to a maximum of 200 to 250 m 

between the 3500 and 3900 m isobaths. This region corresponds mainly to sections 3 and 4 

where the channel is very well-defined. This peak is followed by a sharp decrease to <50 m near 

the 4000 m isobath and the relief remains low for the remainder of the channel. There are several 

relief measurements that are less than the accuracy for depth determination of 0.5% of water 

depth (Gardner, 2004; Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product 

Description) for the depth of -4200 m, which is 21 m. These very low relief measurements 
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correspond to profiles in section 6, between 4200 and 4310 m isobaths, where a distinct channel 

becomes hard to define and several channels exist. Although the top width of the channel is 

variable and lacks a distinct trend with increased channel floor water depth, there is a large peak 

near the 4250 m isobath which also corresponds to section 6 and the portion of channel that 

lacks a distinct channel. Because none of the individual channels is more prominent than the 

others, the top width for this section encompasses the total width across the span of individual 

channels, and thus the top width for this section is much larger. For the majority of the length of 

channel, no floor width was able to be resolved at the 100 m resolution of the data and the scale 

(10x) used and a profile not created. 

It is evident that Hydrographer canyon channel displays Type I channel morphology with 

a well-defined channel for the majority of its length. However, several patterns in down-channel 

morphology are evident. The channel is mainly V-shaped and contains a region where the 

channel appears to split into several channels, which then merge into a more well-defined 

channel. In addition, a distinct trend in channel wall relief with increased channel floor water 

exists, in which the relief increases to a maximum between the 3500 m and 3900 m isobaths. 

4.2.2. Veatch Canyon Channel 

4.2.2.1. Channel Description and Cross-Sectional Geometry. Veatch canyon channel is 

located along the continental margin off of southeastern New England (Fig 4.85). The channel 

evolves from Veatch Canyon (Pratt, 1967), which indents the shelf edge (Shor and McClennen, 

1988). According to Pratt (1967), the channel was interpreted as a broad, leveed system that 

extended for at least 64 km across the lower continental margin. The length of Veatch canyon 

channel is actually much greater and extends for at least 260 km between the 2160 and 4600 m 

isobaths. 

A total of 52 cross sections were constructed at 5000 m intervals down the length of 

Veatch canyon channel (Fig. 4.86). The channel is well-defined and U-shaped for most of its 

length. Although the uppermost portion of channel between the 2160 and 2600 m isobaths is 

generally U-shaped, there is some irregularity in channel rim height on either side, as well as 

irregular bottom morphology. Near the 2600 m isobath, however, the channel rims become much 
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more symmetrical and the channel floor becomes less hummocky. Farther down-channel, 

between the 3025 and 3200 m isobaths, the northeastern channel rim slopes up more gently and 

is less well-defined than the southwestern rim. Down-slope the channel becomes more 

symmetrically U-shaped again between the 3200 and 4175 m isobaths. The channel narrows 

near the 4175 m isobath and the channel wall relief decreases. Near the 4400 m isobath the 

channel wall relief is very low and the channel becomes indistinguishable from the surrounding 

seafloor near the 4600 m isobath. The channel was subdivided into 6 sections for further 

description based on cross-sectional geometry and channel plan shape. 

Figure 4.85. Overview of Atlantic margin bathymetry between Cape Hatteras and Georges Bank with EOPOI 
background. The location of Veatch canyon channel is shown in the yellow box. Ny =Nygren, M=Munson, Po = 
Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, 
Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure 4.86.Overview of Veatch canyon channel with cross profiles in white and numbered. Sections that the 
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The uppermost segment of Veatch canyon channel surveyed is located between the 

2160 and 2850 m isobaths and encompasses the first 11 profiles (Figs. 4.87 and 4.88). The 

morphology of the channel is generally U-shaped, but exhibits some irregularity in channel rim 

height on either side in the uppermost portion of the section between the 2160 and 2275 m 

isobaths. This is particularly evident in profiles 1 and 2. In addition, the channel exhibits irregular 

bottom morphology between the 2275 and 2600 m isobaths. This is evident in profiles 3, 4, 5 and 

6. The channel becomes more symmetrically U-shaped with a broad, flat channel floor near 

profile 7 and the 2600 m isobath. This morphology characterizes the channel for the remainder of 

the section. 

Figure 4.87. Profiles 1 through 4 that comprise the upper portion of the shallowest section of Veatch canyon 
channel; cross profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.88. Profiles 5 through 11 that comprise the lower portion of the shallowest section of Veatch canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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The second section of Veatch canyon channel is located between the 2850 and 3200 m 

isobaths and encompasses profiles 12 through 17 (Figs. 4.89 and 4.90). The southwestern rim of 

the channel is well-defined and crests define the channel rim between the 3075 and 3200 m 

isobaths. This is evident in profiles 15 through 17. However, the northeastern channel wall slopes 

up more gently and is less well-defined between the 3025 and 3200 m isobaths. The northeastern 

channel rim often simply grades into the adjacent seafloor without a sharp break in slope between 

the channel rim and the adjacent seafloor. This is evident in profiles 14 through 17. 

Figure 4.89. Profiles 12 through 14 that comprise the upper portion of section 2 of Veatch canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.90. Profiles 15 through 17 that comprise the lower portion of section 2 of Veatch canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to crests that 
delineate the channel rim. 

The third section of Veatch canyon channel is located between the 3200 and 3450 m 

isobaths and encompasses profiles 18 through 23 (Fig. 4.91). The channel rims are generally 

well-defined on both sides of the channel and there is generally a sharp contact between the 

channel rim and the adjacent seafloor However, portions of the northeastern/southeastern 

channel walls slope upward more gently between the 3325 and 3375 m isobaths This is evident 

in profiles 20 and 21 The channel floor exhibits some irregularity in this same interval, as well as 

in the upper portion of the section. This is most evident in profile 18. In plan view the channel 

exhibits some curvature (Fig 4 86) 
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Figure 4.91. Profiles 18 through 23 that comprise section 3 of Veatch canyon channel; profiles have a vertical 
exaggeration of 10 Black arrow points to channel axis 
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The fourth segment of channel is located between the 3450 and 4175 m isobaths and 

encompasses profiles 24 through 37 (Figs. 4.92, 4.93, 4.94). Channel cross-sectional morphology 

becomes more symmetrical and is consistently U-shaped with little channel floor irregularity. 

There are generally well-defined transitions between the channel rim and the adjacent seafloor. In 

plan view the channel becomes distinctly different, with a scalloped appearance to the edges and 

side walls of the channel. 

Figure 4.92. Profiles 24 through 28 that comprise the upper portion of section 4 of Veatch canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.93 Profiles 29 through 33 that comprise the middle portion of section 4 of Veatch canyon channel, 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.94. Profiles 34 through 37 that comprise the lower portion of section 4 of Veatch canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

The fifth segment of channel is located between the 4175 and 4400 m isobaths and 

encompasses profiles 38 through 45 (Figs. 4.95 and 4 96) Near the 4200 m isobath and profile 

38 the channel becomes abruptly narrower and more V-shaped. The remainder of the section 

down-slope is generally V-shaped although several narrow, U-shaped cross sections occur 

between the 4320 and 4350 m isobaths. These are evident in profiles 42 and 43. In plan view the 

channel still has a scalloped appearance along the channel side walls between the 3175 and 

4320 m isobaths However, down-slope from the 4320 m isobath to the end of the section these 
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features are not as prevalent In addition, it is evident that the channel wall relief decreases with 

increased distance and depth down-channel 

6000 8000 10000 12000 14000 16000 18000 20000 22000 

4000 6000 8000 10000 12000 14000 16000 18O00 20000 22000 

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 

4000 6000 8000 10000 12000 HOOO 16000 18000 20000 

Figure 4.95. Profiles 38 through 41 that comprise the upper portion of section 5 of Veatch canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.96. Profiles 42 through 45 that comprise the lower portion of section 5 of Veatch canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

The lowermost section of channel is located between the 4400 and 4600 m isobaths and 

encompasses profiles 46 though 52 (Fig. 4.97). The channel has much lower channel wall relief 

and starts to lose its distinct bathymetric expression. Although a shallow depression is evident, 

hummocky topography and gradation of the channel edges with the adjacent seafloor makes the 

channel hard to determine at the 100 m resolution of the data. At its terminus, the channel 

becomes indistinguishable from the adjacent seafloor. This is evident in profile 52. 
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Figure 4.97 Profiles 46 through 52 that comprise the lowermost section of Veatch canyon channel; profiles have 
a vertical exaggeration of 10. Black arrow points to channel axis 
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4.2.2.2. Quantitative Morphologic Parameters. Veatch canyon channel displays a well-

defined channel for most of its length that is typical of Type I channel morphology. A longitudinal 

profile was constructed, as well as plots of channel wall relief, channel top width and channel floor 

width against channel floor water depth. The sides of the channel (looking upslope) will be 

referred to as southwest and northeast, because the majority of channel cross-profiles were 

drawn from the southwest to the northeast, however, some of the profiles were drawn with 

different orientations due to local differences in channel course. 

The longitudinal profile (Fig. 4.98) was constructed by connecting the deepest depths of 

the channel axis from each cross section. The profile of Veatch canyon channel is generally 

straight and lacks major concavities and convexities. Several small inflections do occur, two 

between 100 and 150 km down-channel and two slightly larger irregularities closer to the end of 

the channel. The inflections occur in the vicinity of profiles 23, 28, 40 and 45, which correspond to 

near the 3430, 3700, 4300 and 4400 m isobaths, respectively. 
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Figure 4.98. Longitudinal profile of Veatch canyon channel. Black arrows point to minor inflections in the profile. 



Channel wall relief (Fig. 4.99) is defined the vertical distance between the channel floor 

and the channel rim and is calculated as the difference between the measured water depth to the 

channel floor and the total water depth to each channel rim. The channel wall relief varies from 16 

to 259 m on the southwestern side and from 22 to 208 m on the northeastern side. The 

southwestern channel wall relief is much greater (>250 m) than the northeastern channel wall 

relief (<50 m) in the uppermost portion of channel near the 2160 m isobath. The southwestern 

channel wall relief decreases while the northeastern channel wall relief increases to the 2400 m 

isobath, where the two are nearly the same with -100 m of relief. A small peak occurs between 

the 2500 and 2750 m isobaths and is followed by a decrease in channel wall relief to the 3000 m 

isobath. The channel wall relief then increases to another, broader peak between the 3500 and 

4250 m isobaths. This larger peak is followed by a decrease in relief to the terminus of the 

channel. The southwestern channel wall relief is consistently greater than the northeastern 

channel wall relief and the two generally mirror one another. 

The 16-m minimum relief on the southwestern side of the channel is less than the stated 

accuracy for depth determination of 0.5% of water depth (Gardner, 2004; Cartwright and Gardner, 

2005; Kongsberg Simrad EM 120 Product Description) for a water depth of approximately 4400 

m, which is 22 m. The 22-m minimum depth on the northeastern side just below the stated 

accuracy for depth determination of 0.5% of water depth in a water depth of approximately 4600 

m, which is 23 m. These relief measurements may not be accurate representations of actual 

features. 
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Figure 4.99. Change in channel wall relief with increased channel floor water depth for Veatch canyon channel. 

The top width of the channel (Fig. 4.100) is defined as the horizontal distance between 

the channel rims and varies from 1413 to 5977 m. The top of the channel is generally between 

3500 and 4500 m wide in the uppermost section, between the 2160 and 3100 m isobaths. There 

is a sharp increase in top width near the 3200 m isobath to -6000 m. This corresponds to profile 

17. From the 3200 m isobath to the terminus of the channel there is a variable decrease in the 

channel top width, modified by several superimposed trends. There is a sharp decrease in the top 

width to -2400 m near the 3280 m isobath, which follows the maximum peak near the 3200 m 

isobath. The narrow top width near the 3280 m isobath is then followed by an increase to -4400 

m near the 3300 m isobath, and then the top width decreases to -2200 m near the 3750 m 

isobath. This is followed by an increase to -3400 m near the 4000 m. Finally, there is a variable 

decrease in channel top width from the 4000 m isobath to the terminus of the channel, 

punctuated once by a larger relief of -3200 m near the 4400 m isobath. 
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Figure 4.100. Change in channel top width with increased channel floor water depth for Veatch canyon channel. 

The width of the channel floor (Fig. 4.101) is defined as the horizontal distance between 

the bases of the channel walls and varies between <100 and 2225 m. The channel floor width is 

variable and shows a general decrease from -2200 m near the 2300 m isobath to -1100 m near 

the 2600 m isobath. The channel floor width then increases to a peak between the 2850 and 

3100 m isobaths and is between 1800 and 2175 m wide. This is followed by variable widths to the 

3300 m isobath. From near the 3300 m isobath there is a decrease in channel floor width to -500 

m near the 3700 m isobath. The channel floor width then increases to -1400 m near the 4000 m 

isobath and is followed by a decrease to -200 m in width near the 4200 m isobath. From the 

4200 m isobath to the terminus of the channel several of the cross-profiles were V-shaped and 

the floor width unresolvable at the 100 m resolution of the data. These were assigned a floor 

width value of 100 m. The floor width increases slightly in the middle of this interval however, to 

-500 m. 
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Figure 4.101. Change in channel floor width with increased channel floor depth for Veatch canyon channel. 

4.2.2.3. Summary of Cross-Sectional Profiles. Veatch canyon channel evolves from 

Veatch Canyon and extends for 260 km between the 2160 and 4600 m isobaths. The canyon 

channel displays Type I morphology for the entirety of its length and is generally U-shaped with a 

broad channel floor. The channel was subdivided into six sections for further description of the 

morphology based on channel cross-sectional geometry. 

The uppermost section of Veatch canyon channel surveyed, located between the 2160 

and 2850 m isobaths, is generally U-shaped, but exhibits some marked irregularity in channel rim 

height on either side as well as irregular bottom morphology. The channel becomes more 

symmetrically U-shaped with a broad and flat channel floor near the 2600 m isobath. In the 

second section, between the 2850 and 3200 m isobaths, the southwestern rim of the channel is 

well-defined. However, between the 3025 and 3200 m isobaths the northeastern channel rim is 

less well-defined and slopes up more gently. The northeastern rim often simply grades into the 

adjacent seafloor without a sharp break in slope between the channel rim and the adjacent 

seafloor. The channel rims become more distinct in the third section, between the 3200 and 3450 
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m isobaths, and there are generally sharp contacts between the channel rims and the adjacent 

seafloor. Sharp contacts between the channel rims and the adjacent seafloor are also evident in 

the fourth section, between the 3450 and 4175 m isobaths, and the channel becomes more 

symmetrical and is consistently U-shaped. In plan view, however, the channel walls and rims 

have a scalloped appearance. Near the 4200 m isobath the channel becomes abruptly narrower 

and more V-shaped. The remainder of the section down-slope from the 4200 m isobath is 

generally V-shaped although several narrow, U-shaped cross sections occur between the 4320 

and 4350 m isobaths. The scalloped appearance to the channel side walls becomes less evident 

from the 4320 m isobath to the end of the section, near the 4400 m isobath. The channel has 

much lower channel wall relief from the 4400 m to where the channel becomes indistinguishable 

from the adjacent seafloor at the terminus of the channel near the 4600 m isobath. 

Veatch canyon channel displays a well-defined channel for most of its length with typical 

Type I channel morphology. A longitudinal profile and plots of channel wall relief, channel top 

width and channel floor width against channel floor water depth were constructed. Several small 

inflections occur along the longitudinal profile that correspond to profiles 23, 28, 40 and 45, and 

near the 3430, 3700, 4300 and 4400 m isobaths, respectively. Profile 23 is located upslope from 

a bend in the channel near the 3465 m isobath. Down-slope from the bend the channel has a 

scalloped appearance to the edges and side walls of the channel. No morphologic features are 

readily evident that would account for the inflections near profiles 28 or 40. However, there 

appears to be a depression in the channel floor in profile 45 near the 4400 m isobath. 

The plot of channel wall relief with increased channel floor water depth shows two peaks, 

the greatest of which occurs between the 3500 and 4250 m isobaths. This larger peak 

corresponds to section 4 of Veatch canyon channel where the channel is most symmetrically U-

shaped. The southwestern channel wall relief is consistently greater than the northeastern 

channel wall relief although the two generally mirror one another. From near the 4250 m isobath 

to the terminus of the channel there is a decrease in channel wall relief. The lowermost section of 

channel between the 4400 and 4600 m isobaths encompasses the lowest channel wall relief 

measurements, some of which are below the stated accuracy for depth determination of 0.5% of 
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water depth (Gardner, 2004; Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product 

Description). Thus, some of the relief measurements in the lowermost section may not be true 

resolvable features. 

There is a sharp increase in channel top width near the 3200 m isobath of -6000 m, 

which corresponds to profile 17. This profile is within section 2 where the northeastern side of the 

channel becomes less well-defined and the channel wall slopes up gently without a sharp break 

in slope between the channel rim and the adjacent seafloor. The greatest channel floor widths 

also correspond to profiles in section 2. The channel floor width increases to a peak between the 

2850 and 3100 m isobaths and is between 1800 and 2175 m wide. 

It is evident that Veatch canyon channel displays typical Type I channel morphology with 

a well-defined channel for the majority of its length. However, several patterns stand out with 

regards to channel morphology. The channel floor and top widen in a section where the channel 

is less well defined and there is a distinct trend in channel wall relief where the relief increases to 

a maximum between the 3500 and 4250 m isobaths. 

4.2.3. Jones Valley Canyon Channel 

4.2.3.1. Channel Description and Cross-Sectional Geometry. Jones Valley canyon 

channel, also called Carsten's Valley, is located immediately northeast of Hudson canyon 

channel (Fig. 4.102). It has been interpreted to lack an upslope, landward extension (Shor and 

McClennen, 1988). The length of the channel studied begins near the 3000 m isobath and 

extends for a total of 128 km to near the 4000 m isobath. At its terminus, the channel widens and 

becomes less distinct. 

A total of 23 cross sections were constructed at 5000 m intervals down the length of the 

channel (Fig. 4.103). The first profile used for parameter calculation begins - 13 km down-slope 

from the 3000 m isobath, although two profiles are shown upslope from this location (Fig. 4.104). 

Jones Valley canyon channel is characterized by Type I channel morphology and a well-defined 

channel in its entirety. The channel exhibits some curvature and slump features in the upper 

portion, between the 3100 and 3450 m isobaths, but becomes essentially straight near the 3450 

m isobath. The channel becomes very symmetrically U-shaped with sharp contacts between the 
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channel rim and adjacent seafloor near the 3450 m isobath as well and remains as such to the 

terminus of the channel. The channel is subdivided into 3 sections in order to further describe the 

cross sectional morphology. 
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Figure 4.102. Overview of Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPO 
background and locations of canyon channels in black. Location of Jones Valley canyon channel is shown in the 
yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, 
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Figure 4.104. Profiles a and b that are located just upslope of the start of Jones Valley canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis. 

The uppermost section of Jones Valley canyon channel is located between the 3100 and 

3425 m isobaths and encompasses profiles 1 through 7 (Figs. 4.105 and 4.106). This section of 

channel exhibits bends in plan view (Fig. 4.103) as well as evidence of mass wasting along the 

northwestern channel rim. This is evident in profiles 5 through 7. An additional feature that is 

suggestive of mass wasting on the southeastern side of the channel is also evident in profile 2. 

Figure 4.105. Profiles land 2 that comprise the uppermost portion of section 1 of Jones Valley canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to slump 
features. 
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Figure 4.106. Profiles 3 through 7 that comprise the lower portion of section 1 of Jones Valley canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to slump 
features. 

The second segment of channel is located between the 3425 and 3900 m isobaths and 

encompasses profiles 8 through 21 (Figs 4 107 and 4 108) In plan view the channel is 

essentially straight (Fig. 4 103) and the channel is broadly U-shaped and flat bottomed in cross 

section The channel rims show sharp contacts with the nearly horizontal adjacent seafloor 

Channel wall relief decreases down-channel and localized hummocky bottom topography is 
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evident farther down-channel, between the 3650 and 3800 m isobaths. This is evident in profiles 

13through18. 
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Figure 4.107. Profiles 8 through 14 that comprise the upper portion of the second section of Jones Valley canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis and red arrow points to a 
hole feature. 
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Figure 4.108. Profiles 15 through 20 that comprise the lower portion of the second section of Jones Valley 
canyon channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis and red arrow 
points to a hole feature 
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The lowermost section of Jones Valley canyon channel is located between the 3900 and 

4000 m isobaths and encompasses profiles 21 through 23 (Fig. 4.109). The channel is irregular in 

the uppermost portion of the section, near the 3900 m isobath. This is evident in profile 21. The 

channel then becomes indistinguishable from the surrounding seafloor just down-slope, evident in 

profiles 22 and 23. This may be a possible depositional lobe region. 
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Figure 4.109. Profiles 21 through 23 which comprise the lowermost section of Jones Valley canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

4.2.3.2. Quantitative Morphologic Parameters. Jones Valley canyon channel displays a 

well-defined channel for most of its length that is typical of Type I channel morphology. A 

longitudinal profile and plots of channel wall relief, channel top width and channel floor width 

against channel floor water depth were constructed. The channel profiles change from being 

oriented predominately from the northwest to southeast for the first 7 profiles to predominately 
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southwest to northeast for profiles 8 through 23. 'West' and 'east' terminology will be used to 

distinguish either side of the channel, looking upslope. 

The longitudinal profile (Fig. 4.110) was constructed by connecting the deepest depths of 

the channel axis from each cross section, although hole-features that were evident in the floor of 

the channel were avoided. The profile is generally straight, however, there is an inflection near 

the 3750 m isobaths that corresponds to profile 15. 
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Figure 4.110. Longitudinal profile of Jones Valley canyon channel. Black arrow points to an inflection in the 
profile. 

Channel wall relief (Fig. 4.111) is defined as the vertical distance between the channel 

floor and the channel rim and calculated as the difference between the measured water depth to 

the channel floor and the water depth to each channel rim. The channel wall relief varies from 54 

to 335 m on the western side and from 57 to 330 m on the eastern side. The relief increases from 

the 3100 m isobath to a peak between the 3400 and 3750 m isobaths. The channel wall relief 

then decreases to the terminus of the channel near the 3900 m isobath. The eastern and western 

channel wall relief measurements generally mirror each other although the western side has 

slightly higher relief for the majority of the length of the channel. There is a distinctly large 
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difference in the channel wall relief near the 3400 m isobath where the eastern channel wall is 

higher than the western channel wall. 
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Figure 4.111. Change in channel wall relief with increased channel floor water depth for Jones Valley canyon 
channel. 

The top width of the channel (Fig. 4.112) is defined as the horizontal distance between 

the tops of the channel walls. The top width of the channel varies from 2825 to 6549 m and it is 

evident that the channel is wider at the uppermost section of channel but narrows considerably 

near the 3200 m isobath. There is no clear increase or decrease in top width with increased 

channel floor depth. Down-slope from the 3200 m isobath the top width is variable until the 3450 

m isobath, where the top of the channel is consistently -4000 m wide between the 3450 and 

3800 m isobaths. The channel top width then decreases to a minimum of -2800 m just down-

slope from the 3800 m isobath, followed by a slight increase to the terminus of the channel. 
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Figure 4.112. Change in channel top width with increased channel floor depth for Jones Valley canyon channel. 

The floor width of the channel (Fig. 4.113) is generally defined as the horizontal distance 

between the bases of the channel walls. The floor width ranges from 770 to 2843 m and is widest 

in the uppermost portion, but decreases sharply from the first to second profiles, between the 

3100 and 3200 m isobaths. The channel floor for the remainder of the channel is generally 

between 1000 and 1500 m wide and there is no consistent pattern of increased or decreased 

floor width with increased channel floor water depth. 
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Figure 4.113. Change in channel floor width with increased channel floor water depth for Joes Valley canyon 
channel. 

4.2.3.3. Summary of Cross-Sectional Profiles. Jones Valley canyon channel is located 

immediately northeast of Hudson canyon channel and has been interpreted to lack an upslope 

continuation (Shor and McClennen, 1988). The channel begins near the 3000 m isobath and 

extends for a total of -128 km to its terminus near the 4000 m isobath. The entirety of Jones 

Valley canyon channel is characterized as a Type I channel and the channel is generally broadly 

U-shaped and flat-bottomed. The channel was subdivided into 3 sections based on cross 

sectional morphology. 

The uppermost section exhibits some bends as well as evidence of mass wasting along 

the channel rims between the 3100 and 3425 m isobaths. The middle section, between the 3425 

and 3900 m isobaths, is essentially straight in plan view and the channel is broad, U-shaped, and 

flat bottomed. The rims are very symmetrical and there is a sharp contact between the channel 

rim and the adjacent seafloor. Channel wall relief decreases toward the end of the section and 

localized hummocky bottom morphology becomes evident between the 3650 and 3800 m 

isobaths. The well-defined channel morphology loses its bathymetric expression in the lowermost 
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section between the 3900 and 4000 m isobaths and there is a transition into a possible 

depositional lobe. 

Jones Valley canyon channel displays a well-defined channel for most of its length, which 

is typical of Type I channel morphology. A longitudinal profile was constructed, as well as plots of 

channel wall relief, channel top width and channel floor width against channel floor water depth. 

The longitudinal profile of Jones Valley canyon channel is generally straight, however, there is an 

inflection -65 km down channel near the 3750 m isobath. This corresponds to profile 15, and 

although a hole feature evident in the profile was the deepest part of the channel and was 

avoided, the inflection is likely the result of irregular channel floor morphology. Channel wall relief 

increases from the first profile near the 3100 m isobath to a maximum of 300 to 350 m between 

the 3400 and 3800 m isobaths. The channel wall relief then decreases to the terminus of the 

channel near the 3900 m isobath. The eastern and western channel rims generally mirror each 

other although the western channel wall has slightly higher channel wall relief than that of the 

eastern channel wall for the majority of the length of channel. There is a distinctly large difference 

between the eastern and western channel wall relief measurements near the 3400 m isobath 

where the eastern channel wall is higher than the western channel wall. This corresponds to 

profile 7, where there is evidence of a slump on the western channel wall. 

It is evident that the channel top is wider at the uppermost section where a less distinct 

channel is present (profiles 1 and 2) but narrows considerably as a well-defined channel takes 

shape. Although there is no consistent pattern of increased or decreased top width with increased 

channel floor water depth, the top of the channel is becomes consistently -4000 m in width 

between the 3450 and 3800 m isobaths. The channel floor width also starts off very wide, which 

corresponds to the less distinct canyon channel in the uppermost section. The floor width 

decreases as the channel becomes more well-defined, but, similar to the trend in the top width, 

there is no distinct pattern of increased or decreased floor width with increased channel floor 

water depth. 

Jones Valley canyon channel displays a well-defined channel for most of its length, which 

is typical of Type I channel morphology and several morphologic trends are evident. Both the 
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channel top width and floor width decrease as the channel becomes more well-defined near the 

3200 m isobath. In addition, the channel wall relief increases to a peak of 300 to 350 m between 

the 3400 and 3800 m isobaths. This region is also characterized by fairly uniform top width of 

-4000 m. 

4.2.4. Hudson Canyon Channel 

4.2.4.1. Channel Description and Cross-Sectional Geometry. Hudson canyon channel is 

located on the continental margin seaward of New York and New Jersey (Fig. 4.114). The 

channel evolves from Hudson Canyon, which indents the shelf edge near the 100 m isobath 

(Butman et al., 2006). The head of Hudson Canyon begins near the terminus of the Hudson Shelf 

Valley, although is separated from the valley by a shelf edge delta (Emery and Uchupi, 1972). 

The Hudson Shelf Valley crosses the continental shelf for 150 km and is the relict extension of 

the ancestral Hudson River and has not been entirely filled with sediment during the marine 

transgression (Thieler et al., 2007). Compared to the other canyon channels studied that cross 

the lower continental margin, Hudson Canyon is the deepest and longest and has been 

interpreted as a broad leveed system that deepens to more than 600 m approximately 65 km 

from the 2000-m contour (Pratt, 1967). The canyon-channel system extends for nearly 300 km 

between the 2330 and 4290 m isobaths although Shor and McClennen (1988) traced the Hudson 

canyon channel for more the 600 km to the Hatteras Abyssal Plain. 

A total of 62 cross sections were constructed at 5000 m intervals down the length of 

Hudson canyon channel (Fig. 4.115). The channel displays Type I morphology as a well-defined 

channel for its entire length. In the uppermost portion, between the 2300 and 3300 m isobaths, 

channel morphology is irregular and dominated by many slump and slide features along the 

channel rims, walls, and floor. There are several sharp bends and the channel is V-shaped with 

high channel wall relief between the 3300 and 3750 m isobaths. Down-slope, the channel is 

essentially straight between the 3750 and 3880 m isobaths although the channel remains V-

shaped with high channel wall relief. The channel wall relief increases to a maximum of between 

400 and 650 m between the 3500 and 3900 m isobaths. Near the end of the channel, between 

the 3880 and 4100 m isobaths, the channel is characterized by slump features along alternate 
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side walls of the channel; these are adjacent to an incised thalweg. The channel then widens 

considerably before becoming indistinguishable from the surrounding seafloor between the 4250 

and 4300 m isobaths. Hudson canyon channel was further subdivided into 7 sections based on 

cross sectional geometry and channel plan shape for a more detailed morphologic discussion. 
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Figure 4.114. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOP01 background and the 
location of Hudson canyon channel shown in the yellow box. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 
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Figure 4.115. Overview of Hudson canyon channel with cross profiles in white and numbered. The sections that 
the channel was subdivided into for further discussion are indicated with black brackets and numbered. 

The uppermost section of Hudson canyon channel surveyed is located between the 

2330 and 2950 m isobaths and encompasses profiles 1 through 12 (Figs. 4.116 and 4.117). This 

section is characterized by particularly hummocky bathymetry along the channel walls and rims 
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as a result of many slump and slide features along the channel walls. Although the channel rims 

are irregular, for the first part of the section between the 2330 and 2675 m isobaths, the channel 

is generally U-shaped and the floor is flat and free of debris. This is evident in profiles 1 through 

6. Although the channel shows some bends in plan view (Fig. 4.115), the channel generally 

trends toward the southeast. The channel floor becomes more irregular and hummocky between 

the 2675 and 2950 m isobaths because of slump and slide features. This is evident in profiles 7 

through 12. 

Figure 4.116. Profiles 1 through 6 that comprise the upper segment of section 1 of Hudson canyon channel; 
profiles have vertical exaggeration of 10. Black arrow points to channel axis. 
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The second section of Hudson canyon channel is located between the 2950 and 3150 m 

isobaths and encompasses profiles 13 through 17 (Fig. 4.118). This section occurs between two 

small, shallow, channel-like features that extend down-slope from the northeast and merge with 

Hudson canyon channel on its northeastern margin. The first merge occurs in the uppermost 

portion of the section, between the 2930 and 2995 m isobaths and profiles 12 and 13. According 

to Butman et al. (2004), five canyons that indent the upper continental margin northeast of 

Hudson canyon channel merge into one channel farther down-slope. This channel then joins 

Hudson canyon channel (Butman et al., 2004) and corresponds to the first merge identified here. 

This region shows a distinct bend in the channel toward the southwest (Fig. 4.115). However, 

near the 3015 m isobath and profile 14, the channel bends back toward the southeast (Fig. 

4.115). The second channel feature enters Hudson canyon channel between the 3120 and 3150 

m isobaths; this channel does not appear to continue far upslope. This region encompasses 

profile 17 and it is evident that the profile extends into the channel feature as manifested by the 

hummocky bathymetry on the northeastern side of the channel floor. In addition, the channel 

becomes less U-shaped and the channel floor becomes much more irregular throughout the 

section. Although the cross profiles show terrace-like features, this morphology is attributable to 

the slump features evident on the channel walls. A small thalweg appears to be incised into the 

debris between the 3050 m isobath and the end of the section. This is most prevalent in profiles 

15 through 17. 
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Figure 4.118. Profiles 13 through 17 that comprise the second section of Hudson canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis, red arrows point to terrace-like features, purple 
arrow points to thalweg axis, blue bracket encompasses intersection with a channel feature. 

201 



The third segment of Hudson canyon channel is located between the 3150 and 3300 m 

isobaths and encompasses profiles 18 through 21 (Fig. 4.119). The channel bends more 

southward at the start of the section, near the 3150 m isobath. The channel rims are generally 

less hummocky, although a bathymetric high along the southeastern edge is evident between the 

3225 and 3300 m isobaths. This bathymetric high is particularly evident in profile 20, and to a 

lesser degree in profile 21. The channel floor exhibits a high degree of irregularity between the 

3150 and 3290 m isobaths that is attributable to slumps. Incision into the debris on the channel 

floor continues to be prevalent and is particularly evident in profiles 19 and 20. Near the 3290 m 

isobath the channel becomes more V-shaped. This is evident in profile 21. 

Figure 4.119. Profiles 18 through 21 that comprise the third section of Hudson canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis, red arrows point to terrace-like features, purple 
arrow points to thalweg axis and blue arrow points to bathymetric high. 
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The fourth section of Hudson canyon channel is located between the 3300 and 3750 m 

isobaths and encompasses profiles 22 through 35 (Figs. 4.120 - 4.122). The section was further 

divided into 3 subsections with two subsections that exhibit very sharp bends separated by a 

relatively straight segment of channel. The first subsection is located between the 3300 and 3480 

m isobaths and encompasses profiles 22 through 27 (Fig. 4.120). The second subsection is 

located between the 3480 and 3585 m isobaths and includes profiles 28 through 31 (Fig. 4.121). 

The third subsection is located between the 3585 and 3750 m isobaths and encompasses profiles 

32 through 35 (Fig. 4.122). 

The first subsection contains three sharp bends. The first bend is a nearly 90° turn toward 

the east, between the 3300 and 3375 m isobaths. The channel abruptly turns back toward the 

southeast near the 3375 m isobath and the channel remains fairly straight until the 3450 m 

isobath, where the channel begins to turn toward the southwest. The channel is V-shaped in 

cross section with prominent slump features on the insides of two channel bends. These occur 

near the 3385 m isobath in the vicinity of profile 24, and near the 3485 m isobath in the vicinity of 

profile 27. The channel rims are generally sharply delineated with a well-defined break from the 

channel rim to the adjacent seafloor. The bathymetric high that was evident in the previous 

section is still present on the northeastern side of the channel between the 3300 and 3375 m 

isobaths. This feature is evident in profiles 22 and 23 that show sloped northeastern/northwestern 

channel walls. Although the channel is mainly V-shaped in cross section, there appear to be 

inflections near the base of the channel walls that suggest an incised thalweg. These are 

particularly evident in profiles 25 and 26. 
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Figure 4.120. Profiles 22 through 27 that comprise the first subsection of section 4 of Hudson canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to slump features 
on inside of channel bend, blue arrow points to bathymetric high. 
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The second subsection (Fig. 4.121) includes a portion of channel between the 3480 and 

3585 m isobaths that continues to trend southwest, and is mainly straight. The channel has well-

defined channel rims and remains mainly V-shaped in cross section. However, there appear to be 

inflections near the base of the walls that suggest an incised thalweg; these are particularly 

evident in profiles 30 and 31. 
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Figure 4.121. Profiles 28 through 31 that comprise the second subsection of section 4 of Hudson canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to 
possible slump features, green arrow points to inflections that may indicate incision. 
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The third subsection includes three sharp bends between the 3585 and 3750 m isobaths 

(Fig. 4.122). There are slump features along the inner portions of the bends and are most 

prominent for the first two bends. The first slump feature is present near the 3570 m isobath and 

shown on the northeastern side of profile 32. The second slump feature occurs near the 3650 m 

isobath and is evident on the southwestern side in profile 34. Although a third slump feature on 

the inside of the third bend is present near the 3735 m isobath and on the eastern side of profile 

35, it is not as well-defined as the first two slump features. The channel remains generally V-

shaped, although some degree of incision may be present, especially in profiles 33, 34 and 35. 

Figure 4.122. Profiles 32 through 35 that comprise the third subsection of section 4 of Hudson canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to slump features 
along the inside of channel bends, green arrow points to inflections that may indicate incision. 
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The fifth section of Hudson canyon channel is located between the 3750 and 3880 m 

isobaths and encompasses profiles 36 through 40 (Figs. 4.123). In plan view the channel is 

essentially straight (Fig. 4.115). The channel remains V-shaped with high channel wall relief. 

However, inflections near the base of the channel walls may indicate that incision continues to be 

present throughout the section. This is especially evident in profiles 36, 37 and 39. The channel 

cross profiles display sharply defined channel rims on either side of the channel. 
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Figure 4.123. Profiles 36 through 40 that comprise section 5 of Hudson canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, green arrow points to inflections that may indicate 
incision. 
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The sixth section of Hudson canyon channel is located between the 3880 and 4100 m 

isobaths and encompasses profiles 41 through 51 (Figs. 4.124 and 4.125). This is the last 

segment of channel that displays a well-defined channel. The channel becomes abruptly U-

shaped near the 3875 m isobath, evident in profile 41, and the channel wall relief decreases with 

increased distance and depth down-channel. A terrace-like feature adjacent to an incised thalweg 

is present on the northeastern floor of the channel between the 3925 and 4015 m isobaths. These 

features are evident in profiles 43, 44 and 45. Down-channel, a terrace-like feature is present on 

the southwestern floor of the channel and is adjacent to an incised thalweg between the 4010 and 

4050 m isobaths. These features are evident in profiles 46 and 47. Near the 4055 and 4090 m 

isobaths, terrace-like features are present again on the northeastern channel floor adjacent to an 

incised thalweg. These are evident in profiles 48 and 50. These features are separated by a 

portion of channel with a terrace-like feature on the southwestern channel floor adjacent to an 

incised thalweg near the 4080 m isobath, which is evident in profile 49. The terrace-like features 

between the 4010 and 4100 m isobaths, which alternate sides of the channel, are interpreted to 

originate from slump features because the features begin a fair distance up the side walls of the 

channels and slope toward and onto the channel floor. The channel generally exhibits well-

defined channel rims although this becomes less prevalent near the end of the section between 

the 4080 and 4100 m isobaths and profiles 50 through 51. 
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Figure 4.124. Profiles 41 through 45 that comprise the upper portion of section 6 of Hudson canyon channel; 
profiles have a vertical exaggeration of 10 Black arrow points to channel axis, red arrows points to terrace-like 
features, purple arrow points to thalweg axis 
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Figure 4.125 Profiles 46 through 51 that comprise the lower portion of section 6 of Hudson canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrows points to terrace-like 
features, purple arrow points to thalweg axis. 

The lowermost section of Hudson canyon channel is located between the 4100 and 4300 

m isobaths and encompasses profiles 52 through 62 (Figs 4 126 and 4 127) The main channel 

widens into a broader U-shaped depression between the 4100 m and 4250 m isobaths The 
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channel then becomes indistinguishable from the adjacent, hummocky seafloor down-slope from 

the 4250 m isobath. This is evident in profiles 60 through 62 and likely the region of a depositional 

lobe. 

Figure 4.126. Profiles 52 through 57 that comprise the upper segment of section 7 of Hudson canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses U-shaped depression. 
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Figure 4.127. Profiles 58 through 62 that comprise the lower segment of the lowermost section of Hudson canyon 
channel; profiles have a vertical exaggeration of 10. Black bracket encompasses U-shaped depression. 

4.2.4.2. Quantitative Morphologic Parameters. Hudson canyon channel is considered a 

Type I channel and displays well-defined channel morphology for the majority of its length A 

longitudinal profile was constructed as well as plots of channel wall relief and channel top width 

against channel floor water depth. The floor of Hudson canyon channel is generally either 

obscured by slump features or the channel is too V-shaped for a floor width to be resolved at the 
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100 m resolution of the data and no plot of the floor width was constructed. However, channel 

floor widths were calculated where a floor could be accurately resolved. Although the channel 

exhibits bends in some places, the general trend of the channel is toward the southeast, and the 

majority of the profiles were drawn from the southwest to the northeast, and this terminology will 

be used when referring to different sides of the channel, looking upslope. 

The longitudinal profile (Fig. 4.128) was constructed by connecting the deepest depths of 

the channel axis from each cross section. Hudson canyon channel appears to have an incised 

thalweg for much of its length and thus the longitudinal profile is the change in the thalweg depth 

with increased distance down-channel. Although the profile is mainly gently concave, there is a 

portion of irregularity between the 3500 and 3750 m isobaths that correspond to profiles 27 

through 36. Several minor inflections are also evident further down-slope near the 3900 and 4050 

m isobaths. These correspond to profiles 40 and 47, respectively. 
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Figure 4.128. Longitudinal profile of Hudson canyon channel. Black bracket encompasses a large region of 
irregularity and black arrows point to minor inflections. 

Channel wall relief (Fig. 4.129) is defined as the vertical distance between the thalweg 

and the channel rim and is calculated as the difference between the measured water depth to the 
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thalweg and the water depth to each channel rim. The channel wall relief of Hudson canyon 

channel varies from 66 to 652 m on the southwestern side and from 53 to 598 m on the 

northeastern side. It is evident that there is a large difference in channel wall relief in the 

uppermost portion of the channel where the southwestern channel wall relief is much greater than 

the northeastern channel wall relief between the 2330 and 2800 m isobaths. The channel wall 

relief increases to a maximum between the 3500 and 3900 m isobaths and then decreases 

sharply from the 3900 m isobath to the terminus of the channel near the 4100 m isobath. In 

addition, for the majority of the channel, the southwestern channel wall relief is greater than the 

northeastern channel wall relief, although the two generally mirror one another. 
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Figure 4.129. Change in channel wall relief with increased thalweg water depth for Hudson canyon channel. 

The top width of the channel (Fig. 4.130) is defined as the horizontal distance from the 

top of one channel rim to the other and varies from 2483 to 7052 m. The width is generally very 

variable for the upper portion of channel, between the 2330 and 3200 m isobaths. There is a 

distinct region with low channel top widths between the 3200 and 3300 m isobaths. These are the 

minimum channel top widths and are <3000 m. These correspond to profiles 20 and 21. From 

near the 3300 m isobaths to the 3700 m isobaths, there is an increase in channel top width to a 
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peak of -7000 m. This is followed by a decrease in channel top width to the terminus of the 

channel. 
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Figure 4.130. Change in channel top width with increased thalweg water depth for Hudson canyon channel. 

The floor width of Hudson canyon channel is complex. Much of the channel floor is 

obscured by slump features. In addition, there appears to be a thalweg that has incised into 

irregular bottom morphology for much of the length of Hudson canyon channel. Thus, two 

different measurements could be made, the floor width of the channel, and the floor width of the 

thalweg. These are two fundamentally different measurements because a thalweg has incised 

into the pre-existing channel floor. 

The upper portion of Hudson canyon channel is characterized by irregular wall and rim 

morphology, however, the channel floor is generally U-shaped, flat and free of debris. Floor 

widths were calculated for profiles 1 through 6 and profile 8 (Table 4.3), between the 2330 and 

2750 m isobaths. The channel floor becomes much more irregular and hummocky down-slope 

from the 2750 m isobath and lacks a flat floor and U-shaped morphology. Although some profiles 

in the lowermost portion of the first section, as well as in the second and third sections, appear to 
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have terrace-like features adjacent to an incised thalweg, these features are related to slumps 

and slides along the channel side walls and have obscured the channel floor. No floor width could 

be accurately determined for these sections between the 2750 and 3290 m isobaths. 

In the upper portion of the fourth section, between the 3290 and 3340 m isobaths, the 

channel becomes very V-shaped in cross section. The floor widths were unresolvable at the 100 

m resolution of the data and were given a floor width value of 100 m (Table 4.3; Refer to Methods 

section 3.6.1). Down-slope from the 3340 m isobath the channel remains V-shaped, however, a 

thalweg appears to have incised into irregular bottom morphology. Due to the irregular 

morphology, the bottom width of the channel could not be determined and the bottom width of the 

thalweg is unresolvable at the 100 m resolution of the data, although a 100 m floor width for the 

thalweg could be applied (Table 4.3). 

The cross sectional geometry becomes abruptly U-shaped at profile 41, near the 3880 m 

isobath and a terrace-like feature is present between the 3925 and 4015 m isobaths, evident in 

profiles 43, 44 and 45. Floor widths were calculated by projecting the height of the incised 

thalweg onto the adjacent wall, in order to preserve the incised nature (Table 4.3). However, 

these terrace features are of possible slump origin and there still appears to be an incised 

thalweg, whose floor width would still be 100 m or less. Terrace-like features are also present 

between the 4010 and 4100 m isobaths, which alternate sides of the channel, but are interpreted 

as slump features because the features begin a fair distance up the side walls of the channels 

and slope toward and onto the channel floor. The floor of the channel is obscured in this interval, 

which encompasses profiles 46 through 51, and no floor width could be accurately determined 

(Table 4.3). 
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Table 4.3. Profiles of Hudson canyon channel and bottom width measurements. Refer to text for full explanation. 

Profile 
1 

2 

3 

4 

5 

6 

7 

8 

9-20 

21-23 

34-40 

41 

42 

43 

44 

45 

46-51 

Floor Width (m) 

795 

946 

1212 

610 

802 

1209 

810 

100 

1233 

1473 

1704 

1792 

2418 

Explanation 

Channel floor is obscured by a possible slump 
feature 

Channel floor is obscured by slumps 

Channel is V-shaped 
An incised thalweg appears to have incised into 
irregular channel bottom morphology - the floor 
width of the thalweg would be 100 m or less. 
Includes terrace-feature. Feature could be of 
slump origin 
Includes terrace-feature. Feature could be of 
slump origin 
Includes terrace-feature. Feature could be of 
slump origin 
Includes terrace-feature. Feature could be of 
slump origin 
Includes terrace-feature. Feature could be of 
slump origin 
Channel floor is obscured by slumps 

4.2.4.3. Summary of Cross-Sectional Profiles. Hudson canyon channel evolves from 

Hudson Canyon and traverses for nearly 300 km between the 2330 and 4300 m isobaths. The 

channel is complicated by many slump features along the channel walls and floor, and the 

channel exhibits several sharp bends with slumps on the channel floor on the inside of the bends. 

The canyon channel was subdivided into 7 sections based on cross-sectional geometry and 

channel plan shape. 

The uppermost section of Hudson canyon channel surveyed, between the 2330 and 3950 

m isobaths, is characterized by hummocky bathymetry as a result of many slump and slide 

features along the channel sides. Although the rims are irregular, the channel floor is generally 

flat and free of debris. However, between the 2675 and 2960 m isobaths the channel floor 

becomes much more irregular and hummocky because of slump and slide features. The following 

section of Hudson canyon channel occurs between two small, shallow, channel-like features that 
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intersect Hudson canyon channel on its northeastern margin. The first occurs between the 2930 

and 2995 m isobaths and profiles 12 and 13. The second channel feature enters Hudson canyon 

channel between the 3120 and 3150 m isobaths and is evident in profile 17. In this section the 

channel is less U-shaped and the channel floor is much more irregular. Although the cross 

profiles show terrace-like features, this morphology is caused by slump features on the side walls. 

A small thalweg appears to be incised into the debris. The channel rims become much less 

hummocky in the third section, between the 3150 and 3300 m isobaths, but the channel floor 

continues to exhibit a high degree of irregularity because of slumps. Incision of a thalweg channel 

into the debris continues to be prevalent. 

The fourth section of Hudson canyon channel encompasses two subsections that exhibit 

very sharp bends separated by a third subsection that consists of a relatively straight portion of 

channel. In the first subsection, between the 3300 and 3480 m isobaths, the channel is V-shaped 

is cross section and slumps are present on the inside of two channel bends. The channel rims are 

generally sharply delineated with a well-defined break from the channel rim to the adjacent 

seafloor. Although the channel is mainly V-shaped in cross section, there appear to be inflections 

near the base of the walls that suggest an incised thalweg. The second subsection, between the 

3480 and 3585 m isobaths, is a straight portion of channel that has well-defined channel rims. 

Similar to the first subsection, the channel remains mainly V-shaped in cross section and 

inflections near the base of the channel walls continue to suggest an incised thalweg. The third 

subsection, between the 3585 and 3750 m isobaths, encompasses three bends. Slump features 

are present along the inner channel floor of the channel bends. The channel remains generally V-

shaped, although inflections continue to suggest some degree of incision. The channel in the 

fourth and fifth sections is characterized by very high channel wall relief, between 400 and 650 m. 

The channel plan shape becomes essentially straight in the fifth section, between the 3750 and 

3880 m isobaths and the channel displays sharply defined channel rims. Although generally V-

shaped, inflections near the base of the channel suggest some degree of incision. The channel 

becomes abruptly U-shaped near the 3880 m isobath and channel wall relief decreases with 

increased distance and depth down-channel to between 50 and 65 m at the end of the section 
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near the 4100 m isobath. This is the last section that exhibits a well-defined channel and terrace

like features that originate from slumps along the side walls become prevalent. These features 

are adjacent to an incised thalweg. Down-slope from the 4100 m isobath the main channel 

widens into a broader, U-shaped depression and grades into a hummocky region near the 4250 

m isobath where the channel becomes indistinguishable from the surrounding seafloor. 

Because Hudson canyon channel is considered a Type I channel and generally displays 

a well-defined channel for the majority of its length, typical profiles were constructed, which 

include a longitudinal profile as well as plots of channel wall relief and channel top width against 

channel thalweg water depth. The longitudinal profile of Hudson canyon channel is gently 

concave. However, there is a distinct section of irregularity between the 3500 and 3750 m 

isobaths that corresponds to profiles 27 through 36. These profiles occur within the section that 

exhibits significant bends in the channel and slump features along the insides of the bends. This 

may account for the irregularity. The inflections near the 3900 and 4050 m isobaths correspond to 

profiles 40 and 47, respectively, and both appear to be within portions of the channel where the 

thalweg deepens briefly and then shallows down-slope. 

The channel wall relief increases to a maximum between the 3500 and 3900 m isobaths, 

with channel wall relief measurements between 400 and 650 m. The top width, although generally 

variable, shows an increase between the 3300 and 3700 m isobaths, which also corresponds in 

part to the most entrenched section of channel; the top width decreases to the terminus of the 

channel. The channel wall relief also decreases from the maximum near the 3800 m isobath to 

the terminus of the channel. 

It is evident that although Hudson canyon channel displays Type I channel morphology 

and a well-defined channel for the majority of its length, the morphology is complicated by local 

geologic features such as slumps along the side walls and channel floor, confluences with smaller 

channel features, and sharp channel bends. Slumps obscure the channel floor for much of the 

length of channel, as well as the channel side walls. For example, it is evident that there is a large 

discrepancy in the relief in the uppermost portion of the channel where the southwestern relief is 

much greater than that of the northeastern relief. This area is the site of what appears to be a 
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large slump scar (Fig. 4.131), and the top of the scar was used for the top of the channel to 

remain consistent with how the rim was delineated for the rest of the channel. However, the 

channel may in fact have incised through this scar. In addition, slumps occur on the inside of the 

channel bends and near the terminus of the channel although a thalweg appears to be incised 

into these features. 

Figure 4.131. Profiles 1 and 2 with locations of top of channel (black arrows) and where the channel has likely 
incised into the slump scar (red arrows). 

4.3. Central Canyon Channels 

Wilmington, Washington and Norfolk canyon channels (Fig. 1.1) are located along the 

Central portion of the continental margin (Fig. 3.4), seaward of Delaware and the Chesapeake 

Bay region. Schlee and Robb (1991) identified two triangular gather areas in this region: the 

Baltimore/Toms gather area and the Norfolk gather area. Gather areas were defined as a region 

where several upslope canyons/channels join to form one channel (Schlee and Robb, 1991). 

Schlee and Robb (1991) identified Wilmington canyon channel as the seaward extension of the 

Baltimore/Toms gather area. This gather area extends from Toms Canyon in the northeast to 

Baltimore Canyon in the southwest. At least 37 canyons enter the gather area, although only a 

few channels merge into Wilmington canyon channel down-slope (Schlee and Robb, 1991). The 

most prominent canyons that contribute to the gather are Baltimore and Wilmington Canyons, 

both of which indent the shelf edge (Kelling and Stanley, 1970; Shor and McClennen, 1988). 

Schlee and Robb (1991) identified the region between Washington and Norfolk Canyons as the 
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Norfolk gather area. The seaward extension of Norfolk Canyon was interpreted as a short 

channel that merged with Washington Canyon (Pratt, 1967). However, the opposite interpretation 

is made in this study. 

The ancient Delaware, Susquehanna, Schuylkill, Potomac and James Rivers contributed 

at various times to this region during the development of the continental margin (Poag and 

Sevon, 1989: Poag, 1992). Seismic-reflection profiles have shown evidence that the ancestral 

Delaware River traversed across the shelf to the head of Wilmington Canyon and likely 

contributed to the development of the canyon (Twichell et al., 1977). Pratt (1967) has related the 

Susquehanna River-Chesapeake Bay drainage to the formation of the Washington and Norfolk 

Canyons. In addition, the head of Norfolk Canyon points westward, while the head of Washington 

Canyon points more northward (Forde, 1981). According to Forde (1981), the difference indicates 

that the canyons were formed by flows that originated from different directions. 

4.3.1. Wilmington Canyon Channel 

4.3.1.1. Channel Description and Cross-Sectional Profiles. The Wilmington canyon-

channel system (Fig. 4.132) encompasses two parts: the gather area and the single channel on 

the lower continental margin. The most prominent and consistent tributary channel that crosses 

the gather area to join Wilmington canyon channel was identified in this study as the channel that 

evolves from Baltimore Canyon. The tributary channel begins near the 2160 m isobath and 

traverses for nearly 115 km to join Wilmington canyon channel at the apex of the gather area. 

Wilmington canyon channel proper begins at the apex of the gather area near the 3360 m isobath 

and traverses for a length of nearly 150 km before the channel loses its bathymetric expression 

near the 4100 m isobath. Pratt (1967) recognized the seaward extension of Wilmington Canyon 

as the second largest channel next Hudson canyon channel. The canyon was observed to extend 

for 280 km from the 2000 m contour and to contain a deeper middle section as well as several 

prominent bends (Pratt, 1967). 

A total of 22 cross sections were constructed at 5000 m intervals down the length of the 

Baltimore tributary channel (Fig. 4.133). The channel trends slightly southeast until the 3030 m 

isobath, where the channel turns more toward the southeast. For general descriptions, alternate 
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sides of the channel will be referred to as either 'southwest' or 'northeast', looking upslope. The 

uppermost portion of the Baltimore tributary channel surveyed exhibits a well-defined, narrowly U-

shaped channel between the 2160 and 2550 m isobaths. The channel is confined by peaked 

elevated bathymetry although the relationship between the elevated bathymetry and channel is 

unclear. The channel becomes more irregular near the 2575 m isobath and cross-sectional 

morphology varies between U-shaped and V-shaped. Near the 2520 m isobath the peaked 

elevated bathymetry that borders the channel on the southwestern side diminishes in relief, 

although on the northeastern side the peaked elevated bathymetry is clearly present until near 

the 2600 m iosbath. As the relief of the peaked elevated bathymetry decreases with increased 

water depth, the feature grades into hummocky bathymetry. The hummocky bathymetry extends 

from the channel axis to -10000 m beyond the channel axis on either side of the channel and 

follows the channel plan shape. The channel loses most of its bathymetric expression farther 

down-channel near the 3000 m isobath and becomes a small V-shaped incision in the seafloor. 

This incision gradually becomes more U-shaped and the transition from V-shaped to U-shaped is 

especially evident down-slope from a confluence with an additional channel from the northeast 

near the 3160 m isobath. Just upslope from the apex of the gather area, between the 3175 and 

3350 m isobaths, the tributary channel displays morphology more characteristic of a Type II 

channel with relatively level seafloor surfaces adjacent to an incised thalweg within broader 

confining bathymetry. The Baltimore tributary channel from the northwest merges with an 

additional channel from the northeast near the 3350 m isobath. This is where Wilmington canyon 

channel begins to take a coherent, well-defined channel shape. 

A total of 30 cross sections were constructed at 5000 m intervals down the length of 

Wilmington canyon channel (Fig. 4.133). The down-slope channel trend varies from southwest to 

southeast, but for simplicity in overall descriptions, the sides of the channel will be referred to as 

'southwest' and 'northeast', looking upslope. Just down-slope from the apex of the gather area, 

Wilmington canyon channel displays Type II channel morphology with terrace-like features 

adjacent to an incised thalweg. Steep side walls develop down-slope from the first two profiles 

near the 3400 m isobath and the section is described as a confined channel with an incised 
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thalweg at the base. The presence of this incised thalweg is evident for nearly the entire length of 

Wilmington canyon channel. The channel is characterized by extensive slump features along the 

channel walls and floor, especially on the southwestern side of the channel between the 3450 

and 3760 m isobaths. The thalweg has eroded into the slump deposits on the floor of the channel. 

There is a rounded bathymetric feature on the northeastern side of the channel between the 3500 

and 3600 m isobaths. It is not clear if the feature is a slump; however, the thalweg appears to 

have been deflected around the feature. Down-slope from the 3760 m isobath, slumps continue 

to dominate the side walls and floor of the channel. The slumps manifest as terrace-like features 

adjacent to the incised thalweg. The channel becomes more irregular with hummocky channel 

walls and floor near the 3990 m isobath. 

Based on cross-sectional morphology, the Baltimore tributary channel was subdivided 

into four sections and Wilmington canyon channel was divided into six sections for further 

description. The Baltimore tributary channel and Wilmington canyon channel are treated 

separately for description of the cross profiles. 
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Figure 4.132. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI background and 
channels delineated in black. Location of Wilmington canyon channel is shown in yellow box. Ny =Nygren, 
M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, 
Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure 4.133. Overview of Wilmington canyon channel with cross profiles in white and numbered for both the 
Baltimore tributary channel and Wilmington canyon channel. The gather area is outlined in red. Black brackets 
indicate the sections that the channel was subdivided into for further description. W=Wilmington, B=Baltimore 
tributary channel. 
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The uppermost section of the Baltimore tributary channel is located between the 2160 

and 2550 m isobaths and encompasses profiles 1 through 5 (Fig. 4.134). The channel is well-

defined, narrowly U-shaped, and bordered by peaked elevated bathymetry. Although several 

profiles, such as profile 4, suggest that the channel is incised into a broader valley, this 

relationship is unclear. 

Figure 4.134. Profiles 1 through 5 that comprise the uppermost section of the Baltimore tributary channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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The second segment of the Baltimore tributary channel is located between the 2550 and 

2900 m isobaths and encompasses profiles 6 through 11 (Figs. 4.135 and 4.136). The channel is 

more irregular with inconsistent cross-sectional morphology that varies between U-shaped, 

evident in profiles 6, 10 and 11, and V-shaped, evident in profiles 7 through 9 Although difficult to 

visualize in the cross sections, the channel is bordered by hummocky bathymetry that extends 

-10000 m from the channel axis on both sides of the channel. The hummocky bathymetry follows 

the channel plan shape. 

21S0 

2200 

22S0 

2300 

-2350 

-2400 

-2450 

-2500 

2550 

2250 

2300 

2350 

2400 

2450 

2500 

2550 

2600 

2650 

2350 

2400 

2450 

2500 

2S50 

2600 

2650 

2700 

SW NE 

Profiled 

1 

NE 
Profile 7 

H H h _ 

SW NE 

Profife 8 

Figure 4.135. Profiles 6 through 8that comprise the upper portion of the second section of the Baltimore tributary 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.136. Profiles 9 through 11 that comprise the lower portion of the second section of the Baltimore 
tributary channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

The third section of the Baltimore tributary channel is located between the 2900 and 

3175 m isobaths and encompasses profiles 12 through 18 (Fig. 4.137). The channel is expressed 

as a V-shaped incision into the surrounding seafloor that gradually becomes more U-shaped, 

especially down-slope from a confluence with an additional channel from the northeast near the 

3160 m isobath. The U-shaped morphology is most prominent in profile 18. The hummocky 

bathymetry that borders the channel remains evident on the southwestern side for the entirety of 

the section, but loses its bathymetric expression on the northeastern side near the 3025 m 

isobath, just upslope from profile 15. The general channel trend is slightly southeast, and the 

channel starts to turn much more toward the southeast near the 3030 m isobath. This is in the 

vicinity of profile 15. 
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Figure 4.137. Profiles 12 through 18 that comprise the third section of the Baltimore tributary channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis. 
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The deepest section of the Baltimore tributary channel is located between the 3175 and 

3350 m isobaths and encompasses profiles 19 through 22 (Fig. 4.138). This segment is located 

just upslope from the apex of the gather area near the 3350 m isobath. The channel displays 

mainly Type II channel morphology with an incised thalweg that is bordered by terrace-like 

features within broader confining bathymetry. 

Figure 4.138. Profiles 19 through 22 that comprise the fourth section of the Baltimore tributary channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis, black brackets encompass channel 
extents, red arrows indicate terrace-like features and purple arrow points to thalweg axis. 
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The upper-most section of Wilmington canyon channel is located between the 3350 and 

3500 m isobaths and encompasses profiles 1 through 5 (Fig.4.139). It is the length of channel just 

down-slope of the apex of the gather area (Fig 4.133). The first two profiles, between the 3350 

and 3400 m isobaths, display mainly Type II channel morphological characteristics, with terrace

like features adjacent to an incised thalweg. However, steep walls develop on the western side of 

the channel near the 3400 m isobath, evident in profiles 3 through 5. This region is considered a 

well-defined Type I channel with an incised thalweg at the base. 

Figure 4.139. Profiles 1 through 5 that comprise the first section of Wilmington canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis, black brackets encompass channel extents, red 
arrows indicate terrace-like features and purple arrow points to thalweg axis. 
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The second section of Wilmington canyon channel is located between the 3500 and 

3615 m isobaths and encompasses profiles 6 through 9 (Fig. 4.140). The region is dominated by 

slump features along the northwestern wall of the channel, evident in profiles 6 and 7, as well as 

on the floor of the channel, evident in profiles 7 through 9. A thalweg appears to have incised into 

the slump features that protrude onto the floor of the channel and has created terrace-like 

features. A large, rounded bathymetric feature is present on the southeastern side of the channel 

between the 3500 and 3600 m isobaths, although it is not clear if the feature is a slump. It 

appears that the thalweg has been deflected around the feature (Fig. 4.133). This feature 

manifests as sloped southeastern walls in profiles 6, 7 and 8. 

Figure 4.140. Profiles 6 through 9 that comprise section 2 of Wilmington canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, black bracket indicate slump features, blue brackets 
indicate rounded bathymetric feature, red arrows indicate terrace-like features and purple arrow points to 
thalweg axis. 
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The third section of Wilmington canyon channel is located between the 3615 and 3760 m 

isobaths and encompasses profiles 10 through 14 (Figs. 4.141 and 4.142). The entire section of 

channel is characterized by large, hummocky slump features along the western channel wall and 

floor. The eastern channel wall shows some features that may be of slump origin, such as 

hummocky bathymetry (profile 10), terrace-like features (profile 11), or inflections along the walls 

of the channel (profiles 12 and 13). It is unclear whether the slump originated only from the 

western wall or was joined by an additional slump from the eastern wall as well. The thalweg 

remains clearly entrenched into the slump deposits and is wider than it was in the upper portions 

of channel. 

Figure 4.141. Profiles 10 through 12 that comprise the upper portion of section 3 of Wilmington canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow point to channel axis, black brackets encompass slump 
features, red arrows indicate terrace-like features and purple arrow points to thalweg axis. 
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Figure 4.142. Profiles 13 and 14 that comprise the lower portion of section 3 of Wilmington canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow point to channel axis, black brackets encompass slump 
features, red arrows indicate terrace-like features and purple arrow points to thalweg axis. 

The fourth section of Wilmington canyon channel is located between the 3760 and 3925 

m isobaths, and encompasses profiles 15 through 20 (Fig. 4.143). The channel rims are well-

defined with sharp transitions between the channel rim and the adjacent seafloor. There is a 

terrace-like feature present on the northeastern channel floor adjacent to an incised thalweg 

between the 3770 and 3900 m isobaths. These features are evident in profiles 16 through 18. It 

appears that the terrace-like features are of slump origin. There is an additional terrace-like 

feature along the southwestern channel floor between the 3870 and 3925 m isobaths. The feature 

is hummocky near the 3925 m isobath and clearly the product of a slump along the southwestern 

side wall. The incised thalweg is still present, and the slump-feature along the southwestern side 

is most evident in profile 19. 
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Figure 4.143 Profiles 15 through 20 that comprise section 4 of Wilmington canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis, red arrows indicate terrace-like features, purple 
arrow points to thalweg axis and blue arrow indicates a hole feature. 
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The fifth section of Wilmington canyon channel is located between the 3925 and 3990 m 

isobaths and encompasses profiles 21 through 23 (Fig. 4.144). The channel rims are generally 

well-defined. However, there is a distinct sloped feature along the northeastern side wall of the 

channel which appears to the product of a slump. The feature extends from near the top of the 

channel wall and protrudes onto the channel floor where evidence of an incised thalweg is still 

present. 

Figure 4.144. Profiles 21 through 23 that comprise section 5 of Wilmington canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis, red arrows indicate sloped, terrace-like features, 
blue arrow indicates a depression/hole feature, and purple arrow points to thalweg axis. 

The lowermost section of Wilmington canyon channel is located between the 3990 and 

4100 m isobaths and encompasses profiles 24 through 30 (Fig. 4.145). The canyon channel is 

fairly discernable although the channel widens and becomes more irregular with a hummocky 

channel floor. This is evident in profiles 24 through 26. The channel becomes less well-defined 

between the 4025 and 4050 m isobaths and profiles 26 and 27 and finally becomes 
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indistinguishable from the adjacent seafloor down-slope from the 4050 m isobath. This is evident 

in profiles 27 through 30. 

Figure 4.145. Profiles 24 through 30 that comprise the lowermost section of Wilmington canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis, black brackets encompass channel 
extents, blue arrow points to a depression feature. 
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4.3.1.2. Quantitative Morphologic Parameters. Although portions of the Wilmington 

canyon-channel system display characteristics that are more typical of Type II channel 

morphology, the majority of the channel system was considered a Type I channel. A longitudinal 

profile was constructed, as well as plots of channel wall relief and channel top width against 

channel floor water depth. The channel floor of the Wilmington canyon-channel system is 

complicated, and varies between U-shaped, V-shaped, and a floor with an incised thalweg and 

adjacent terrace-like features. In addition, the channel floor is often obscured by slump features. 

The channel floor width was calculated where possible and although the data is relatively sparse, 

a plot was created. Although the channel trend varies from southeast to southwest and back to 

southeast, regardless of how the profiles were constructed, the sides of the channel will be 

referred to as either 'southwest' or 'northeast', looking upslope. 

The longitudinal profile (Fig. 4.146) was constructed by connecting the deepest depths of 

the channel axis from each cross section. The red circles indicate the Baltimore tributary channel 

and the blue circles indicate Wilmington canyon channel down-slope from the apex of the gather 

area. The profile of the Baltimore tributary channel is generally straight and lacks major 

inflections, although there is a minor inflection that occurs at the apex of the gather area near the 

3350 m isobath. The profile of Wilmington canyon channel also contains several small inflections 

near the 3600 and 3800 m isobaths, which correspond to profiles 8 and 15, respectively. 
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Figure 4.146. Longitudinal profile for the Wilmington canyon-channel system. 

Channel wall relief (Fig. 4.147) is defined as the vertical distance between the thalweg 

(channel floor) and the channel rim and calculated as the difference between the measured water 

depth to the thalweg (channel floor) and the water depth to each channel rim. The channel wall 

relief for the Baltimore tributary channel varies from 16 to 126 m on the northeastern side and 

from 29 to 292 m on the southwestern side. The 16-m lowest relief on the northeastern side is 

close to, but slightly greater than, the accuracy for depth determination of 0.5% of water depth 

(Gardner, 2004; Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product Description) 

for the depth of approximately 2770 m, which is -14 m. The 29-m lowest relief on the 

southwestern side is greater than the accuracy for depth determination of 0.5% of water depth for 

the depth of approximately 3160 m, which is -16 m. 

In general, the southwestern channel wall relief is greater than the northeastern channel 

wall relief for Baltimore tributary channel. The greatest southwestern channel wall relief occurs in 

the uppermost portion of channel, between the 2200 and 2400 m isobaths, and is much greater 

than that of the northeastern relief in this interval. The southwestern channel wall relief is also 
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distinctly higher than that of the northeastern relief between the 2800 and 3000 m isobaths. From 

the 3200 m isobath to the apex of the gather area near the 3350 m isobath both the northeastern 

and southwestern channel wall relief of Baltimore tributary channel increases. The channel wall 

relief for Wilmington canyon channel varies from 123 to 307 m on the northeastern side and from 

130 to 325 m on the southwestern side. The relief increases to a maximum of 300 to 350 m 

between the 3600 and 3900 m isobaths, after which the relief drops off dramatically to the 4000 m 

isobath. In general, the northeast and southwest channel wall relief measurements mirror each 

other and the southwestern channel relief is generally higher than the northeastern channel wall 

relief. 

Figure 4.147. Change in channel wall relief with increased thalweg (channel floor) water depth for the Wilmington 
canyon-channel system. BT= Baltimore Tributary channel, WCC=Wilmington canyon channel. 

The top width of the channel (Fig. 4.148) is defined as the horizontal distance from the 

top of one channel rim to the other. The top width of the Baltimore tributary channel varies from 

834 to 7814 m and the top width of Wilmington canyon channel varies from 4471 to 11382 m. It is 

evident that the largest widths occur near the 3200 m isobath for the Baltimore Tributary channel 

and near 3600 m isobath for Wilmington canyon channel. There is a lack of a distinct trend 
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between top width and increased thalweg depth, although the top widths of Wilmington canyon 

channel are generally greater than those of the Baltimore tributary channel. 
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Figure 4.148. Change in channel top width with increased thalweg (channel floor) water depth for the Wilmington 
canyon channel system. 

Channel floor width (Fig. 4.149) is generally defined as the horizontal distance between 

the bases of the channel walls. However, for portions of the Wilmington canyon-channel system 

that displays Type II channel morphology, the floor width is defined as the horizontal distance 

between the bases of the abutting valley walls of the confining bathymetry. This definition 

includes the widths of the terrace-like features and the top width of the incised thalweg. The 

upper portion of Baltimore tributary channel, between the 2160 and 3175 m isobaths, is 

alternately U-shaped and V-shaped. The channel is narrowly U-shaped between the 2160 m and 

2550 m isobaths, which encompasses profiles 1 through 5. The channel widens near the 2575 m 

isobath, which corresponds to profile 6. The floor width was unresolvable between the 2650 m 

and 2800 m isobaths at the 100 m resolution of the data, which encompasses profiles 7 through 

9. This section was given floor widths of 100 m (Refer to Methods Section 2.6.1). The channel 
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becomes U-shaped again between the 2800 and 2875 m isobaths, which encompasses profiles 

10 and 11. The channel is V-shaped and the floor width unresolvable between the 2875 the 3100 

m isobaths and profiles 12 through 16 were again given a floor width value of 100 m. The channel 

is generally U-shaped between the 3100 and 3180 m isobaths, which encompasses profiles 17, 

18 and 19. The channel morphology then becomes characteristic of a Type II channel between 

the 3180 and 3350 m isobaths, evident in profiles 20 through 22. The floor width of these profiles 

consists of the top width of the incised thalweg as well as the adjacent terrace-like features. The 

floor width of the non-V-shaped profiles of the Baltimore tributary channel varies from 170 to 5602 

m. It is evident that the floor width of the Type 11 channel portion is much wider than the U-shaped 

portions of channel upslope. 

The channel floor of Wilmington canyon channel down-slope from the apex of the gather 

area is complicated by slumps that originate along the channel walls. Slumps occur on mainly on 

the southwestern side between the 3450 and 3760 m isobaths, encompassing profiles 5 through 

14, and between the 3925 and 3990 m isobaths, which encompasses profiles 20 through 23. No 

floor widths could be accurately determined for theses sections. In addition, hummocky 

bathymetry precluded accurate determination of a floor width between the 3990 m isobath and 

the terminus of the channel near the 4100 m isobath. The floor widths were calculated between 

the 3350 and 3450 m isobaths, for profiles 1 through 4, and between the 3760 and 3890 m 

isobaths, for profiles 15 through 19. These widths include the incised thalweg and adjacent 

terrace-like features. The floor of Wilmington canyon channel varies from 2658 to 5214 m in width 

and the floor width decreases between the 3350 and 3450 m isobaths. The floor width of the 

channel between the 3760 and 3890 m isobaths is relatively uniform and between 2500 and 3000 

m wide. 
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Figure 4.149. Change in channel floor width with increased thalweg (channel floor) water depth for the 
Wilmington canyon-channel system. Black arrows indicate regions where no floor width could be accurately 
determined. 

4.3.1.3. Summary of Cross-Sectional Profiles. Wilmington canyon channel is located 

along the middle Atlantic continental margin seaward of the Delaware and Chesapeake Bay 

region (Fig. 4.132). The channel evolves from an elongate, triangular gather area that extends 

from Toms Canyon in the northeast to Baltimore Canyon in the southwest (Schlee and Robb, 

1991). The most prominent and consistent tributary channel that crosses the gather area evolves 

from Baltimore Canyon and starts at the uppermost limit of the bathymetric data near the 2160 m 

isobath. The Baltimore tributary channel traverses for nearly 115 km before it joins Wilmington 

canyon channel at the apex of the gather area near the 3350 m isobath. Wilmington canyon 

channel extends for -150 km from the apex of the gather area before the channel loses its 

bathymetric expression near the 4100 m isobath. 

The Baltimore tributary channel (Fig. 4.133) was subdivided into four sections based on 

the cross-sectional morphology. The uppermost portion of the channel surveyed, between the 

2160 and 2550 m isobaths, is well-defined and narrowly U-shaped. The channel is bordered by 
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peaked elevated bathymetry, although the relationship between the elevated bathymetry and the 

channel is unclear. The channel becomes more irregular between the 2550 and 2900 m isobaths 

and channel morphology varies between U-shaped and V-shaped. The channel is no longer 

bordered by peaked elevated bathymetry, but by a region of hummocky topography that extends 

-10000 m from the channel axis on both sides of the channel and follows the channel plan 

shape. In the third section, located between the 2900 and 3175 m isobaths, the channel is 

expressed as a V-shaped incision into the surrounding seafloor. Toward the end of the section 

the channel gradually becomes more U-shaped, especially down-slope from a confluence with 

another channel from the northeast near the 3160 m isobath. The morphology of the channel in 

the lower-most section, between the 3175 and 3350 m isobaths and upslope from the apex of the 

gather area, becomes more characteristic of a Type II channel with level surfaces adjacent to an 

incised thalweg confined within broader bathymetry. 

Wilmington canyon channel was subdivided into six sections for further description of the 

cross-sectional morphology. The uppermost segment is located just down-slope from the apex of 

the gather area near the 3350 m isobath and the channel displays Type II channel morphology 

with terrace-like features adjacent to an incised thalweg for the first two profiles, between the 

3350 and 3400 m isobaths. Steep walls develop on the southwestern side of the channel near the 

3400 m isobath and the channel is considered a Type I channel with an incised thalweg at the 

base. The next two sections, between the 3500 and 3615 m and the 3615 and 3760 m isobaths, 

respectively, are characterized by large slump features on both the northeastern and the 

southwestern channel walls and floor. A thalweg is clearly entrenched into the slump features that 

obscure the channel floor. The channel displays well-defined channel rims in the fourth section, 

between the 3760 and 3925 m isobaths. Two terrace-like features are evident adjacent to the 

incised thalweg, one on the northeastern side of the channel between the 3770 and 3900 m 

isobaths and one on the southwestern side between the 3870 and 3925 m isobaths. The terrace

like features likely originate from slumps, although the southwestern feature is much more clearly 

the product of a slump. There is a distinct, sloped feature along the northeastern wall and channel 

floor in the next section, between the 3925 and 3990 m isobaths, which also appears to be a 
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slump feature. However, there is still evidence of a thalweg that has incised through the feature. 

The lowermost section of Wilmington canyon channel between the 3990 and 4100 m isobaths 

begins with as a fairly discernable channel that becomes much more irregular and hummocky 

near the 4025 m isobath before the channel becomes indistinguishable from the adjacent 

seafloor. 

It is evident that the Wilmington canyon-channel system is complicated and composed of 

2 major parts, the gather area, from which a prominent tributary was identified, and Wilmington 

canyon channel proper, which begins at the apex of the gather area near the 3350 m isobath. 

The channel also displays complicated and inconsistent morphology. Morphology ranges from U-

shaped to V-shaped in Baltimore tributary channel to characteristic of a Type II channel both 

upslope and down-slope from the apex of the gather area. The morphology of Wilmington canyon 

channels is generally described as a Type I channel with an incised thalweg. Wilmington canyon 

channel is further complicated by the dominance of slump features which obscure the channel 

floor. An incised thalweg, however, is present for the entire length of Wilmington canyon channel. 

Due to local morphologic complexities and complications, morphologic trends can be hard to 

discern. 

The longitudinal profile of the Baltimore tributary channel is generally straight and lacks 

major inflections. However, there is a small inflection near the apex of the gather area. Two small 

inflections are present down-slope from the apex of the gather area, near the 3600 and 3800 m 

isobaths that correspond to profiles 8 and 15 of Wilmington canyon channel, respectively. Profile 

8 corresponds to a region where the thalweg is curved around the southern flank of a rounded 

bathymetric feature located between the 3500 and 3600 m thalweg isobaths and profile 15 occurs 

between two slump features. 

An important trend is identified with respect to channel wall relief plotted against thalweg 

water depth for Wilmington canyon channel. There is a zone of maximum relief of >300 m 

between the 3600 and 3900 m isobaths. Down-slope from this zone the relief drops off 

dramatically to the 4000 m isobath. In general, the southwestern rim is higher than the 

northeastern rim, although the rims do tend to mirror each other. In general, the southwestern 
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relief is also greater than the northeastern relief for the Baltimore tributary channel. The highest 

relief at the very start of the Baltimore tributary channel corresponds to profiles 1 through 3, 

between the 2160 and 2400 m isobaths. Here the southwestern rim of the channel is 

indistinguishable from the elevated bathymetry that borders the channel. 

There is a lack of a distinct trend with top width and increased thalweg floor depth for the 

Wilmington canyon-channel system, although it is evident that the largest widths correspond to 

section 2 of Wilmington canyon channel, between the 3500 and 3615 m isobaths. This is where 

the channel is associated with slump features. The channel floor width was often V-shaped for 

Baltimore tributary channel and complicated by slumps for Wilmington canyon channel. However, 

the floor width is greatest where the channel displays morphology typical of a Type II channel. 

4.3.2. Washington Canyon Channel 

4.3.2.1. Channel Description and Cross-Sectional Profiles. Washington canyon channel 

is located along the middle U.S. Atlantic continental margin seaward of the Chesapeake Bay 

region (Fig. 4.150) and evolves from Washington Canyon (Pratt, 1967). Washington Canyon is 

one of five canyons in the area that have eroded landward of the shelf edge (Shor and 

McClennen, 1988). The length of the Washington canyon-channel system is relatively short, and 

extends for 80 km between the 2400 and 3300 m isobaths where there is an indistinct merge with 

Norfolk canyon channel. 

A total of 17 cross profiles were constructed at 5000 m intervals down the length of 

Washington canyon channel (Fig. 4.151). The channel is generally well-defined for most of its 

length, typical of Type I morphology. The shallowest portion of the channel, between the 2400 

and 2860 m isobaths, is fairly well-defined and slump features along the channel side walls and 

along the edges of the channel floor are common. Down-slope the channel becomes less well-

defined and more irregular between the 2860 and 3100 m isobaths. The northeastern channel 

wall slopes up more gently than the southwestern channel wall in this section. Near the 3125 m 

isobath the channel is even less well-defined and irregular and turns to trend more eastward. The 

channel traverses nearly parallel to Norfolk canyon channel until the 3250 m isobath. Near the 
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3300 m isobath Washington canyon channel merges with Norfolk canyon channel. The channel 

was subdivided into 3 sections for further description based on cross-sectional geometry and 

morphology. 
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Figure 4.150. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI background and 
channels delineated in black. The location of Washington canyon channel is shown in the yellow box. Ny 
=Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, J V=J ones Valley, 
Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure 4.151. Overview of Washington canyon channel with cross profiles in white and numbered. Sections that 
the channel was subdivided into for description purposes are shown with black brackets and numbered. 

The uppermost segment of Washington canyon channel surveyed is located between 

the 2400 and 2860 m isobaths and encompasses the first 9 profiles (Figs. 4.152 and 4.153). This 
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section was further divided into two subsections. The upper subsection, between the 2400 and 

2600 m isobaths, contains profiles 1 through 4 (Fig. 4.152). The lower subsection, between the 

2600 and 2860 m isobaths, contains profiles 5 through 9 (Fig. 4.153). The first subsection 

encompasses the shallowest segment where the channel is well-defined and slumps are 

common. In plan view the channel also exhibits several bends (Fig. 4.151). There appears to be a 

thalweg that has incised through some of the slump features in this section. This is most 

prominently evident in profiles 2 through 4. The channel in plan view becomes much straighter in 

the second subsection. Slumps along the channels walls and floor continue to be prevalent 

features, shown in profiles 7, 8 and 9. An incised thalweg, however, does not appear present. 

Figure 4.152. Profiles 1 through 4 that comprise the first subsection of section 1 of Washington canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrows and brackets indicate 
slump features, and purple arrow points to possible thalweg axis. 
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Figure 4.153. Profiles 5 through 9 that comprise the second subsection of Section 1 of Washington canyon 
channel; profiles have a vertical exaggeration of 10. Black arrow points to channel axis; red arrows and brackets 
indicate irregular topography that could be the product of slump features. 

The second section of Washington canyon channel is located between the 2860 and 

3100 m isobaths and encompasses profiles 10 to 14 (Fig. 4.154). The channel is less-well 

defined in this section, which is especially evident in profile 11, near the 2960 m isobath. The 
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northeastern channel walls often slope up more gently and lack a sharp transition between the 

channel rim and the adjacent seafloor, whereas the southwestern channel wall is more well-

defined. This trend is particularly evident between the 3690 and 3070 m isobaths and profiles 12 

and 13. 

Figure 4.154. Profiles 10 through 14 that comprise section 2 of Washington canyon channel; profiles have a 
vertical exaggeration of 10. Black arrow points to channel axis. 
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The lowermost section of Washington canyon channel is located between the 3100 and 

3300 m isobaths and encompasses profiles 15 through 17 (Fig 4.155). The channel is much less 

well-defined than in the previous sections. The channel turns toward the east near the 3125 m 

isobath and trends nearly parallel to Norfolk canyon channel until the 3250 m isobath. 

Washington canyon channel merges with Norfolk canyon channel near the 3300 m isobath. 
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Figure 4.155. Profiles 15 through 17 that comprise the lowermost portion of Washington canyon channel; profiles 
have a vertical exaggeration of 10. Black bracket encompasses the extents of the channel. 

4.3.2.2. Quantitative Morphologic Parameters. Washington canyon channel displays a 

well-defined channel in the upper portion of channel but becomes less well-defined farther down-

channel. However, the channel generally displays morphology characteristic of a Type I channel. 

A longitudinal profile was constructed, as well as plots of channel wall relief, channel top width 

and channel floor width against channel floor water depth. The longitudinal profile (Fig. 4.156) 
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was constructed by connecting the deepest depths of the channel axis from each cross section. 

The profile is generally straight and lacks major inflections, although there is a minor concavity in 

the profile near 55 km down-channel. This corresponds to profile 13 near the 3070 m isobath. 
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Figure 4.156. Longitudinal profile of Washington canyon channel. Black arrow indicates minor inflection. 

Channel wall relief (Fig. 4.157) is defined as the vertical distance between the channel 

floor and the channel rim and is calculated as the difference between the measured water depth 

to the channel floor and the water depth to each channel rim. The channel wall relief varies from 

18 to 169 m on the northeastern side and from 15 to 223 m on the southwestern side. There is a 

general decrease in channel wall relief with increased channel floor water depth and for the 

majority of the length of the channel the southwestern channel wall has greater relief than the 

northeastern channel wall. Two distinct low channel wall relief measurements that are mirrored on 

both sides of the channel occur near the 3900 and 3150 m isobaths. These correspond to profiles 

10 and 15, respectively. 
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The lowest relief measurements occur near the 3150 m isobath and correspond to profile 

15. The stated accuracy for depth determination of 0.5% of water depth (Gardner, 2004; 

Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product Description) for the depth of 

-3150 m is -16 m. The 15-m lowest relief on the southwestern side is just below this, while the 

18-m lowest relief on the northeastern side is close to, but greater than, the stated accuracy for 

depth determination. These relief measurements may be close enough to the accuracy of depth 

determination to not be considered real features. 

Figure 4.157. Change in channel wall relief with increased channel floor water depth for Washington canyon 
channel. 

The top width of the channel (Fig. 4.158) is defined as the horizontal distance between 

the top of one channel rim to the other. The top width of the channel varies from 2012 to 4023 m 

but there is no distinct trend with increased channel floor water depth. The channel top width 

generally decreases between the 2470 and 3650 m isobaths. However, down-slope from the 

2650 m isobath the channel top width is much more variable. The largest top width occurs near 

the 2950 m isobath and corresponds to profile 11. 
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Figure 4.158. Change in channel top width with channel floor water depth for Washington canyon channel. 

The channel floor width (Fig. 4.159) is generally defined as the horizontal distance 

between the bases of the channel walls. However, adjustments were made since it appears that 

there is a thalweg that has incised into slump deposits with terrace-like features that flank the 

channel floor in the uppermost portion of Washington canyon channel between the 2400 and 

2600 m isobaths. In order to preserve the incised nature of the thalweg, when the thalweg was 

situated directly adjacent to the northeastern or southwestern channel walls, the height of the 

incised thalweg was projected onto the abutting wall. This was the point from which the floor 

width was calculated. 

The floor width ranges from 480 to 1595 m and lacks a consistent pattern with increased 

channel floor water depth. The channel floor is generally narrow and between 400 and 1000 m 

wide. The narrowest floor width in the profile near the 2950 m isobath represents a channel 

cross-section where the floor width was unresolvable at the 100 m resolution of the data and 

given a value of 100 m (Refer to Methods Section 2.6.1). Three larger widths are noticeable near 
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the 2900 m isobath and between the 3100 and 3200 m isobaths. These correspond to profiles 10, 

14 and 15, respectively. 
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Figure.4.159. Change in channel floor width with increased channel floor water depth for Washington canyon 
channel. 

4.3.2.3. Summary of Cross-Sectional Profiles. Washington canyon channel evolves from 

Washington Canyon (Pratt, 1967), which is one of five canyons seaward of the Chesapeake Bay 

region that have eroded landward of the shelf edge (Shor and McClennen, 1988). Schlee and 

Rob (1991) identified the region as Norfolk gather area where several canyons and channels 

between Washington and Norfolk Canyons converge into one major channel on the lower 

continental margin. According to Pratt (1967), Norfolk Canyon merges with Washington Canyon, 

although the data presented here shows that Washington canyon channel merges with Norfolk 

canyon channel near the 3300 m isobath. Washington canyon channel is considered to display 

Type I morphology for the majority of its length although a distinct channel becomes less well-

defined down-slope from the 2860 m isobath. 
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The channel was subdivided into 3 sections for further description. In the uppermost 

section surveyed between the 2400 and 2860 m isobaths the channel is well-defined and slump 

features are common along the walls and floor of the channel. A thalweg appears to have incised 

into the slumps on the channel floor between the 2400 and 2600 m isobaths. The channel then 

becomes less well-defined and more irregular between the 2860 and 3100 m isobaths. Near the 

3125 m isobath the less-well defined channel turns toward the east and parallels Norfolk canyon 

channel before the two merge near the 3300 m isobath. 

Washington canyon channel is considered a Type I channel and typical profiles were 

constructed that include a longitudinal profile as well as plots of channel wall relief, channel top 

width, and channel floor width against channel floor water depth. A minor concavity in the 

longitudinal profile near 55 km down-channel corresponds to profile 13 near the 3070 m isobath. 

No geomorphic feature is readily evident that would account for this minor inflection and is likely 

simply due to irregularities in the channel floor morphology. The channel wall relief generally 

decreases with increased channel floor water depth and for the majority of the length of channel 

and the southwestern channel wall relief is greater than that of the northeastern channel wall 

relief. Two distinct low channel wall relief measurements that are mirrored on both sides of the 

channel are present near the 3900 and the 3150 m isobaths. These correspond to profiles 10 and 

15, respectively. Profile 10 is located in the uppermost portion of the second section of channel 

near the 2900 m isobath where the channel becomes less-well defined than it was in the 

uppermost segment of channel. Profile 15 corresponds to a portion of channel that is not well-

defined and is just down-slope from a change in channel course toward the east. The low channel 

wall relief values that correspond to profile 15 are close to or below the accuracy for depth 

determination and may not be considered real features. Neither the channel top width nor 

channel floor width display a distinct pattern and are variable with increased channel floor water 

depth. The top width does show a decrease between the 2470 and 2650 m isobaths that 

corresponds to the most well-defined portion of channel. The largest top width occurs near the 

2950 m isobath and corresponds to profile 11. This profile is widely V-shaped and not well-

defined. Channel floor widths are generally narrow, between 100 and 1000 m, however, three 
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larger widths are noticeable near the 2900 m isobath and between the 3100 and 3200 m 

isobaths. These correspond to profiles 10, 14 and 15, respectively, also where the channel is less 

well-defined. 

4.3.3. Norfolk Canyon Channel 

4.3.3.1. Channel Description and Cross-Sectional Profiles. Norfolk canyon channel is 

located along the middle U.S. Atlantic continental margin seaward of the Chesapeake Bay region 

(Fig. 4.160). The channel evolves from Norfolk Canyon (Pratt, 1967), which is one of five canyons 

in the area that have eroded landward of the shelf edge (Shor and McClennen, 1988). The 

canyon-channel system begins at the upper extent of the bathymetric data near the 2500 m 

isobath and extends for at least 230 km to the 4120 m isobath. However, it appears that several 

distributary channels emerge at the terminus of Norfolk canyon channel and continue for an 

additional 130 km to merge with a transverse channel that is oriented southward along the lower 

continental margin (Fig. 4.161). 

A total of 48 cross sections were constructed at 5000 m intervals down the length of 

Norfolk canyon channel (Fig. 4.161). The channel begins as a well-defined channel with Type I 

channel morphology. The channel grades from V-shaped in the uppermost portion, between the 

2500 and 2975 m isobaths, to U-shaped farther down-channel between the 2975 and 3300 m 

isobaths. Down-slope from the confluence with Washington canyon channel near the 3300 m 

isobath Norfolk canyon channel loses the well-defined channel morphology that is characteristic 

of the uppermost segment. The channel becomes more characteristic of a Type II channel with a 

small main channel within the confines of elevated, hummocky bathymetry; the small channel 

bifurcates near the 3670 m isobath. The channel then grades into a region characterized by a 

broad, U-shaped channel near the 3950 m isobath that lacks the small incised channel. This is 

where the last cross profiles were evaluated and the distributary channels that appear to emerge 

down-slope were not included. The channel was subdivided into 5 sections for further description 

based on cross-sectional geometry. 
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Figure. 4.160. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI background and 
channels delineated in black. Location of Norfolk canyon channel is shown in the yellow box. Ny =Nygren, 
M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, 
Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure. 4.161. Overview of Norfolk canyon channel with cross profiles in white and numbered. The channel 
subsections are shown in black brackets and numbered. The continuation of a possible distributary channel is 
shown as a white dashed line down-slope from the last of the cross profiles. 

The uppermost section of Norfolk canyon channel surveyed is located between the 2550 

and 2975 m isobaths and encompasses profiles 1 through 11 (Figs. 4.162 and 4.163). The 

channel displays Type I channel morphology and is generally V-shaped with relatively well-

defined channel rims on either side of the channel. However, the plan shape of the channel is 

irregular with several small bends. Small slumps along the side walls of the channel are common 

features. 
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Figure. 4.162. Profiles 1 through 6 that comprise the upper segment of section 1 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrows point to slump 
features. 

261 



2400 t1 

2450 

2500 

2550 ' 

2600 

2650 

2700 

2750 

2450 

2500 

2550 

2600 

2650 

2700 

2750 

2800 

Profile 7 

2550 

2600 

2650 

2700 

2750 

2800 

2850 

2900 

NE 

Profile8 

Profile 9 

4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 

M 
Profile 10 

6000 3000 

Profile 11 

Figure. 4.163. Profiles 7 through 11 that comprise the lower segment of section 1 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrows point to slump 
features 
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The second section of Norfolk canyon channel is located between the 2975 and 3300 m 

isobaths and encompasses profiles 12 through 18 (Figs. 4.164 and 4.165). The channel 

continues to be well-defined with morphology characteristic of a Type I channel. However, the 

channel becomes U-shaped in cross section and slumps are less prevalent than in the uppermost 

segment. In addition, the channel plan shape becomes straighter than that of the uppermost 

section. 

Figure. 4.164. Profiles 12 through 15 that comprise the upper segment of section 2 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure. 4.165. Profiles 16 through 18 that comprise the lower segment of section 2 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

The third segment of Norfolk canyon channel is located between the 3300 and 3670 m 

isobaths and encompasses profiles 19 through 30 (Figs. 4.166 and 4.167). This portion of 

channel begins just down-slope from the merge with Washington canyon channel that occurs 

between profiles 18 and 19 near the 3300 m isobath. The channel broadens and widens 

considerably and no clear channel rim exists on the northeastern side in the uppermost portion of 

the channel segment between the 3300 and 3375 m isobaths. This is evident in profiles 19 and 

20. The channel morphology becomes more characteristic of a Type II channel and a small 

incised channel becomes evident near the 3350 m isobath between profiles 19 and 20 within the 

confines of elevated, albeit hummocky and irregular, bathymetry. Unlike ideal Type II morphology, 

no clear terraces adjacent to the main channel exist. 
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Figure 4.166. Profiles 19 through 24 that comprise the upper segment of section 3 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses the confines of the elevated bathymetry 
on either side of a small channel. Black arrow points to channel axis for profile 19 and the purple arrow points 
channel axis of the small channel for the remainder of the profiles. 
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Figure. 4.167. Profiles 25 through 30 that comprise the lower segment of section 3 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses the confines of the elevated bathymetry 
on either side of a small channel. The purple arrow points to the axis of the small channel. 
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The fourth section of Norfolk canyon channel is located between the 3670 and 3965 m 

isobaths and encompasses profiles 31 through 40 (Figs. 4.168 and 4.169). The main channel 

appears to have split into multiple smaller channels within the confines of the elevated, irregular 

bathymetry. Several of these channels appear to merge in the vicinity of profiles 37 and 38, 

between the 3880 and 3900 m isobaths. However, the channel then splits again briefly just down-

slope from the 3900 m isobath. This is evident in profile 39. At the end of the section near the 

3965 m isobath the channel becomes U-shaped and lacks the small channel at the base. 

Figure. 4.168. Profiles 31 through 35 that comprise the upper segment of section 4 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses the confines of the elevated bathymetry, 
purple arrow points channel axis of small channel, red arrow points to additional smaller channels. 
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Figure. 4.169. Profiles 36 through 40 that comprise the lower segment of section 4 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses the confines of the higher bathymetry, 
purple arrow points channel axis of small channel, red arrow points to additional smaller channels, black arrow 
points to channel axis of a more trough-like shaped channel at the end of the section. 
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The lowermost section of Norfolk canyon channel is located between the 3965 and 4120 

m isobaths and encompasses profiles 41 through 48 (Figs. 4.170 and 4.171). The channel 

widens and becomes broadly U-shaped. There is no evidence of the smaller incised channel that 

was present upslope. The U-shaped channel generally widens to the terminus of the channel. 
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Figure. 4.170. Profiles 41 through 44 that comprise the upper segment of section 5 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses broad U-shaped channel. 
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Figure. 4.171. Profiles 45 through 48 that comprise the lower segment of section 5 of Norfolk canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses broad, U-shaped channel. 

4.3.3.2. Quantitative Morphologic Parameters. The uppermost part of Norfolk canyon 

channel surveyed is located between the 2500 and 3300 m isobaths and encompasses sections 

1 and 2 and profiles 1 through 18. This segment displays characteristics of Type I channel 

morphology with a generally well-defined channel and is approximately 75 km in length. The 

segment extends down-slope to the merge with Washington canyon channel near the 3300 m 

isobath. The subsequent length of channel between the 3300 and 3965 m isobaths displays 

characteristics more similar to that of Type II channel morphology. There is a small incised 
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channel within confining bathymetry. Between the 3965 and 4120 m isobaths the channel 

becomes broad and U-shaped. 

Channel wall relief is generally defined as the vertical distance between the channel floor 

and channel rim and calculated as the difference between the measured water depth to the 

channel floor and the water depth to each channel rim. However, due to the complex nature of 

Norfolk canyon channel and the change in channel morphology from Type I to Type II, three 

different channel relief parameters were calculated. Channel wall relief was calculated for the 

channel sections that display Type I channel morphology and is simply the vertical distance 

between the channel floor and the channel rim. In addition, the relief for the smaller incised 

channel that is present in the length of channel that displays Type II channel morphology was 

calculated as the vertical distance between the floor and rims of the incised channel. Lastly, the 

relief for the elevated bathymetry that confines the smaller incised channel was calculated as the 

vertical distance between the floor of the incised channel and the top of the confining bathymetry. 

The top width of the channel is generally defined as the horizontal distance between the 

channel rims. However, as with the relief, three different channel top width parameters were 

calculated. The channel top width was calculated for the channel sections that display Type I 

channel morphology and is simply the horizontal distance from the top of one channel rim to the 

other. The top width for the smaller incised channel was calculated as the horizontal distance 

between the channel rims. Lastly, the width of the elevated bathymetry that confines the smaller 

incised channel was calculated as the horizontal distance between the tops of the elevated 

bathymetry. The incised channel, whose relief and width were measured to determine whether 

the channel is resolvable or not at the 100 m resolution of the data, is not clearly bordered by 

terrace-like features and neither a floor width nor terrace widths were measured for the Type II 

segment of channel. 

The longitudinal profile (Fig. 4.172) was constructed by connecting the deepest depths of 

the channel axis from each cross section, regardless of whether the channel is considered Type I 

or Type II. The profile is generally straight and lacks major inflections, though several small 

inflections occur in the upper portion of channel that correspond to profiles 5 and 9 and the 2750 
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and 2850 m isobaths, respectively. Another two small inflections are present nearlOO and 150 km 

down-channel that correspond to profiles 25 and 32 and the 3500 and 3700 m isobaths, 

respectively. There is no obvious change in the profile upslope or down-slope from the 

confluence of Norfolk and Washington canyon channels. 
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Figure. 4.172. Longitudinal profile of Norfolk canyon channel. Arrows point to minor inflections in the profile and 
dashed line shows the vicinity of the confluence with Washington canyon channel. 

The channel wall relief (Fig. 4.173) for the Type I channel section of the uppermost 

portion of Norfolk canyon channel between the 2500 and 3300 m isobaths varies from 36 to 110 

m on the northeastern side and from 52 to 148 m on the southwestern side (Table 4.4). The 

channel wall relief, although variable, decreases with increased channel floor water depth and the 

southwestern channel wall relief is generally greater than that of the northeastern relief. Two 

exceptions occur near the 2700 and 3900 m isobaths where the northeastern channel wall relief 

is greater than the southwestern channel wall relief. 

The channel wall relief of the elevated bathymetry that confines the small channel for the 

Type II channel section varies from 22 to 136 m on the northeastern side and from 26 to 93 m on 
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the southwestern side (Table 4.4). Although the relief is variable, there is a general decrease with 

increased thalweg water depth. The channel wall relief of the small incised channel is low, and 

varies from 8 to 44 m on the northeastern side and from 9 to 37 m on the southwestern side 

(Table 4.4). The incised channel occurs between the 3350 and 3970 m isobaths, and in these 

water depths the stated accuracy for depth determination of 0.5% of water depth (Gardner, 2004; 

Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product Description) is 17 m to 20 m. 

Table 4.5 provides an indication of which relief measurements may be unresolvable at the 100 m 

resolution of the data. 

Near the terminus of the channel, between the 3970 and 4120 m isobaths, the incised 

channel is no longer present and the channel is broadly U-shaped. This section is also 

considered a Type I channel and the relief varies from 23 to 61 m on the northeastern side and 

from 26 to 73 m on the southwestern side. The lowest channel relief measurements for this 

section are above the accuracy for depth determination of 0.5% of water depth for the deepest 

profile near the 4120 m isobath, which is -21 m 

150 

100 

"5 
IS 

50 

0 

g I ! I 1 1 

—e— Typel Northeast 
\Ji f O Typel Southwest 
° 1 A ' — B — E B Northeast ] 

1 O I i EB Southwest 
\ d\ A if I C Northeast 

• I W K ' 
, o IC Southwest 

T\I\I\ V ^ Ii i / 

\ Ni l 

^ \ / \ * 
HL 

6 *** Jrill 

.' ^ H t 
1 1 1 1 i 1 ! 

2600 2800 3000 3200 3400 3600 3800 4000 42 00 
Thalweg Water Depth (m) 

Figure. 4.173. Change in channel wall relief with increased thalweg (channel floor) water depth for Norfolk canyon 
channel. IC = incised channel EB = elevated bathymetry 
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Table 4.4. Table showing the minimum and maximum channel wall relief for each of segment of Norfolk canyon 
channel 

Channel Section 

Uppermost Type 1 

Lowermost Type 1 

Incised Channel 

Elevated Bathymetry 

Minimum East 
Relief (m) 

36 

23 

8 

32 

Maximum East 
Relief (m) 

110 

61 

44 

138 

Minimum West 
Relief (m) 

52 

26 

9 

33 

Maximum West 
Relief (m) 

148 

73 

37 

93 

Table 4.5. Channel wall relief of the main incised channel (thalweg) with those relief measurements highlighted 
yellow which are below 

Thalweg Depth (m) 

-3373 

-3407 

-3448 

-3473 

-3502 

-3512 

-3552 

-3579 

-3609 

-3639 

-3664 

-3693 

-3707 

-3759 

-3781 

-3813 

-3841 

-3880 

-3937 

-3967 

the accuracy of de 

Accuracy (m) 

17 

17 

17 

17 

18 

18 

18 

18 

18 

18 

18 

18 

19 

19 

19 

19 

19 

19 

20 

20 

pth determination in water depth 
Thalweg Northeast 

Relief (m) 

21 

15 

24 

33 

29 

19 

31 

26 

37 

38 

23 

23 

12 

14 

20 

8 

14 

20 

44 

20 

s of 3000 to 4000 m. 
Thalweg Southwest 

Relief (m) 

11 

NaN 

24 

32 

26 

19 

15 

15 

25 

26 

21 

18 

17 

17 

14 

14 

9 

NaN 

31 

37 
*NaN = no thalweg wall relief could be measured 

The channel top width (Fig. 4.174) of the uppermost portion of Norfolk canyon channel 

that displays Type I channel morphology between the 2500 and 3300 m isobaths ranges between 

1022 and 2418 m (Table 4.6). The top width decreases to a minimum between the 2600 and 

2800 m isobaths and then increases to a nearly constant width between the 2800 and 3000 m 

isobaths. The top width decreases once more just down-slope from the 3000 m isobath before 

the top width increases with increased channel floor water depth to the end of the section near 
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the 3300 m isobath. The incised thalweg present between the 3350 and 3970 m isobaths is 

narrow with top widths between 560 and 1198 m (Table 4.6). The top width of the confining 

bathymetry is much greater than either the thalweg or the Type I channel in the uppermost 

segment and varies from 3046 and 8601 m (Table 4.6). The top width is variable and no distinct 

trend with increased thalweg water depth is evident. The section at the terminus of the channel 

between the 3965 and 4120 m isobaths that is also considered Type I has much wider top widths 

than the Type I section in the uppermost portion of channel that range between 3621 and 8626 m 

(Table 4.6). These are comparable to the widths of the confining bathymetry. 
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Figure. 4.174. Change in channel top width with increased thalweg (channel floor) water depth for Norfolk canyon 
channel. 

Table 4.6. The minimum and maximum top widths for each of the segments of Norfolk canyon channel. 

Channel Section 

Uppermost Type I 

Lowermost Type I 

Incised Channel 

Elevated Bathymetry 

Minimum Width (m) 

1022 

3621 

560 

3046 

Maximum Width (m) 

2418 

8626 

1198 

8601 
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The floor width (Fig. 4.175) is defined as the horizontal distance from the base of the 

channel walls and is measured for the Type I section that characterizes the uppermost portion of 

Norfolk canyon channel between the 2500 and 3300 m isobaths as well as for the broad, U-

shaped segment at the end of the channel between the 3965 and 4120 m isobaths. For the 

uppermost portion of channel between the 2500 and 2975 m isobaths, the profiles are 

sporadically V-shaped or very narrowly U-shaped. The floor widths of the U-shaped profiles are 

very narrow, from 150 to 1425 m. The V-shaped profiles were given a floor width of 100 m 

because they are either at or below the 100 m resolution of the data (Refer to Methods section 

3.6.1). Towards the end of the uppermost section of channel between the 2975 and 3300 m 

isobaths, however, the cross sectional geometry of the channel becomes U-shaped and the floor 

width generally increases with increased channel floor water depth. Near the terminus of the 

channel, where the cross-sectional morphology is broadly U-shaped, the floor width varies from 

719 to 4420 m and shows a very steep increase with increased channel floor water depth to the 

terminus of the channel near the 4120 m isobath. 
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Figure. 4.175. Change in floor width with increased channel floor water depth for Norfolk canyon channel. 
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4.3.3.3. Summary of Cross-Sectional Profiles. Norfolk canyon channel is located along 

the middle U.S. Atlantic continental margin seaward of the Chesapeake Bay region (Fig. 4.160). 

The channel evolves from Norfolk Canyon (Pratt, 1967), which has eroded landward of the shelf 

edge (Shor and McClennen, 1988). Although Schlee and Rob (1991) identified the region as 

Norfolk gather area where several canyons and channels between Washington and Norfolk 

Canyons converge into one major channel on the lower continental margin, only two channels 

(Norfolk and Washington canyon channels) are evident from data presented here. Norfolk canyon 

channel has been interpreted as a short channel that merges with Washington Canyon (Pratt, 

1967) although the opposite interpretation is made in this study. The confluence between 

Washington and Norfolk canyon channels occurs near the 3300 m isobath. The Norfolk canyon-

channel system extends for at least 230 km between the 2500 and 4120 m isobaths. However, it 

appears that several distributary channels emerge near the 4120 m isobath and continue for an 

additional130 km down-slope and merge with a transverse channel that is oriented southward 

near the 4600 m isobath. The channel upslope from the emergence of the distributary channels is 

the focus of this study and the channel was subdivided into five sections for further description. 

The channel begins as a well-defined channel with Type I channel morphology. The 

channel grades from V-shaped in the uppermost section between the 2500 and 2975 m isobaths 

to U-shaped between the 2975 and 3300 m isobaths. Down-slope from the confluence with 

Washington canyon channel near the 3300 m isobath, Norfolk canyon channel loses the 

bathymetric expression of a well-defined channel and the morphology becomes more 

characteristic of a Type II channel. There is a small main channel within the confines of elevated, 

hummocky bathymetry. The small channel bifurcates and merges twice between the 3670 and 

3950 m isobaths before the channel grades into a broad, U-shaped morphology in the lowermost 

section between the 3965 and 4120 m isobaths. 

Due to the complexity of Norfolk canyon channel, three separate relief and width 

parameters were calculated, one each for the well-defined channel at the upper portion and 

terminus of the channel, the small incised channel, and the elevated bathymetry that confines the 

incised channel. However, the longitudinal profile was evaluated for the channel in its entirety, 
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regardless of channel type. Although there is no obvious change in the profile upslope or down-

slope from the confluence of Norfolk and Washington canyon channels, several small inflections 

occur. Two correspond to profiles 5 and 9 and the 2750 and 2850 m isobaths, respectively, and 

are sites of slump features. There is no geomorphic feature that readily accounts for an inflection 

near the 3500 m isobath that corresponds to profile 25. However, there is a small inflection that is 

present near the 3700 m isobath and corresponds to profile 32. This profile is in the vicinity of 

where the small channel has split into several channels. 

The channel wall relief for the Type I channel section in the uppermost portion of channel 

between the 2500 and 3300 m isobaths decreases with increased channel floor water depth and 

the southwestern channel wall relief is generally greater than that of the northeastern channel 

wall. Two exceptions are evident near the 2700 and 3900 m isobaths. These correspond to 

profiles 4 and 9 and are sites of slump features; these also correspond to regions in the vicinity of 

inflections in the longitudinal profile. The top width of the Type I channel section, although 

variable, shows an increase from the 3000 m isobath to the end of the section near the 3300 m 

isobath, just upslope from the confluence with Washington canyon channel. The floor width also 

generally shows a slight increase in this interval. 

A small, incised channel is present between the 3350 and 3970 m isobaths, down-slope 

from the confluence with Washington canyon channel. The top of the incised channel is narrow 

and the channel wall relief is low. In these water depths the stated accuracy for depth 

determination of 0.5% of water depth (Gardner, 2004; Cartwright and Gardner, 2005; Kongsberg 

Simrad EM 120 Product Description) is 17 to 20 m and it is clear that the relief of the small 

channel often falls below these values (Table 4.5). These relief measurements may not be 

accurate representations of the actual channel. The relief of the elevated bathymetry on either 

side of the small channel, although variable, generally decreases with increased thalweg water 

depth. The width of the elevated bathymetry, although much greater than that of either the 

thalweg or Type I channel characteristic of the uppermost portion of Norfolk canyon channel, is 

much more variable. However, the top widths are comparable to those in the lowermost section 

between the 3965 and 4120 m isobaths. The lowermost of channel is broadly U-shaped and both 
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the top and floor are wide. The floor width for this section increases with increased channel floor 

water depth although the relief generally decreases. 

It is evident that Norfolk canyon channel is a complicated system. The channel displays 

Type I channel morphology between the 2500 m isobath and the confluence with Washington 

canyon channel near the 3300 m isobath. Down-slope from the confluence the morphology of the 

channel is more characteristic of a Type II channel. The incised thalweg is confined by elevated, 

hummocky bathymetry. However, the channel wall relief of the small incised channel often falls 

below the accuracy for depth determination (Table 4.5). Despite some complicated morphology, 

some patterns do emerge. The channel wall relief of both the Type I channel and the Type II 

elevated bathymetry decreases with increased channel floor water depth. In addition, the 

lowermost segment of channel that becomes broadly U-shaped and lacks an incised thalweg 

down-slope from the 3965 m isobath, widens with increased channel floor water depth to the 

terminus near the 4120 m isobath. 

4.4 South Canyon Channels 

Three principal down-slope trending canyon-channel systems have been recognized off 

of Cape Hatteras in the South region of the margin (Fig. 3.4) and from north to south they are 

Albermarle, Hatteras, and Pamlico canyon channels (Fig. 1.1; Rona et al., 1967; Newton and 

Pilkey, 1969; Popenoe and Dillon, 1996). Rona et al. (1967) included Hatteras Transverse 

Canyon in the sediment transport system with Hatteras and Pamlico Canyons. However, Hatteras 

Transverse Canyon trends parallel to the local isobaths and due to this fundamentally different 

trend Hatteras Transverse Canyon was not included in the analysis. However, Hatteras canyon 

channel merges with Hatteras Transverse Canyon near the 5100 m isobath. According to 

Popenoe and Dillon (1996), canyons off of North Carolina begin on the upper continental margin 

and do not indent the shelf edge very deeply. They observed that at least 40 gullies and chutes 

form the three principal drainages on the continental margin off of North Carolina: Albermarle, 

Hatteras and Pamlico canyon drainages (Popenoe and Dillon, 1996). 
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4.4.1 Albermarle Canyon Channel 

4.4.1.1. Channel Description and Cross-Sectional Profiles. Albermarle canyon channel is 

the northernmost canyon channel located on the continental margin off of Cape Hatteras (Fig. 

4.176). Newton and Pilkey (1969) interpreted the channel as an upslope branch of Hatteras 

Transverse Canyon and called the channel 'Albermarle Transverse Canyon'. More recently, the 

channel has been interpreted as consisting of 3 parallel drainages within a broad depression 

(Popenoe and Dillon, 1996). However, only one main channel is identified and studied further in 

this study. Down-slope from the 4400 m isobath a distinct channel is hard to define and according 

to Popenoe and Dillon (1996), a broad, shallow depression may act to funnel debris in the 

direction of Hatteras Transverse Canyon. 

The Albermarle canyon-channel system extends for at least 150 km between the 2500 

and 4400 m isobaths. However, it appears that several distributary channels emerge and 

continue down-slope for another 70 km to the vicinity of the head of Hatteras Transverse Canyon 

near the 4750 m isobath. A total of 33 cross sections were constructed at 5000 m intervals down 

the length of Albermarle canyon channel (Fig. 4.177). Albermarle canyon channel displays 

morphology characteristic of a Type II channel for most of its length with a main incised channel 

and adjacent terrace-like features within confining bathymetry. The channel wall relief of the 

incised channel decreases with increased distance down-channel and near the 4050 m isobath 

the channel becomes wider and U-shaped. However, small inflections that may be indications of 

incision are evident on the side walls of the broader channel. The channel remains U-shaped to 

its terminus near the 4400 m isobath. This is where the last cross profiles were evaluated and the 

possible distributary channels were not included. The channel was subdivided into 7 sections for 

further description based on cross-sectional geometry. 
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Figure. 4.176. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI background and 
channels delineated in black. Location of Albermarle canyon channel is shown in the yellow box. Ny =Nygren, 
M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, 
Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure. 4.177. Overview of Albermarle canyon channel with cross profiles in white and numbered. The sections 
that the channel was subdivided into for further description are shown with black brackets and numbered. 
Possible distributary channels are delineated with white dashed lines. 

The uppermost section of Albermarle canyon channel surveyed is located between the 

2500 and 2825 m isobaths and encompasses profiles 1 through 5 (Fig. 4.178). This section 

displays morphology that is characteristic of a Type II channel. There is an incised thalweg 

bordered by terrace-like features all within broad, confining bathymetry. The rims of the incised 

channel are delineated by crest-like features that are not level with the adjacent terrace features. 

The channel wall relief of the incised channel decreases with increased distance down-channel. 

The northeastern terrace-like feature adjacent to the channel slopes down into a smaller channel 

that runs parallel to the main channel between the 2500 and 2790 m isobaths. This additional 
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channel is evident in profiles 1 through 4. This additional channel is not present in profile 5 and 

may merge with Albermarle canyon channel upslope near the 2790 m isobath. 

Figure. 4.178. Profiles 1 through 5 that comprise the uppermost section of Albermarle canyon channel; profiles 
have a vertical exaggeration of 10. Black bracket encompasses the extents of the canyon-channel system, red 
arrows indicate terrace like features, the purple arrow points to the thalweg axis, and black arrow points to 
smaller channel on the northeastern side of the main channel. 
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The second section of Albermarle canyon channel is located between the 2825 and 3150 

m isobaths and encompasses profiles 6 through 10 (Figs. 4.179 and 4.180). The channel 

traverses close to the confining bathymetry on the southwestern side of the canyon-channel 

system and it is often difficult to distinguish a channel rim that is distinct from the confining 

bathymetry. This trend is particularly evident in profiles 6 and 8. The confining bathymetric feature 

is more subdued on the northeastern side of the channel than on the southwestern side. A wide 

terrace-like feature is present on the northeastern side between the incised channel and confining 

bathymetry. A smaller channel exists on the northeastern terrace-like feature between the 2930 

and 3120 m isobaths. This is evident in profiles 8 through 10. 

Figure 4.179. Profiles 6 through 8 that comprise the upper segment of the second section of Albermarle canyon 
channel; profiles have a vertical exaggeration of 10. Black bracket encompasses extent of the canyon-channel 
system, red arrows indicate terrace-like features, the purple arrow points to the thalweg axis and the black arrow 
points to small channel adjacent to the main channel. 
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Figure 4.180. Profiles 9 and 10 that comprise the lower segment of the second section of Albermarle canyon 
channel; profiles have a vertical exaggeration of 10. Black bracket encompasses the extents of the canyon-
channel system, red arrows indicate terrace-like features, purple arrow points to the thalweg axis and black 
arrow points to small channel adjacent to the main channel. 

The third section of Albermarle canyon channel is located between the 3150 and 3475 m 

isobaths and encompasses profiles 11 through 15 (Fig. 4.181). The confining bathymetry that 

borders the incised channel on the southwestern side remains continuous with the confining 

bathymetry that is present in the upper sections of the channel However, a feature of elevated 

bathymetry begins near the 3200 m isobath on the northeastern side that appears completely 

separate from the confining bathymetry that bordered the channel in the upper sections The new 

feature of elevated bathymetry on the northeastern side of the channel becomes well-defined by 

the 3265 m isobath This is evident in profile 12 The elevated bathymetry on the northeastern 

side of the main incised channel is much hummockier, less well-defined and less steep than that 

of the elevated bathymetry southwestern side of the channel The thalweg within the confines of 

the elevated bathymetry has very low channel wall relief. 
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Figure 4.181. Profiles 11 through 15 that comprise the third section of Albermarle canyon channel; profiles have a 
vertical exaggeration of 10 Black bracket encompasses the extent of the canyon-channel system, red arrows 
indicate terrace-like features and the purple arrow points to thalweg axis. 

The fourth section of Albermarle canyon channel is located between the 3475 and 3690 

m isobaths and encompasses profiles 16 through 19 (Fig 4 182). The confining bathymetry on 

the southwestern side is still present and continuous with the confining bathymetry upslope. 

However, this confining bathymetric feature is separated from the channel axis by a new, distinct 

feature of elevated bathymetry that is present closer to the channel axis This new confining 
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bathymetry takes shape between profiles 15 and 16 and the 3465 and 3480 m isobaths. The two 

features of elevated bathymetry on the southwestern side appear unrelated to one another. The 

canyon-channel system is narrow in this segment, the incised channel has very low channel wall 

relief and distinct terrace-like features are rare. 

Figure 4.182. Profiles 16 through 19 that comprise the fourth section of Albermarle canyon channel; profiles have 
a vertical exaggeration of 10. Black bracket encompasses the extents of the canyon-channel system, red arrows 
indicate terrace like features, the purple arrow points to the thalweg axis and the black arrow points to the 
elevated bathymetry that is continuous with that of the first three sections. 

The fifth section of Albermarle canyon channel is located between the 3690 and 4050 m 

isobaths and encompasses profiles 20 through 25 (Fig. 4.183). The elevated bathymetry that 

confines the incised channel is clearly present between the 3690 and 3725 m isobaths. This is 

evident in profile 20. However, the confining bathymetry becomes less well-defined down-slope 
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between the 3725 and 3900 m isobaths. This is evident in profiles 21 through 23. At the end of 

the section, between the 3900 and 4050 m isobaths, the confining bathymetry narrows and 

becomes mainly absent. This is evident in profiles 24 and 25. Distinct terraces are not present 

adjacent to the incised thalweg and the incised thalweg has very low channel wall relief. 
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Figure 4.183. Profiles 20 through 25 that comprise the fifth section of Albermarle canyon channel; profiles have a 
vertical exaggeration of 10. Black bracket encompasses the extents of the canyon-channel system and the purple 
arrow points to thalweg axis. 
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The sixth section of Albermarle canyon channel is located between the 4050 and 4250 m 

isobaths and encompasses profiles 26 through 29 (Fig. 4.184). The channel morphology is more 

characteristic of a Type I channel. There is no distinct thalweg, terrace-like features or confining 

bathymetric feature for this length of channel that were present of the upper sections of channel. 

However, inflections on near the base of the channel walls are present that may indicate the 

remnant incised channel. These are particularly evident in profiles 26 through 28. 

Figure 4.184. Profiles 26 through 29 that comprise the sixth section of Albermarle canyon channel. Profiles have 
vertical exaggeration of 10. Black bracket encompasses channel extents and black arrows point to inflections 
that may be the expression of smaller, incised channel. 
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The lowermost section of Albermarle canyon channel is located between the 4250 and 

4400 m isobaths and encompasses profiles 30 through 33 (Fig. 4.185). The channel continues to 

display characteristics more typical of Type I morphology but the channel is much less well-

defined and becomes indistinguishable from the adjacent seafloor near the 4380 m isobath This 

is evident in profile 33. 
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Figure 4.185. Profiles 30 through 33 that comprise the lowermost section of Albermarle canyon channel. Profiles 
have a vertical exaggeration of 10. Black bracket encompasses extents of the channel. 
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4.4.1.2. Quantitative Morphologic Parameters. Due to the complexity of Albermarle 

canyon channel that typically displays Type II channel morphology, two channel relief and two top 

width parameters were calculated. Channel wall relief is generally defined as the vertical distance 

between the channel floor and the channel rim and calculated as the difference between the 

measured water depth to the channel floor and the water depth to each channel rim. The channel 

wall relief of the incised channel was calculated as the vertical distance between the thalweg floor 

and the thalweg rims. The lowermost portion of channel between the 4050 and 4380 m isobaths 

typically displays morphology characteristic of a Type I channel and the channel wall relief was 

calculated as the vertical distance between the channel floor and the channel rims. However, the 

incised thalweg appears to grade into this morphology and the two sections were treated as a 

continuous feature. The relief was also calculated for the elevated bathymetry that confines the 

incised channel as the vertical distance between the thalweg floor and the top of the confining 

bathymetry. The top width of a channel is generally defined as the horizontal distance between 

the channel rims and this calculation was used for the Type I section near the end of the channel. 

Additionally, the top width of the incised thalweg was calculated as the horizontal distance 

between the tops of the incised channel walls and the width of the confining bathymetry was 

calculated as the horizontal distance between the tops of the confining bathymetry. The floor 

width is generally defined as the horizontal distance between the bases of the channel walls but 

Albermarle canyon channel does not have a typical floor width and the floor of the incised 

channel cannot be resolved at the 100 m resolution of the data. However, terrace-like features 

are present from the uppermost portion of channel near the 2500 m isobath to near the 3600 m 

isobath and the widths of these features were calculated. 

The longitudinal profile (Fig. 4.186) was constructed by connecting the deepest depths of 

the channel axis from each cross section regardless of channel type. The profile is generally 

straight and lacks major inflections, although two minor inflections are evident. One is present 

near the start of the canyon channel and one is present near 70 km down channel. The 

inflections correspond to profiles 3 and 15 near the 2600 and 3450 m isobaths, respectively. 
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Figure 4.186. Longitudinal profile of Albermarle canyon channel. Black arrows indicate minor inflections. 

The channel wall relief (Table 4.7, Fig. 4.187) of the main incised channel is fairly high (~ 

100 m) near the 2500 m isobath. However, the relief decreases dramatically between the 2500 

and 2800 m isobaths to 30 and 18 m on the southwestern and northeastern sides, respectively. 

The channel wall relief remains low, generally less than 50 m, for the majority of the length of 

channel. The 5-m lowest channel wall relief on the northeastern side occurs twice, near the 3330 

and 3700 m isobaths, and is below the stated accuracy for depth determination of 0.5% of water 

depth (Gardner, 2004; Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product 

Description) at these depths, which are -17 and 19 m, respectively. The 8-m lowest channel wall 

relief on the southwestern side also occurs near the 3330 m isobath and is below the stated 

accuracy for depth determination of 0.5% of water depth, which is -17 m. The channel wall relief 

of the main incised thalweg between the 3200 m and 4000 m isobaths is often below the stated 

accuracy (0.5% of water depth) for depth determination (Table 4.8). The channel wall relief 

increases slightly near the 4100 m isobath but decreases near the 4280 m isobath. Down-slope 

from the 4280 m isobath to the terminus of the channel the relief measurements are generally 

below the stated accuracy for depth determination (Table 4.8). The confining bathymetry has high 
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channel relief (-200 m) in the uppermost portion of channel and the relief decreases rapidly to 

<100 m with increased thalweg water depth to the 3100 m isobath. However, there is a portion of 

channel between the 3200 and 3500 m isobaths where the southwestern relief of the confining 

bathymetry increases dramatically. The confining bathymetry loses its bathymetric expression just 

upslope from the 4000 m isobath. 

Table 4.7. Table showing the minimum and maximum relief for each of the three portions of Albermarle canyon 
channel. 

Channel Section 

Incised Channel 

Confining 
Bathymetry 

Minimum East 
Relief (m) 

5 

21 

Maximum East 
Relief (m) 

79 

195 

Minimum West 
Relief (m) 

8 

22 

Maximum West 
Relief (m) 

101 

210 

Figure 4.187. Relief of the main incised thalweg and confining bathymetry of Albermarle canyon channel. Black 
box encompasses the portion of channel which becomes U-shaped and lacks a confining bathymetry. IC = 
incised channel, CB = confining bathymetry. 
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Table 4.8. Thalweg depth, northeast and southwest channel wall relief of the incised thalweg, and the accuracy 
for depth determination (0.5% of water depth). Those highlighted yellow indicates relief measurements that are 
close to or below the accuracy for depth determination. 

Thalweg Depth (m) 

-2496 

-2571 

-2633 

-2715 

-2791 

-2870 

-2932 

-3020 

-3079 

-3137 

-3195 

-3265 

-3328 

-3380 

-3467 

-3482 

-3543 

-3602 

-3674 

-3707 

-3773 

-3826 

-3885 

-3946 

-4016 

-4087 

-4145 

-4197 

-4243 

-4283 

-4320 

-4356 

Accuracy (m) 

12 

13 

13 

14 

14 

14 

15 

15 

15 

16 

16 

16 

17 

17 

17 

17 

18 

18 

18 

19 

19 

19 

19 

20 

20 

20 

21 

21 

21 

21 

22 

22 

Northeast Relief (m) 

79 

73 

44 

35 

18 

29 

24 

31 

21 

28 

15 

13 

5 

8 

25 

NaN 

11 

17 

16 

5 

11 

7 

10 

8 

17 

39 

29 

25 

17 

12 

20 

25 

Southwest Relief (m) 

94 

101 

60 

66 

28 

41 

30 

48 

32 

40 

17 

20 

8 

13 

24 

13 

25 

13 

16 

15 

15 

20 

12 

12 

17 

48 

59 

31 

28 

15 

21 

22 
NaN = no thalweg relief could be measured. 

The top of the incised channel is narrow (Table 4.9, Fig. 4.188) and generally between 

400 and 500 m wide. This does not vary significantly until near the 4100 m isobath where there is 

an increase in top width top to >2000 m. The top width of the confining bathymetry shows a 

general decrease with increased thalweg floor water depth and distance down-channel, although 
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two wider portions are evident. These occur between the 2900 and 3200 m isobaths and the 

3700 and 3900 m isobaths. The confining bathymetry loses its bathymetric expression just 

upslope from the 4000 m isobath as the thalweg grades into a more U-shaped channel. 

Table 4.9 Table showing the minimum and maximum top widths for each segment of Albermarle canyon channel. 

Channel Section 

Incised Channel 

Confining 
Bathymetry 

Minimum Width (m) 

368 

2615 

Maximum Width (m) 

2113 

11294 
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Figure 4.188. Top widths of the main incised channel and confining bathymetry with increased thalweg water 
depth for Albermarle canyon channel. The black box encompasses the portion of channel which becomes U-
shaped and lacks confining bathymetry. 

Terrace-like features adjacent to the main incised channel are present in the uppermost 

portion of channel between the 2500 and 3600 m isobaths. The widths of the terrace-like features 

(Fig. 4.189) were measured from the rim of the incised channel to the base of each abutting 

valley wall. The widths of the terrace features range from 187 to 5264 m. It is evident that the 

terrace features on the northeastern side are generally wider than those on the southwestern side 

and also more consistently present. The width of the northeastern terrace feature increases to a 

295 



maximum of >5000 m near the 3200 m isobath and then decreases dramatically to the 3500 m 

isobath. 
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Figure 4.189. Width of terrace-like features adjacent to the incised thalweg with increased thalweg water depth 
for Albermarle canyon channel. TF = terrace-feature. 

4.4.1.3. Summary of Cross-Sectional Profiles. Albermarle canyon channel is located on 

the continental margin off Cape Hatteras (Fig. 4.176) and is the northernmost of the three 

principal canyon-channel systems that have been recognized off of Cape Hatteras. Although 

Albermarle canyon channel has been interpreted to consist of 3 parallel drainages within a broad 

depression (Popenoe and Dillon, 1996), only one main channel is identified here and studied 

further. The canyon-channel system extends for at least 150 km between the 2500 and 4400 m 

isobaths. Although not evaluated by cross sections, it appears several distributary channels 

emerge near the 4400 m isobath and continue for another 70 km down-slope to merge with the 

head of Hatteras Transverse Canyon near the 4750 m isobath. 

Albermarle canyon channel displays characteristics of a Type II channel for the majority 

of its length, with an incised channel and adjacent terrace-like features within confining 

bathymetry. The uppermost section between the 2500 and 2825 m isobaths displays the most 
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well-defined Type II channel morphology. There is relatively deep thalweg with channel wall relief 

of 50 to 100 m that is bordered by terrace-like features within broader confining bathymetry. The 

incised channel traverses close to the confining bathymetry on the southwestern side of the 

channel and it is often difficult to distinguish a channel rim that is distinct from the confining 

bathymetry in the second section between the 2825 and 3150 m isobaths. In this interval the 

confining bathymetry is more subdued on the northeastern side and a wide terrace-like feature is 

present between the channel and the confining bathymetry. Down-slope, between the 3150 and 

3475 m isobaths, the confining bathymetric feature that borders the main incised channel on the 

southwestern side remains continuous with the confining bathymetric feature in the upper 

sections of channel. However, on the northeastern side an elevated bathymetric feature begins 

near the 3200 m isobath that appears completely separate from the confining bathymetry that 

bordered the channel on the northeastern side in the upper sections. The incised thalweg has 

very low channel wall relief. In the fourth section, between the 3475 and 3690 m isobaths, the 

confining bathymetry on the southwestern side that is continuous upslope is separated from the 

channel axis by an additional and unrelated feature of elevated bathymetry that is present closer 

to the axis of the main incised channel. The incised channel has very low channel wall relief and 

no distinct terrace-like features are present. The confining bathymetry becomes subdued down-

slope between the 3690 and 4050 m isobaths and the channel wall relief decreases with 

increased depth and distance down-channel. Distinct terraces are not evident and the incised 

thalweg has very low channel wall relief. The channel then widens into a broader U-shaped 

depression in the lowermost sections, between the 4050 and 4400 m isobaths. The channel 

becomes indistinguishable from the adjacent seafloor near the 4380 m isobath. 

Because of the complex morphology that Albermarle canyon channel generally displays, 

the channel wall relief and top width were calculated separately for the main incised channel and 

confining bathymetry. The U-shaped portion near the end of the channel was treated as a 

continuation of the incised channel. The longitudinal profile, however, was constructed regardless 

of whether the channel was considered Type I or Type II. The profile lacks major inflections, 

although two minor inflections are present. The inflections correspond to profiles 3 and 15, near 
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the 2600 and 3450 m isobaths, respectively. Profile 3 occurs within a brief region of channel 

between the 2600 and 2690 m isobaths that is characterized by scalloped features that may be 

side-wall slumps. Profile 15 is just upslope from a sharp bend in the thalweg. These features may 

account for the irregularity in the profile. 

The channel wall relief of the incised channel begins with fairly high relief, near 100 m, 

but this decreases dramatically between the 2500 and 2800 m isobaths. The channel wall relief is 

very low for the majority of the length of channel down-slope from the 2800 m isobath. In 

particular, many of the incised thalweg channel wall relief measurements between the 3200 and 

4000 m isobaths are below the stated accuracy for depth determination of 0.5% of water depth 

(Table 4.8). Although the main incised channel may truly exist due to the continuity of the 

channel, the 100 m resolution of may not be high enough resolution with which to accurately 

define the thalweg. The channel wall relief of the incised channel increases slightly near the 4100 

m isobath. This corresponds to the portion of channel where the incised thalweg grades into a 

wider, more U-shaped channel. Although the main incised channel is generally narrow, between 

400 and 500 m wide, there is also an increase in top width where the channel becomes U-

shaped. Terrace-like features are adjacent to the incised thalweg in the uppermost portion of 

channel between the 2500 and 3600 m isobaths. It is evident that the northeastern terrace-

features are generally wider than those on the southwestern side, and also more consistently 

present. The northeastern terrace width increases to a maximum near the 3200 m isobath and 

then decreases dramatically to the 3500 m isobath. The decrease in width corresponds to section 

3 where confining bathymetry becomes present on the northeastern side that is closer to the 

incised channel and separate from the confining bathymetry that bordered the channel on the 

northeastern side in the upper sections of channel. 

The bathymetry that confines the incised thalweg has high relief (-200 m) in the 

uppermost portion of channel and the relief decreases rapidly to <100 m with increased thalweg 

water depth to the 3100 m isobath. However, there is a portion of channel between the 3200 and 

3500 m isobaths where the southwestern relief of the confining bathymetry increases 

dramatically. This region corresponds to cross profiles in the third section, where the 
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southwestern confining bathymetry is well-defined with steep walls. The top width of the confining 

bathymetry shows a general decrease with increased distance down-channel, although two wider 

portions exist. One section occurs between the 2900 the 3200 m isobaths and corresponds to 

section 2 where there is very wide terrace-feature on the northeastern side of the channel. The 

second occurs between the 3700 and 3900 m isobaths and corresponds to a portion of section 5 

where the confining bathymetry widens and becomes less well-defined. The confining bathymetry 

loses its bathymetric expression just upslope from the 4000 m isobath. 

4.4.2 Hatteras Canyon Channel 

4.4.2.1. Channel Description and Cross-Sectional Profiles. Hatteras canyon channel is 

the central canyon channel located on the continental margin off of Cape Hatteras (Fig. 4.190) 

and is generally wide and shallow (Popenoe and Dillon, 1996). Although Popenoe and Dillon 

(1996) observed that several tributaries feed into the system, from the Coastal Relief Model it 

appears that Hatteras Canyon is the most prominent upslope continuation of the channel. The 

Hatteras canyon-channel system traverses for approximately 270 km between the 1600 and 5080 

m isobaths where the channel merges with Hatteras Transverse Canyon as previously observed 

(Rona et al., 1967; Popenoe and Dillon, 1996). 

A total of 54 cross sections were constructed at 5000 m intervals down the length of 

Hatteras canyon channel (Fig. 4.191). Hatteras canyon channel is a complex system that displays 

Type I, Type II and transitional channel morphology. It appears that the uppermost portion of 

channel that is located between the 1600 and 2200 m isobaths is part of Hatteras Canyon that 

has incised into the upper continental margin and is well-defined with high channel wall relief. The 

channel wall relief decreases dramatically between the 2200 and 2500 m isobaths and the 

northeastern channel rim becomes hard to define at this location. The section of channel between 

the 2500 and 2825 m isobaths has morphology mainly characteristic of a Type I channel, but has 

low channel wall relief and often displays irregular cross sectional morphology. A feature of 

elevated bathymetry is present to the northeast of the channel, but the association of the feature 

to Hatteras canyon channel is unclear. The channel appears to have incised through the elevated 

bathymetric feature near the 3345 m isobath and the channel wall relief increases. A small 
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channel merges with Hatteras canyon channel near the 3425 m isobath and down-slope from the 

confluence Hatteras canyon channel displays morphology typical of a Type II channel. There is 

an entrenched thalweg bordered by terrace-like features within confining bathymetry. The 

channel grades into a section that is more confined between the 3700 and 3955 m isobaths and 

is described as a Type I channel with an entrenched thalweg. The small entrenched thalweg 

bifurcates near the 3955 m isobath and the morphology returns to being more characteristic of a 

Type II channel. However, no clear terraces exist and the confining bathymetry that borders the 

incised channel is more irregular and hummocky. There is a transitional region between the 4550 

and 4850 m isobaths where the channel does not clearly display Type I or Type II channel 

morphologies. The confining bathymetric feature is less well-defined and often absent on the 

northeastern side and seems to nearly merge with the channel wall of the incised channel on the 

southwestern side. The lowermost portion of the canyon channel, between the 4850 and 5080 m 

isobaths, is a higher relief, well-defined channel typical of Type I channel morphology, although 

slump features are common. This section occurs just before the confluence with Hatteras 

Transverse Canyon near the 5080 m isobath. The channel was further subdivided into eleven 

sections based on cross-sectional geometry and channel plan shape. 
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Figure 4.190. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI background and 
channels delineated in black. The location of Hatteras canyon channel is shown in the yellow box. Ny =Nygren, 
M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, 
Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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Figure 4.191. Overview of Hatteras canyon channel with cross profiles in white and numbered. Sections that the 
channel was subdivided into for further description are delineated with black brackets and numbered. 

The uppermost section of Hatteras canyon channel surveyed is located between the 

1600 and 2500 m isobaths and encompasses profiles 1 through 3 (Fig. 4.192). This section is 

interpreted to comprise a portion of Hatteras Canyon that has incised into the upper continental 

margin. The channel cross section is V-shaped with steep channel walls in the first profile and is 

located in shallow water depths (-1600 m channel floor depth). The channel remains V-shaped 
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with high channel wall relief near the 2275 m isobath (profile 2) but becomes more U-shaped with 

lower channel wall relief near the 2450 m isobath (profile 3). 

Figure 4.192. Profiles 1 through 3 that comprise section 1 of Hatteras canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis. 

The second section of Hatteras canyon channel is located between the 2500 and 2825 m 

isobaths and encompasses profiles 4 through 7 (Fig. 4.193). Although the southwestern rim of the 

channel is a well-defined crest feature, the northeastern rim of the channel is ambiguous. 

However, it is evident in profile 7 near the 2790 m isobath that a small channel begins to take 

shape. This small channel has low channel wall relief but is U-shaped and generally characteristic 

of a Type I channel. For the entire length of the section, the channel is bordered on the 

southwestern side by a smaller channel that traverses parallel to Hatteras canyon channel. This 

is manifested in the profiles as a small depression adjacent to the main channel. 
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Figure 4.193. Profiles 4 through 7 that comprise section 2 of Hatteras canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, blue arrow points to crest feature on the southwestern 
side of channel, red arrow points to smaller channel parallel to Hatteras canyon channel and orange arrow 
encompasses a hole feature. 

The third section of Hatteras canyon channel is located between the 2825 and 3200 m 

isobaths and encompasses profiles 8 through 13 (Figs. 4.194). The channel is generally U-

shaped with low channel wall relief, although the channel is V-shaped near the end of the section 

and the 3180 m isobath. This is evident in profile 13. The small channel that is adjacent to 

Hatteras canyon channel on the southwestern side continues to traverse down-slope until the 

vicinity of profile 11 near the 3075 m isobaths although it is unclear if the channel merges with 

Hatteras canyon channel. A feature of elevated bathymetry is present to the northeast of the 

channel. The distance between Hatteras canyon channel and the feature decreases with 

increased depth and distance down-channel as the channel gradually bends eastward throughout 
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the section. The length of seafloor between Hatteras canyon channel and the elevated 

bathymetric feature could be interpreted as a terrace-like feature, but the association is unclear. 

Figure 4.194. Profiles 8 through 13 that comprise section 3 of Hatteras canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, red arrow points to additional smaller channel, blue 
bracket encompasses feature of elevated bathymetry and red dashed double-headed arrow indicates possible 
terrace-like feature. 
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The fourth section of Hatteras canyon channel is located between the 3200 and 3375 m 

isobaths and encompasses profiles 14 through 16 (Fig. 4.195). The channel intersects and has 

incised through the elevated bathymetric feature that had been present to the northeast of the 

channel upslope. This occurs near the 3345 m isobath in the vicinity of profile 16. The channel is 

generally U-shaped and well-defined with higher channel wall relief than in previous sections. 

Figure 4.195. Profiles 14 through 16 that comprise section 4 of Hatteras canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis. 

The fifth section of Hatteras canyon channel is located between the 3375 and 3700 m 

isobaths and encompasses profiles 17 through 22 (Fig. 4.196). A small channel extends down-

slope on the northeastern side of Hatteras canyon channel and bifurcates near the 3330 m 

isobath. One branch enters Hatteras canyon channel directly from the northeast near the 3425 m 

isobath and between profiles 17 and 18. The second branch traverses parallel to Hatteras canyon 

channel on the northeastern side until it merges with Hatteras canyon channel near the 3700 m 

isobath, between profiles 22 and 23. This portion of channel displays morphology that is 
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characteristic of a Type II channel with an entrenched thalweg and adjacent terrace-like features 

within confining bathymetry 
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Figure 4.196. Profiles 17 through 19 that comprise the upper portion of section 5 of Hatteras canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses the extents of the canyon-channel 
system, red arrows indicate terrace features, purple arrow points to incised thalweg, and the black arrow points 
to small channel to the east of the main channel. 
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The sixth section of Hatteras canyon channel is located between the 3700 and 3955 m 

isobaths and encompasses profiles 23 through 28 (Figs. 4.197 and 4.198). This section begins 

just down-slope from the confluence with a small channel from the northeast near the 3700 m 

isobath, between profiles 22 and 23. This portion of channel becomes much more U-shaped with 

well-defined channel rims on either side, which is more typical of a Type I channel. This 

morphology is particularly evident between the 3800 and 3955 m isobaths and shown in profiles 

25 through 28. This length of channel is considered a well-defined Type I channel with an incised 

thalweg at the base. The confining bathymetry present on either side of the main incised channel 

in the previous section comprises the well-defined channel walls for this section of channel. 

Terrace-like features are still present adjacent to an incised thalweg although the channel wall 

relief of the main incised channel is considerably decreased from that of the previous section. 

Figure 4.197. Profiles 23 through 25 that comprise the upper portion of section 6 of Hatteras canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, purple arrow points to incised 
thalweg, and red arrows indicate terrace-like features. 
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Figure 4.198. Profiles 26 through 28 that comprise the lower portion of section 6 of Hatteras canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, purple arrow points to incised 
thalweg, and red arrows indicate terrace-like features. 

The seventh section of Hatteras canyon channel is located between the 2955 and 4175 

m isobaths and encompasses profiles 29 through 32 (Fig. 4.199). The well-defined channel loses 

its bathymetric expression and the system broadens with confining bathymetry and incised 

channel becoming prevalent once more. The incised channel bifurcates into two separate 

channels within the confining bathymetry near the 3955 m isobath. The main channel remains 

more entrenched toward the southwestern side of the channel floor. This is evident in profiles 30 

and 31. The channels merge near the 4175 m isobath, between profiles 32 and 33. Although this 

section of channel is more characteristic of Type II channel morphology, no distinct terrace 

features are evident. 
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Figure 4.199. Profiles 29 through 32 that comprise section 7 of Hatteras canyon channel; profiles have a vertical 
exaggeration of 10. Black bracket encompasses extent of canyon-channel system, purple arrow points to main 
channel axis, black arrow points to additional, smaller channel. 

The eighth section of Hatteras canyon channel is located between the 4175 and 4550 m 

isobaths and encompasses profiles 33 through 42 (Figs 4.200 and 4.201). Although the channel 

displays morphology more characteristic of a Type II channel, the morphology is irregular 

Classification for this section was difficult and the section was further divided into 2 subsections. 

The upper subsection is located between the 4175 and 4350 m isobaths and encompasses 

profiles 33 through 37. The lower subsection is located between the 4350 and 4550 m isobaths 

and encompasses profiles 38 through 42. In the first subsection, there still appears to be an 

incised channel within confining bathymetry. However, the cross-sectional geometry is irregular 

and well-defined terraces adjacent to the incised channel are rare. In the second subsection, the 

morphology of the channel is more transitional between that of Type I and Type II channels. 

Although the confining bathymetric feature is still present on the southwestern side, it loses its 
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bathymetric expression on the northeastern side between the 4420 and 4500 m isobaths. This is 

evident in profiles 39 through 41. The channel turns slightly more toward the south between the 

4500 and 4525 m isobaths. Profile 42 is located near the end of the turn and the channel is closer 

to the confining bathymetric feature on the southwestern side than to the feature on the 

northeastern side. 

Figure 4.200. Profiles 33 through 37 that comprise the upper subsection of section 8 of Hatteras canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses confining bathymetry, purple arrow 
points to thalweg axis. 
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Figure 4.201. Profiles 38 through 42 that comprise the lower subsection of section 8 of Hatteras canyon channel; 
profiles have a vertical exaggeration of 10. Black bracket encompasses confining bathymetry, red arrow points to 
the confining bathymetric feature that is present on southwestern side only and purple arrow points to thalweg 
axis. 

The ninth section of Hatteras canyon channel is located between the 4550 and 4660 m 

isobaths and encompasses profiles 43 through 46 (Fig. 4 202). This is an irregular section of 
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channel where the main incised channel becomes much more pronounced. The confining 

bathymetric feature is still present on both sides of the channel. However, the feature is 

separated from the channel by a wide stretch of seafloor on the northeastern side between the 

4550 and 4600 m isobaths. This is evident in profiles 43 and 44. The channel and confining 

bathymetry are close together on the southwestern side between the 4600 and 4630 m isobaths 

and separation between the channel rim and the confining bathymetry is difficult to discern. This 

is evident in profiles 44 and 45. Small inflections on the southwestern side wall in this interval 

may be indications of the incised channel. The channel becomes more U-shaped between the 

4650 m isobath and the terminus of the section, although the confining bathymetry is still present 

on both sides of the channel. This is evident in profile 46. 

Figure 4.202. Profiles 43 through 46 that comprise section 9 of Hatteras canyon channel; profiles have a vertical 
exaggeration of 10. Black bracket encompasses confining bathymetry, purple arrow points to thalweg axis, green 
arrow points to inflection that may be indicative of an incised thalweg. 
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The tenth section of Hatteras canyon channel is located between the 4660 and 4850 m 

isobaths and encompasses profiles 47 through 49 (Fig. 4.203). The channel in this section is 

more well-defined and displays morphology more characteristic of a Type I channel. The 

confining bathymetric feature has become sufficiently close to the channel rim on the 

northeastern side that the confining bathymetry and channel rim are no longer considered 

separate features. The southwestern side of the channel is sloped and hummocky although it is 

unclear if this is a slump feature. However, inflections at the base of the southwestern side wall 

appear to separate the channel from the sloped feature. 
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Figure 4.203. Profiles 47 through 49 that comprise section 10 of Hatteras canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis, red arrow points to top of slump feature, black bracket 
encompasses possible slump feature and green arrow points to inflections that indicate an incised channel rim. 

The lowermost section of Hatteras canyon channel is located between the 4850 and 

5080 m isobaths and encompasses profiles 50 through 54 (Fig. 4.204). This length of channel is 

just upslope from the confluence with Hatteras Transverse Canyon near the 5080 m isobath and 
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the channel is well-defined, which is characteristic of a Type I channel The channel is U-shaped 

and has high channel wall relief, although there are many slump features along the southwestern 

channel wall 
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Figure 4.204. Profiles 50 through 54 that comprise the lowermost segment of Hatteras canyon channel; profiles 
have a vertical exaggeration of 10. Black arrow points to channel axis and red arrow points to slump features. 
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4.4.2.2. Quantitative Morphologic Parameters. The first profile of Hatteras canyon 

channel is located near the 1600-m thalweg isobath and shows a portion of Hatteras Canyon that 

has incised into the steeper upper continental margin. This study is mainly concerned with the 

morphology of the canyon channel on the less steep lower continental margin and the first profile, 

although shown in the longitudinal profile, was not used in the plots of relief or width. In addition, 

due to the complex morphology of Hatteras canyon channel that includes Type I, Type II and 

transitional channel morphologies, relief and width parameters were calculated separately for 

different segments of channel. 

Channel wall relief is generally defined as the vertical distance between the channel floor 

and the channel rim and calculated as the difference between the measured water depth to the 

channel floor and the water depth to each channel rim. However, three different channel relief 

parameters were calculated for Hatteras canyon channel. The channel wall relief for the sections 

of channel that display Type I channel morphology was calculated simply as the vertical distance 

between the channel floor and the channel rims. The channel wall relief of the incised thalweg 

was calculated as the vertical distance between the thalweg floor and the thalweg rims. Lastly, 

the relief of the confining bathymetry was calculated as the vertical distance between the thalweg 

floor and the top of the confining bathymetry. 

The top width of the channel is generally defined as the horizontal distance between the 

top of one channel rim to the other. However, similar to the relief parameters, three top widths 

were calculated for Hatteras canyon channel. The width between the channel rims for the channel 

sections that display Type I channel morphology was calculated, as well as the width between the 

main incised thalweg channel rims and the width between the tops of the confining bathymetry. 

The floor width of a channel is generally defined as the horizontal distance between the 

bases of the channel walls and this was the definition used for the sections of Hatteras canyon 

channel that display typical Type I channel morphology without an incised thalweg. For Type I 

sections that display a thalweg and adjacent terrace-like features the total floor width includes 

both the terrace features adjacent to the thalweg and the width of the thalweg itself. This method 

316 



was also used in the calculation of the total floor width of sections of channel that display typical 

Type II channel morphology. 

The longitudinal profile (Fig. 4.205) was constructed by connecting the deepest depths of 

the channel axis from each cross section, regardless of whether the channel was designated 

Type I, Type II or transitional. The depth of the channel floor increases dramatically in the 

uppermost portion of channel between the 1600 and 2250 m isobaths, but then the profile 

becomes generally straight. There are several small inflections near the terminus of the channel, 

just upslope from the confluence with Hatteras Transverse Canyon. This section corresponds to 

profiles 48 through 54, between the 4800 and 5080 m isobaths. 
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Figure 4.205. Longitudinal profile of Hatteras canyon channel. Black bracket encompasses region of irregularity. 

Channel wall relief (Fig. 4.206) is shown for the sections of channel that display Type I 

channel morphology, for the incised thalweg, and for the confining bathymetry. The maximum and 

minimum relief measurements are shown in Table 4.10. The 17-m lowest northeastern channel 

wall relief of the Type I section corresponds to profile 9 in a water depth of -2900 m. This is close 

to, but greater than, the stated accuracy for depth determination of 0.5% of water depth (Gardner, 
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2004; Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product Description) for the 

depth of 2900 m, which is -15 m. The 26-m lowest southwestern relief corresponds to profile 10 

in a water depth of -3000 m. This relief is greater than the stated accuracy for depth 

determination of 0.5% of water depth for the depth of 3000 m, which is 15 m. The 11 -m lowest 

relief on the northeastern side for the incised thalweg corresponds to profile 27, in a water depth 

of -3900 m. This is less than the stated accuracy for depth determination (0.5% of water depth) 

for the depth of 3900 m, which is -20 m. The 8-m lowest relief on the southwestern side, which 

corresponds to profile 26 in a water depth of -3850, is also below the stated accuracy for depth 

determination (0.5% of water depth) of -19 m. Several other thalweg relief measurements in the 

vicinity are also below the stated accuracy for depth determination (Table 4.11) and may not be 

considered real features. 

The greatest overall relief occurs in the uppermost portion of channel near the 2300 m 

isobath. Channel wall relief decreases dramatically from near the 2300 m isobath to just down-

slope from the 2500 m isobath. Near the 3300 m isobath the channel wall relief of the Type I 

section the channel appears to grade into the elevated bathymetric feature that confines the 

incised thalweg down-slope. The incised thalweg is present between the 3400 and 4700 m 

isobaths and the channel wall relief of the incised channel decreases between the 3400 and 4000 

m isobaths and then increases. The incised thalweg appears to grade into the Type I section at 

the end of the channel near the 4700 m isobath. The confining bathymetry loses its expression 

near the 4650 m isobath on the northeastern side and near the 4850 m isobath on the 

southwestern side. The channel wall relief of the lowermost segment that is considered a Type I 

channel increases to the terminus of the channel and the confluence with Hatteras Transverse 

Canyon near the 5080 m isobath. 
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Figure 4.206. Change in channel wall relief with increased thalweg water depth for the Hatteras canyon channel 
system. IC=lncised Channel, CB=Confining Bathymetry. 

Table 4.10. Table showing the minimum and maximum relief for each of the three portions of Hatteras canyon 
channel. 

Channel Section 

Type I Channel 

Incised Channel 

Confining 
Bathymetry 

Minimum 
Northeast Relief 

(m) 

17 

11 

53 

Maximum 
Northeast Relief 

(m) 

458 

72 

167 

Minimum 
Southwest Relief 

(m) 

26 

8 

55 

Maximum 
Southwest Relief 

(m) 

523 

81 

221 
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Table 4.11. Thalweg channel wall relief and accuracy for depth determination. Those highlighted yellow indicates 
thalweg relief measurements that are near or below the accuracy for depth determination and may not be 
considered real features. 

Profiles 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

Thalweg 
Depth (m) 

-3387 

-3464 

-3516 

-3587 

-3631 

-3685 

-3730 

-3784 

-3822 

-3865 

-3910 

-3957 

NaN 

-4047 

-4095 

-4140 

-4184 

-4237 

-4276 

-4318 

-4348 

-4388 

-4420 

-4455 

-4498 

-4524 

-4564 

-4604 

-4635 

-4661 

Accuracy (m) 
(0.5% water depth) 

17 

17 

18 

18 

18 

18 

19 

19 

19 

19 

20 

20 

NaN 

20 

20 

21 

21 

21 

21 

22 

22 

22 

22 

22 

22 

23 

-23 

23 

23 

23 

Northeast 
Relief (m) 

24 

64 

45 

58 

73 

64 

21 

16 

15 

16 

11 

20 

NaN 

19 

17 

18 

29 

35 

30 

42 

41 

54 

24 

33 

31 

16 

39 

46 

53 

47 

Southwest 
Relief (m) 

49 

82 

66 

67 

35 

30 

18 

27 

17 

8 

13 

13 

NaN 

20 

15 

35 

24 

44 

60 

36 

33 

44 

40 

47 

23 

24 

46 

32 

35 

34 
*NaN = no thalweg identified 

The top width (Fig. 4.207) is shown for the Type I sections, the thalweg section and the 

confining bathymetry. Table 4.12 shows the minimum and maximum top widths for each of the 

sections of Hatteras canyon channel. The top width of the uppermost portion of channel 

decreases between the 2300 and 2500 m isobaths, and the top widths become relatively uniform 

between 1000 and 1500 m wide between the 2500 m and 3250 m isobaths. The top width then 
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increases to the end of the uppermost Type I section of channel near the 3400 m isobath. Here 

the incised thalweg and confining bathymetric feature take shape. The top of the thalweg is 

narrow and mainly between 500 and 1000 m wide; this does not vary greatly. The top of the 

confining bathymetry is much wider. The peak width of -2000 m occurs near the 3500 m isobath. 

The Type I section present between the 3700 and 4000 m isobaths within the Type II section has 

much lower top widths. The confining bathymetry becomes prevalent again near the 4000 m 

isobath and the top width increases. The Type I section of channel that emerges near the end of 

the channel between the 4700 m isobath and confluence with Hatteras Transverse Canyon 

shows an increase in top width to the terminus of the channel. 
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Figure 4.207. Change in channel top width with increased thalweg water depth for the Hatteras canyon-channel 
system. 

Table 4.12. Minimum and maximum top widths for each of the three portions of Hatteras can 

Channel Section 

Confined 

Thalweg 

Confining Bathymetry 

Minimum Width (m) 

842 

600 

2863 

Maximum Width (m) 

5581 

1305 

11597 

i channel. 
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Channel floor widths (Fig. 4.208) are shown for sections that display Type I channel 

morphology without an incised thalweg, sections that display Type I channel morphology with an 

incised thalweg, and sections that display Type II channel morphology. Sections of Hatteras 

canyon channel that display Type I morphology without an incised thalweg are present in the 

uppermost portion of channel between the 2200 and the 3400 m isobaths and near the end of the 

channel between the 4600 and 5080 m isobaths. The profiles of the uppermost portion of channel 

are either U-shaped or V-shaped. V-shaped profiles were given floor width values of 100 m 

(Refer to Methods Section 3.6.1). The floor widths of the U-shaped profiles are low and range 

from 237 to 468 m. The total floor width increases dramatically as the channel transitions into 

morphology typical of a Type II channel with terrace-like features adjacent to an incised thalweg 

near the 3400 m isobath. From a peak width of over 7000 m near the 3500 m isobath the floor 

width decreases to the 3700 m isobath. This is where the channel transitions into a Type I 

channel morphology with an incised thalweg. Total floor widths for this section range between 

1971 and 3196 m. Type II channel morphology resumes down-slope and floor widths could be 

calculated for a brief section between the 4000 and 4100 m isobaths. These are comparable to 

the Type I section just upslope. Down-slope from the 4100 m isobath the channel system mainly 

consists of a continuation of the incised thalweg, the floor width of which is unresolvable at the 

100 m resolution of the data and is not shown because the floor width of the thalweg in the upper 

portions was also omitted. The floor width of the Type I section in the lowermost section of 

channel ranges from 216 to 1243 m and shows a slight increase in floor width with increased 

channel floor water depth. 

The section between the 3400 and 4000 m isobaths, which includes profiles 17 through 

28, either displays Type II channel morphology or Type I channel morphology with an incised 

thalweg. The thalweg is bordered on both sides by terrace-like features which range from 424 to 

4788 m wide on the northeastern side of the thalweg and from 487 to 2191 m wide on the 

southwestern side of the thalweg (Fig. 4.209). It is evident that the northeastern terrace features 

are generally wider than the southwestern terrace features at the start of the section. The widths 

of the terrace features on the northeastern side decrease dramatically from the peak width near 
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the 3600 m isobath to near the 3800 m isobath, down-slope from which the widths of the terrace-

features become more similar. 
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Figure 4.208. Change in floor width with increased thalweg (channel floor) depth for Hatteras canyon channel. 
Black arrow indicates portion of channel for which the only floor width would be the incised thalweg, which is 
below the resolution of the data. 
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Figure 4.209. Width of terrace-like features adjacent to thalweg with increased thalweg water depth for Hatteras 
canyon channel. TF = terrace feature. 
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4.4.2.3. Summary of Cross-Sectional Profiles. Hatteras canyon channel is located on the 

continental margin off Cape Hatteras (Fig. 4.190). The canyon channel traverses for a length of 

approximately 270 km between the 1600 m isobath to the merge with Hatteras Transverse 

Canyon near the 5080 m isobath. Hatteras canyon channel is a complex system that displays 

Type I, Type II and transitional channel morphologies. The channel was subdivided into 11 

sections based on cross-sectional morphology for further description. The uppermost section 

surveyed, between the 1600 and 2200 m isobaths, encompasses a portion of Hatteras Canyon 

that appears to have incised into the upper continental margin. Down-slope from the 2200 m 

isobath the channel displays irregular Type I channel morphology before it grades into a well-

defined Type II system near the 3425 m isobath. There is an entrenched thalweg that is bordered 

by terrace features within confining bathymetry between the 3425 and 3700 m isobaths. The 

channel transitions into a more confined segment of channel between the 3700 and 3955 m 

isobaths and is defined as a Type I system with an entrenched thalweg at the base. The channel 

system then broadens down-slope from the 3955 m isobath and displays characteristics similar to 

that of a Type II channel although the main incised channel appears to bifurcate. The channels 

then merge near the 4175 m isobath. Down-slope from the merge, although the channel 

continues to display characteristics of a Type II channel with an incised thalweg within confining 

bathymetry there are no defined terrace features adjacent to the incised thalweg. This transitional 

length of channel continues down-slope to the 4660 m isobath where a more well-defined Type I 

channel emerges and continues until the confluence with Hatteras Transverse Canyon near the 

5080 m isobath. 

Due to the complex channel morphology, it is inherently difficult to describe Hatteras 

canyon channel with channel parameters that are continuous down the entire length of the 

channel. Three separate relief and width parameters were calculated, one each for the Type I 

channel segments, the incised thalweg, and the confining bathymetry. The longitudinal profile, 

however, was constructed by connecting the deepest depths of the channel axis from each cross 

section, regardless of channel confinement. 
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It is evident from the longitudinal profile that the depth of the channel floor increases 

dramatically in the uppermost portion of channel. This may correspond to a portion of Hatteras 

Canyon that has incised into the steeper upper continental margin. The longitudinal profile 

becomes generally straight from the 2500 m isobath to the terminus of the channel, although 

there are several inflections near the end of the channel. This section corresponds to profiles 48 

through 54, between the 4800 and 5080 m isobaths, and encompasses the length of channel 

upslope from the confluence with Hatteras Transverse Canyon that displays characteristics of a 

Type I channel. There is a noticeable, sharp decrease in depth between the last two data points 

that exemplifies a knickpoint feature near the 5025 m isobath as Hatteras canyon channel enters 

Hatteras Transverse Canyon. 

The uppermost section of Hatteras canyon channel displays Type I morphology without 

an incised thalweg between the 2300 and 3400 m isobaths. The floor widths for this section are 

generally low and the channel top width decreases from >4000 m wide near the 2300 m isobath 

to <2000 m wide near the 2500 m isobath. The top becomes relatively uniform between 1000 and 

1500 m wide between the 2500 and 3250 m isobaths and then the top width increases to the end 

of the Type I section near the 3400 m isobath. The greatest channel wall relief occurs near the 

2300 m isobath. The channel wall relief decreases dramatically from near the 2300 m isobath to 

just down-slope from the 2500 m isobath. Near the 3300 m isobath the channel wall relief of the 

Type I section the channel appears to grade into the relief of the elevated bathymetric feature that 

confines the incised thalweg down-slope. 

The incised thalweg and confining bathymetry take shape near the 3400 m isobath where 

there is also a confluence with a small channel from the northeast. The thalweg and confining 

bathymetry are present until the 4700 m isobath. It is obvious that the thalweg has the narrowest 

top widths whereas the top width of the confining bathymetry is much greater. The peak top width 

of the confining bathymetry is -11600 m and occurs near the 3500 m isobath just down-slope 

from the confluence with the small channel from the northeast. The peak floor width of >7000 m 

also occurs near the 3500 m isobath. The total floor width increases dramatically because the 

channel has transitioned into morphology that is typical of a Type II channel with terrace-features 
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adjacent to an incised thalweg. The total floor width and top width then decreases to near the 

3700 m isobath. 

At this location the channel transitions to a morphology that is more characteristic of a 

Type I channel with an incised thalweg at the base. The channel top is narrower than the sections 

that display Type II channel morphology both upslope and down-slope. The channel wall relief 

continues to decrease to the 4000 m isobath. The channel wall relief of the thalweg also 

decreases between the 3500 and 4000 m isobaths, where the thalweg is unresolvable at the 100-

m resolution of the data. Several thalweg channel wall relief measurements in this region are 

below the stated accuracy for depth determination of 0.5% of water depth (Table 4.11; Gardner, 

2004; Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product Description) and 

caution must be taken when interpreting them as such. 

The entire section between the 3400 and 4000 m isobaths, which includes profiles 17 

through 28, either displays Type II channel morphology, or Type I channel morphology with an 

incised thalweg. The thalweg is bordered on both sides by terraces-like features and it is evident 

that the northeastern terrace features are generally wider than the southwestern terrace features 

in the upper portion of the section. This section of wider northeastern terrace features 

corresponds to where a small channel traverses nearly parallel to Hatteras canyon channel on 

the northeastern side until the 3700 m isobath. 

The channel transitions back to a channel with Type II morphology just down-slope from 

the 4000 m isobath. The top widths of the confining bathymetry show a corresponding increase. 

The main incised thalweg bifurcates near the 3955 m isobaths, but the two channels then merge 

near the 4175 m isobath, between profiles 32 and 33. The total floor width was calculated for a 

brief section between the 4000 and 4100 m isobaths, however, no ideal terrace features are 

present. The floor widths are comparable to the Type I channel section just upslope and are 

between 2000 and 3000 m wide. 

The confining bathymetry loses its bathymetric expression near the 4650 m isobath on 

the northeastern side of the incised thalweg and near the 4850 m isobath on the southwestern 

side. The incised thalweg seems to grade into the lowermost section of channel near the 4700 m 
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isobath that has morphology typical of a Type I channel. The channel floor width increases 

slightly and the channel top width shows a steep increase from -1200 m near the 4700 m isobath 

to >5000 m at the terminus of the channel. The channel wall relief also shows a consistent, sharp 

increase from -50 m near the 4700 m isobath to >250 m at the terminus of the channel and the 

confluence with Hatteras Transverse Canyon near the 5100 m isobath. 

Hatteras canyon channel is a complex system and alternately displays Type I 

morphology with and without an incised thalweg as well as a Type II and transitional morphology 

between the two types. The complexity is reflected in the longitudinal profile and profiles of relief, 

top width and floor width. Irregularity in the lowermost portion of the longitudinal profile may 

reflect a knickpoint as Hatteras canyon channel enters Hatteras Transverse Canyon. The top 

widths, floor widths, and relief of the Type I sections without an incised thalweg are generally low, 

although higher relief is evident in the uppermost portion of the channel and upslope from the 

merge with Hatteras Transverse Canyon. Type I sections with an incised thalweg generally show 

greater top and floor widths, and Type II channel sections show the greatest top and floor widths, 

because of the wide terrace-features that are adjacent to the thalweg. 

4.4.3 Pamlico Canyon Channel 

4.4.3.1. Channel Description and Cross-Sectional Profiles. Pamlico canyon channel is the 

southernmost channel of the three that have been identified on the continental margin off of Cape 

Hatteras (Fig. 4.210) and is the most clearly defined channel (Popenoe and Dillon, 1996). 

However, there is a section near the 4000 m isobath where the channel becomes hard to define 

and according to Popenoe and Dillon (1996), this is likely due to sediment and debris infill that 

originated from a submarine slide, possibly Cape Lookout Slide. The canyon-channel system is 

approximately 270 km in length between the 1650 and 5000 m isobaths. Down-slope from the 

5000 m isobath the channel loses its bathymetric expression and is indistinguishable from the 

surrounding seafloor. 

A total of 56 cross profiles were constructed at 5000 m intervals down the length of 

Pamlico canyon channel (Fig. 4.211). The first two profiles that are located between the 1600 and 

2600 m isobaths appear to show a portion of Pamlico Canyon that has incised into the upper 
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continental margin. The channel is irregular in cross-sectional morphology between the 2600 and 

3050 m isobaths. However, a well-defined, U-shaped channel becomes evident between the 

3050 and 3250 m isobaths. The channel is well-defined and U-shaped between the 3250 and 

4050 m isobaths and generally displays sharp transitions between the channel rim and the 

adjacent seafloor. The channel wall relief decreases near the 4050 m isobath and the channel 

becomes less well-defined between the 4050 and 4260 m isobaths. The channel grades into a 

region that develops trends more to the south and the channel is often untraceable at the 100 m 

resolution of the data between the 4260 and 4550 m isobaths. However, distinct channel 

morphology begins to emerge between the 4550 and 4700 m isobaths and down-slope from the 

4700 m isobath to the terminus of the channel near the 5025 m isobath, a U-shaped channel with 

low channel wall relief is present. Down-slope from the 5025 m isobath the channel becomes 

indistinguishable from the adjacent seafloor. Pamlico canyon channel was subdivided into 6 

sections for further discussion based on cross-sectional morphology. 
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Figure 4.210. Atlantic bathymetry between Cape Hatteras and Georges Bank with ETOPOI background and 
channels delineated in black. Location of Pamlico canyon channel is shown with the yellow box. Ny =Nygren, 
M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, 
Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. 
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The uppermost section of Pamlico canyon channel surveyed is located between the 1600 

and 2600 m isobaths and encompasses profiles 1 and 2 (Fig. 4.212). This is a portion of Pamlico 

Canyon that appears to have incised into the upper continental margin. The segment is 

characterized by a steep walled, V-shaped canyon with high channel wall relief. 

Figure 4.212. Profiles 1 and 2 that encompass section 1 of Pamlico canyon channel; profiles have a vertical 
exaggeration of 10. Black arrow points to channel axis. 

The second section of Pamlico canyon channel is located between the 2600 and 3250 m 

isobaths and encompasses profiles 3 through 9 (Figs. 4.213 and 4.214). The section is further 

divided into two subsections. The upper subsection is located between the 2600 and 3050 m 

isobaths and encompasses profiles 3 through 7. The lower subsection is located between the 

3050 and 3250 m isobaths and encompasses profiles 8 and 9. The upper subsection comprises a 

portion of channel that has irregular cross-sectional morphology and the channel is very poorly 

defined near the end of the subsection and the 3040 m isobath; this is evident in profile 7. 

Although the channel in the lower subsection also exhibits irregular cross-sectional morphology, a 

more well-defined, U-shaped channel starts to take shape. This is evident in profiles 8 and 9. 
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Figure 4.213. Profiles 3 through7 that comprise the upper subsection of section 2 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.214. Profiles 8 and 9 that comprise the lower subsection of section 2 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

The third section of Pamlico canyon channel is located between the 3250 and 4050 m 

isobaths and encompasses profiles 10 through 27 (Figs. 4.215 - 4.217). This portion of channel 

is well-defined and U-shaped. The southwestern channel rim generally has a sharp transition to 

the adjacent floor for this length of channel or is characterized by a crest-feature at the channel 

rim. This crest feature is particularly evident between the 3250 and 3600 m isobaths and shown 

in profiles 10 through 15. However, the northeastern rim tends to be more rounded throughout the 

section. In plan view the channel bends more southward near the 3525 m isobath and profile 14. 

There is a scarp feature on the southwestern side of Pamlico canyon channel between profiles 14 

and 15 and the 3525 and 3265 m isobaths, although the origin of this feature is unclear. The 

channel displays a gradual bend toward the southeast between the 3650 and 3800 m isobaths 

that encompasses profiles 17 through 20. The channel displays several small bends down-slope 

between the 3800 and 3850 m isobaths, then generally trends southeast down-slope from the 

3850 m isobath to the end of the section. 
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Figure 4.215 Profiles 10 through 15 that comprise the upper segment of Section 3 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to possible 
slump features and blue arrow points to rim crests. 
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Figure 4.216. Profiles 16 through 21 that comprise the middle segment of Section 3 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.217. Profiles 22 through 27 that comprise the lower segment of Section 3 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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The fourth section of Pamlico canyon channel is located between the 4050 and 4260 m 

isobaths and encompasses profiles 28 through 33 (Figs. 4.218 and 4.219). The channel becomes 

less well-defined with more gently sloping side walls. This is evident in profiles 28 and 29. The 

channel then widens and grades into a broad, U-shaped depression, shown in profiles 30 through 

32. Although the southwestern channel rim remains well-defined in profile 33, there is no 

equivalent rim on the northeastern side from which to accurately define a channel. 

Figure 4.218. Profiles 28 through 30 that comprise the upper portion of Section 4 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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Figure 4.219. Profiles 31 through 33 that comprise the lower portion of Section 4 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

The fifth section of Pamlico canyon channel is located between the 4260 and 4700 m 

isobaths and encompasses profiles 34 through 43 (Figs. 4.220 and 4.221). The channel turns to 

trend more southward and widens into a broad, less well-defined depression in the upper portion 

of the section. This is evident in profiles 34 and 35. The channel is often indistinguishable from 

the adjacent seafloor between the 4325 and 4350 m isobaths, which encompasses profile 36, 

and between the 4425 and 4450 m isobaths, which encompasses profiles 38 to 40. However, 

there are indications of a channel in this section, namely near the 4400 m isobath and profile 37. 

Towards the end of the section a more well-defined channel begins to emerge between the 4550 

and 4700 m isobaths. This is evident in profiles 41 and 42. 
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Figure 4.220. Profiles 34 through 38 that comprise the upper segment of section 5 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis and dashed arrow points to 
possible channel locations. 
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Figure 4.221. Profiles 39 through 43 that comprise the lower segment of section 5 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 

The lowermost section of Pamlico canyon channel is located between the 4700 and 5050 

m isobaths and encompasses profiles 44 through 56 (Figs. 4.222 and 4.223). The channel turns 

to trend more southeastward near the 4700 m isobath and a well-defined channel emerges with 
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U-shaped morphology, albeit with low channel wall relief There are several slump features 

present between the 4720 and 4850 m isobaths. These are evident in profiles 46 through 49. 

Down-slope from the 5025 m isobath and profile 56 the channel is unresolvable from the adjacent 

seafloor at the 100 m resolution of the data. 

Figure 4.222. Profiles 44 through 49 that comprise the upper segment of section 6 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis, red arrow points to slump 
features. 
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Figure 4.223. Profiles 50 through 56 that comprise the lower segment of section 6 of Pamlico canyon channel; 
profiles have a vertical exaggeration of 10. Black arrow points to channel axis. 
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4.4.3.2. Quantitative Morphologic Parameters. The first two profiles of Pamlico canyon 

channel are between thalweg depths of 1600 and 2600 m and appear to show a portion of 

Pamlico Canyon that has incised into the upper continental margin. Because this study is mainly 

concerned with the morphology of the canyon channel on the lower continental margin, the first 

two profiles, although shown in the longitudinal profile, were not used in plots of relief or width. In 

addition, because the majority of the channel profiles were constructed from the southwest to the 

northeast, the sides of the channel will be referred to as such, looking upslope. 

The longitudinal profile (Fig. 4.224) was constructed by connecting the deepest depths of 

the channel axis from each cross section. The channel floor water depth increases rapidly in the 

upper portion, between the 1600 and 2600 m isobaths. The channel profile is generally straight 

down-slope from the 2600 m isobath although there are two minor inflections. The first is present 

near the 3850 m isobath and corresponds to profile 22 and the second is present near the 4130 

m isobath and corresponds to profile 30. The gaps in the profile are portions where no distinct 

channel could be accurately defined. 
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Figure 4.224. Longitudinal profile of Pamlico canyon channel. Black arrows point to minor inflections. 
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Channel wall relief (Fig. 4.225) is defined as the vertical distance between the channel 

floor and the channel rim and is calculated as the difference between the measured water depth 

to the channel floor and the water depth to each channel rim. The channel wall relief varies from 

18 to 260 m on the northeastern side of the channel and from 24 to 309 m on the southwestern 

side of the channel. There is a dramatic decrease in channel wall relief at the start of the channel 

from >250 to <50 m between the 2600 and 3000 m isobaths. Down-slope from a break in the 

profile just down-slope from the 3000 m isobath where the channel is largely undefined, the 

channel wall relief increases, although the southwestern relief is clearly much greater than the 

northeastern relief. This trend continues until near the 3800 m isobath where the channel wall 

relief on the northeastern and southwestern sides is nearly identical at ~200 m. There is then a 

variable decrease in the channel wall relief on both sides of the channel between the 4000 and 

4300 m isobaths. Several gaps between the 4300 and 4500 m isobaths indicate undefined 

sections of channel. The channel is well-defined between the 4560 m isobath and the terminus of 

the channel near the 5025 m isobath, and the channel wall relief increases to the 4800 m isobath 

and then decreases to the terminus of the channel. 

The 18-m lowest channel wall relief on the northeastern side is less than the stated 

accuracy for depth determination of 0.5% of water depth (Gardner, 2004; Cartwright and Gardner, 

2005; Kongsberg Simrad EM 120 Product Description) for the depth of -4200 m, which is -21 m. 

The 24-m lowest channel wall relief on the southwestern side occurs at the terminus of the 

channel and is below the stated accuracy for depth determination of 0.5% of water depth for the 

depth of -5020 m, which is -25 m. These may not be considered real features. 
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Figure 4.225. Change in channel wall relief with increased channel floor water depth for Pamlico canyon channel. 
Gaps indicate where channel was unresolvable at the 100 m resolution of the data. 

The top width (Fig. 4.226) of the channel is defined as the horizontal distance from the 

top of one channel rim to the other. The top width of Pamlico canyon channel varies from 1274 to 

7425 m. There is a decrease in channel top width between the 2600 and 3000 m isobaths from 

>7000 to <4000 m. There is an anomalously large channel top width of -6660 m near the 3150 m 

iosbath, down-slope from which the top width narrows. The top widths remain mainly between 

2500 and 4000 m until near the 4000 m isobath, where the top width begins to increase. Near the 

4300 m isobath the top width increases to -7000 m. The channel is mainly unresolvable at the 

100 m resolution of the data between the 4300 and 4550 m isobaths, and no top widths could be 

accurately determined. However, the channel top width is comparable to those between the 3150 

and 4300 m isobaths down-slope from the 4550 m isobath. There is a sharp decrease in channel 

top width near the 4850 m isobath and the top widths remain between 1000 and 1500 m until the 

terminus of the channel. 
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Figure 4.226. Change in top channel width with increased channel floor water depth for Pamlico canyon channel. 
Gaps represent portions of channel where a defined channel was unresolvable at the 100 m resolution of the 
data. 

The floor width of the channel (Fig. 4.227) is defined as the horizontal distance between 

the bases of the channel walls and ranges from 394 to 2727 m for Pamlico canyon channel. The 

peak floor width occurs near the 3150 m isobath and this is followed down-slope by a variable 

decrease in channel floor width to -500 m near the 4050 m isobath. The floor width then 

increases to -2000 m near the 4230 m isobath, down-slope from which the channel is mainly 

unresolvable at the 100 m resolution of the data. The floor width decreases between the 4560 

and 4770 m isobaths, from -1800 to -450 m. The floor of the lowermost section of channel 

between the 4860 and 5025 m isobaths is narrow and between 400 to 450 m wide. 
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Figure 4.227. Change in floor width with increased channel floor water depth for Pamlico canyon channel. Gaps 
represent portions of channel where a defined channel was unresolvable at the 100 m resolution of the data. 

4.4.3.3. Summary of Cross-Sectional Profiles. Pamlico canyon channel is located on the 

continental margin off of North Carolina (Fig. 4.210) and is nearly 270 km in length between the 

1600 and 5025 m isobaths. Pamlico canyon channel was subdivided into six sections for 

description of channel morphology. The uppermost segment between the 1600 and 2600 m 

isobaths appears to be a portion of Pamlico Canyon that has incised into the upper continental 

margin and displays very high and steep channel wall relief. Down-slope from the 2600 m isobath 

the channel displays irregular cross sectional morphology. However, the channel becomes well-

defined and U-shaped between the 3050 and 3250 isobaths. For a considerable length of 

channel between the 3250 and 4050 m isobaths the channel is well-defined and U-shaped with 

sharp transitions between the channel rim and adjacent seafloor. The channel wall relief then 

decreases and the channel is less well-defined between the 4050 and 4260 m isobaths. The 

channel is often unresolvable at the 100 m resolution of the data until the 4700 m where a small, 

U-shaped channel emerges. The channel becomes indistinguishable from the surrounding 

seafloor at the 100 m resolution of the data near the 5025 m isobath. 
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Because primary interest concerns the portion of Pamlico canyon channel that traverses 

the lower continental margin, although the uppermost portion between the 1600 and 2600 m 

isobaths was included in the longitudinal profile, this portion appears to be part of Pamlico 

Canyon that has incised into the upper continental margin and was not included in the plots of 

relief and width against channel floor water depth. The longitudinal profile of Pamlico canyon 

channel shows that the channel floor water depth increases rapidly in the upper portion between 

the 1600 and 2600 m isobaths. Down-slope from the 2600 m isobath the longitudinal profile is 

generally straight, although there are two minor inflections. The first is present near the 3850 m 

isobath and corresponds to profile 22 where there are indications of a minor slump feature. The 

second inflection is present near the 4130 m isobath and profile 30. This is a hummocky, less 

well-defined portion of channel. 

The channel shows a decrease in channel wall relief from >250 to <50 m, as well as a 

decrease in the top width from >7000 to >4000 m between the 2600 and 3000 m isobaths. 

However, the floor width does not show a distinct trend in this interval. The channel is largely 

undefined near the 3040 m isobath, but a more well-defined channel begins to take shape 

between the 3050 and 3250 m isobaths. The channel floor and top are wide, -2700 and -6600 

m, respectively, near the 3150 m isobath. The channel wall relief increases to -200 m on the 

southwestern side and to -100 m on the northeastern side. There is a decrease in both top and 

floor widths as a well-defined, U-shaped channel takes shape near the 3250 m isobath. The 

channel remains well-defined between the 3250 and 4050 m isobaths and the southwestern relief 

is much greater than the northeastern relief until the 3800 m isobath. Here the northeastern and 

southwestern channel walls are at nearly identical heights with -200 m of relief. There is no 

distinct trend in the top width with increased depth during this interval, and the top widths remain 

mainly between 2500 and 4000 m. However, there is a variable decrease in channel floor width 

from -2700 m near the 3150 m isobath to -500 m near the 4050 m isobath. The channel 

becomes less well-defined between the 4050 and 4260 m isobaths and there is a variable 

decrease in the channel wall relief on both sides of the channel from -200 to <50 m. Both the top 

and floor of the channel widen slightly, to -5000 and -2000 m, respectively. 
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The channel then becomes nearly unresolvable at the 100 m resolution of the data 

between the 4260 and 4550 m isobaths although there is an anomalously large channel top width 

of -7000 m near the 4300 m isobath. This is where the channel is expressed as a wide, U-

shaped depression. Channel morphology begins to emerge near the 4550 m isobath and 

between the 4550 and 4700 m isobaths the channel wall relief is <50 m and top widths are 

between 2000 and 4000 m. The floor width shows a decrease from -1800 to -450 m between the 

4560 and 4770 m isobaths. A well-defined channel is present between the 4700 and 5025 m 

isobaths and the channel wall relief increases to a maximum of -100 m on the southwestern side 

near the 4750 m isobath and to -70 m on the northeastern side near the 4800 m isobath. The 

relief then decreases to the terminus of the channel. The top and floor widths are fairly uniform in 

the lowermost portion of channel between the 4850 and 5025 m isobaths, of -1500 and -400 m 

to -450 m, respectively. 

Although there is a portion of channel that is mainly unresolvable at the 100 m resolution 

of the data, several trends stand with regards to the morphology of Pamlico canyon channel. The 

portion of channel that is well-defined generally displays higher channel wall relief and a decrease 

in floor width with increased channel floor water depth. The portions of channel that are less well-

defined generally have low channel wall relief, but the floor width and top width increase slightly. 

4.5 Canyon-Channel Comparisons 

This chapter focused on individual canyon channels and provides a qualitative and 

quantitative description of the morphology of longitudinal profiles and plots of various relief, top 

width and floor width parameters with increased channel floor water depth. The following chapter 

(Chapter 5 - Results) focuses on comparing the quantitative parameters of the canyon channels 

together in order to determine if patterns exist. The sinuosity and slope of the canyon channels 

and segments of the channels are also evaluated. Several other aspects, such as the regional 

slope of the continental margin and features specific to certain channels, such as incision, 

confluence, bends, slumps and seamount interaction are also examined. 
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CHAPTER 5 

RESULTS 

5.1. Channel Type 

Based on cross-sectional geometry, canyon channels and/or canyon channel segments 

are categorized into two groups with markedly different channel morphologies. For simplicity, 

these morphologies are called Type I and Type II. Type I canyon channels are either U-shaped or 

V-shaped and have distinct channel morphology bounded by well-defined channel walls. These 

channels may or may not have an incised thalweg. Type II canyon channels consist of a main 

channel that is bordered by terrace-like features within confining bathymetry (Refer to Methods 

Section 3.6). Eight out of the 15 canyon channels that were identified on the continental margin 

display Type I channel morphology for their entire length (Fig. 5.1). The remaining 7 channels 

display both morphologies at various locations down their lengths and were classified as mixed 

systems (Fig. 5.1). The channels that display Type I channel morphology in their entirety are, 

from north to south, Nygren, Munson, Hydrographer, Veatch, Jones Valley, Hudson, Washington, 

and Pamlico canyon channels. The channels that are mixed Type I and Type II canyon-channel 

systems are, from north to south, Powell, Lydonia, Oceanographer, Wilmington, Norfolk, 

Albermarle and Hatteras canyon channels. 
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Figure 5.1. Atlantic bathymetry with ETOP01 background and canyon channels delineated. Black indicates a 
Type I channel and white indicates a Type II channel. Channels that consist of white and black segments are 
mixed systems. Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, 
V=Veatch, JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, 
Ha=Hatteras, Pa= Pamlico. 

Of the channels that display Type I channel morphology, Nygren, Munson, Veatch, Jones 

Valley, Washington and Pamlico canyon channels are generally U-shaped in cross section 

Conversely, Hydrographer canyon channel has a V-shaped cross section for nearly its entire 

length The morphology of Hudson canyon channel transitions from U-shaped in the uppermost 

portion to V-shaped in the middle of the channel and to U-shaped near the terminus of the 

channel 

The mixed Type I/Type II channels are more complicated and the type varies 

inconsistently down their lengths (Fig. 5.1) Oceanographer and Albermarle canyon channels are 

almost entirely classified as Type II channels, except for the lowermost portions of the channels. 

Powell, Norfolk and Lydonia canyon channels generally grade from Type I in their uppermost 
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portions to Type II in their lower portions although Norfolk canyon channel grades back to 

morphology more characteristic of a Type I channel in its lowermost section. Wilmington and 

Hatteras canyon channels do not grade from one type to another. Instead, the channel type 

alternates down the length of the channels. In Wilmington canyon channel, the region both 

upslope and down-slope from the apex of the gather area near the 3350 m isobath generally 

displays characteristics more typical of Type II channel morphology. Hatteras canyon channel 

displays more complex channel morphology that ranges from Type I in the uppermost section to 

Type II down-slope from the confluence with a smaller channel from the northeast near the 3400 

m isobath. The remaining section of channel is more characteristic of Type II channel morphology 

until the 4750 m isobath where the channel deepens and becomes more well-defined; this 

segment is upslope from the merge with Hatteras Transverse Canyon near the 5100 m isobath. 

5.2. Longitudinal Profiles 

Longitudinal profiles were constructed by connecting the deepest depths of the channel 

axis from each cross section starting from the 2550 m isobath for 14 out of the 15 canyon 

channels. Because Jones Valley canyon channel heads below the 2550 m isobath, the channel 

was excluded from the comparative plots. The profiles were constructed regardless of channel 

type because a finite deepest point of the channel could be digitized from the majority of the cross 

profiles for all the channels (Fig. 5.2). The profiles were colored by type, either Type 1 or mixed 

(Fig. 5.3) and by one of four locations on the continental margin based on channel location and 

appropriate UTM zone: Far North, North, Central, and South (Figs. 3.4, 5.4 and 5.5. Also refer to 

Chapter 4 and Methods Section 3.2). 

Although the channels do not appear to group with respect to channel type (Fig. 5.3), a 

pattern becomes more evident when the canyon channels are colored by location (Figs. 5.4 and 

5.5). Group 1 (bracket 1, Figs. 5.4 and Fig. 5.5) encompasses the 3 channels in the Central 

region as well as Hudson canyon channel. Hudson canyon channel is shown as the blue line 

within Group 1 and is more similar to the central canyon channels with respect to the longitudinal 

profile than to the more northern channels. Group 2 (bracket 2, Figs. 5.4 and 5.5) encompasses 

Veatch and Hydrographer canyon channels. It is evident that the longitudinal profiles of these 
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channels are both dissimilar from the Far North channels to the north and the Central channels 

(including Hudson canyon channel) to the south. The longitudinal profiles of Veatch and 

Hydrographer canyon channels appear to be transitional between the two groups. Groups 3 and 

4 (brackets 3 and 4 respectively, Figs. 5.4 and 5.5) do show some overlap, especially in the 

upper portions of the profiles, but are generally distinct from one another farther down channel 

and are distinct from the other two groups. Group 3 encompasses the channels in the South 

region of the margin and Group 4 encompasses the Far North canyon channels. 
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Figure 5.2. Longitudinal profiles of canyon channels from the 2550 m isobath. 
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Figure 5.3. Longitudinal profiles of canyon channels color coded by type. Red represents channels that are 
entirely Type I and black represents mixed canyon-channel systems. 
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Figure 5.4. Longitudinal profiles of all canyon channels color coded by location. Green represents canyon 
channels in the Far North region, blue represents channels in the North region, red represents channels in the 
Central region and black represents channels from the South region. 
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Figure 5.5. Groups defined by the longitudinal profiles. Box I corresponds to bracket 1, Box 2 corresponds to 
bracket 2, box 3 corresponds to bracket 3 and group 4 corresponds to bracket 4 on the longitudinal profile plot 
(Fig. 5.1). Ny =Nygren, M=Munson, Po = Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, 
JV=Jones Valley, Hu=Hudson, Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= 
Pamlico. 

5.3. Type I Canyon-Channel Comparisons 

In order to compare the parameters of as many canyon channels as possible, in addition 

to the 8 canyon channels that display Type I morphology down their entire lengths (Nygren, 

Munson, Hydrographer, Veatch, Jones Valley, Hudson, Washington and Pamlico canyon 

channels), 3 additional channels are also used that contain significant channel segments 

considered to have Type I morphology. These are Powell, Norfolk and Wilmington canyon 

channels. The uppermost portions of Powell and Norfolk canyon channels display Type I 

morphology (Fig. 5.1). The entire length of Wilmington canyon channel is used because there is 

only a small region near the apex of the gather area that is considered to have Type II 
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morphology (Fig. 5.1). The consistency of the channel parameters with increased depth and 

distance down-channel allows for relatively straight-forward comparisons between the channels. 

Morphologic parameters including channel wall relief, top width, and bottom width were plotted 

together with distance and channel floor water depth from the 2550 m isobath. The channels 

generally trend toward the southeast and the sides of the channel, looking upslope, will be 

referred to as southwest (left side of channel) and northeast (right side of channel). 

5.3.1. Channel Wall Relief 

The majority of the Type I channels can be divided into two categories based on the 

pattern of channel wall relief with increased distance and depth down-channel. The channel wall 

relief either decreases with increased distance and depth down-channel or increases to a peak in 

the middle of the channel and decreases down-slope. 

The channel wall relief of Nygren, Munson, Washington and the uppermost portions of 

Powell and Norfolk canyon channels shows an overall decrease with increased distance down-

channel (Figs. 5.6 and 5.7). These channels are less than 100 km in length. It is evident that 

Nygren, Munson and Powell canyon channels, located in the Far North region of the margin, 

cluster together. These channels have much higher relief in the uppermost sections (350 to >400 

m) than the relief of either Washington or Norfolk canyon channels. Washington and Norfolk 

canyon channels are located in the Central region of the margin and also cluster together. These 

channels have lower channel wall relief that ranges between 100 and150 m in the uppermost 

portions of the channels. The channel wall relief of the three canyon channels in the Far North 

region generally remains greater than that of either Washington or Norfolk canyon channels as 

the relief decreases down-channel. The clusters are more prominent when channel wall relief is 

plotted against channel floor water depth (Figs. 5.8 and 5.9). 
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Figure 5.6. Change in the southwest channel wall relief with increased distance down-channel for Munson, 
Nygren, Washington and the uppermost portions of Powell and Norfolk canyon channels. 

Figure 5.7. Change in the northeast channel wall relief with increased distance down-channel for Munson, 
Nygren, Washington and the uppermost portions of Powell and Norfolk canyon channels. 
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Figure 5.8. Change in the southwest channel wall relief with increased channel floor water depth for Munson, 
Nygren, Washington and the uppermost portions of Powell and Norfolk canyon channels. 

Figure 5.9. Change in the northeast channel wall relief with increased channel floor water depth for Munson, 
Nygren, Washington and the uppermost portions of Powell and Norfolk canyon channels. 
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The remainder of the Type I canyon channels display increased channel wall relief in the 

middle portions of the channels that is followed by a decrease in relief to the termini of the 

channels (Figs. 5.10 and 5.11). This pattern is particularly evident for Hydrographer, Veatch, 

Hudson, and Wilmington canyon channels. Pamlico canyon channel shows the pattern of 

increased channel wall relief in the middle of the channel to an extent as well; however, there are 

some distinct differences so the channel is considered separately. 

Hudson canyon channel has the greatest channel wall relief of >600 m and the relief 

increases to a peak approximately 150 km down-channel from the 2550 m isobath. Wilmington 

canyon channel has the next highest relief with a maximum of-300 m, although this relief is 

nearly half that of Hudson canyon channel. The channel wall relief of Wilmington canyon channel 

also reaches a peak approximately 150 km down-channel from the 2550 m isobath although the 

zone of highest channel wall relief in Wilmington canyon channel is broader than that of Hudson 

canyon channel. Hydrographer and Veatch canyon channels have approximately the same 

maximum channel wall relief of - 250 m. However, the relief of Hydrographer canyon channel 

reaches a peak approximately 100 km down-channel from the 2550 m isobath and the relief 

decreases very quickly down-slope, whereas the channel wall relief of Veatch canyon channel 

reaches a peak slightly past 100 km down-channel and the relief decreases much more 

gradually. These canyon channels are greater than 200 km in length from the 2550 m isobath and 

are located in close proximity on the continental margin (Fig 5.1). 
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Figure 5.10. Change in the southwest channel wall relief with increased distance down-channel for Hudson, 
Hydrographer, Veatch, Wilmington and Pamlico canyon channels. 
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Figure 5.11. Change in the northeast channel wall relief with increased distance down-channel for Hudson, 
Hydrographer, Veatch, Wilmington and Pamlico canyon channels. 
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Although Pamlico canyon channel, which is located in the South region of the margin 

(Fig. 5.1), has a broad zone of highest channel wall relief between 50 and 100 km down-channel 

(Figs. 5.10 and 5.11), there are some distinct differences between the relief of this channel (Fig. 

5.12) and the more northern channels. The peak relief for Pamlico canyon channel occurs close 

to the start of the channel and the relief decreases dramatically from >250 to <50 m between the 

2600 and 3000 m isobaths. The relief increases down-slope from a break in the profile near the 

3000 m isobath where the channel is largely undefined. Unlike the more northern channels where 

the relief on either side largely mirrors each other, the southwestern relief of Pamlico canyon 

channel is clearly much greater than the northeastern relief. There is a variable decrease in the 

channel wall relief on both sides of the channel between the 4000 and 4300 m isobaths. The 

channel is nearly indistinguishable from the surrounding seafloor between the 4300 and 4500 m 

isobaths, before a small, well-defined channel emerges briefly. The channel is well-defined 

between the 4560 m isobath and the terminus of the channel near the 5025 m isobath, and unlike 

the more northern channels, shows an increase in relief to the 4800 m isobath and then a 

decrease to the terminus of the channel. 

Figure 5.12. Change in the channel wall relief of Pamlico canyon channel with increased channel floor water 
depth. 
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In order to assess the depths at which the increase in channel wall relief occurs for 

Hydrographer, Veatch, Hudson, and Wilmington canyon channels, channel wall relief was plotted 

against channel floor water depth (Fig. 5.13 and 5.14). It is evident that the canyon channels 

show an increase in channel wall relief that starts near the 3000 m isobath and peaks near the 

3750 m isobath. There is then a decrease in relief to near the 4000 m isobath. However, the peak 

in channel wall relief of Veatch canyon channel is broader than that of the other channels and 

extends past the 4000 m isobath. Jones Valley canyon channel, although it does not extend to 

the 2550 m isobath, is shown in the plots of relief against channel floor water depth and shows a 

similar trend. There is an increase in channel wall relief in Jones Valley canyon channel that 

begins near the 3100 m isobath, although the broad peak in relief occurs slightly upslope from the 

other canyon channels, between the 3400 and 3700 m isobaths. The highest channel wall relief 

of Jones Valley canyon channel (-300 m) is comparable to that of Wilmington canyon channel. 

The decrease in channel wall relief also occurs slightly upslope from the other canyon channels 

as well, between the 3800 and 3900 m isobaths. 
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Figure 5.13. Change in the southwest channel wall relief with increased channel floor water depth for Hudson, 
Hydrographer, Jones Valley, Veatch and Wilmington canyon channels. 
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Figure 5.14. Change in the northeast channel wall relief with increased channel floor water depth for Hudson, 
Hydrographer, Jones Valley, Veatch and Wilmington canyon channels. 

The five channels that show an increase in channel wall relief are shown in the context of 

the Atlantic continental margin in Figure 5.15. The relief was calculated as the average of the 

northeastern and southwestern channel wall relief but because both sides of the channel show 

the same pattern, this method provides a visual of where the increase in channel wall relief 

occurs within the channels. The colors denote the relative magnitude of the channel wall relief of 

the channels, they are not absolute values. The dark blues and purples indicate a more 

entrenched segment of channel with higher channel wall relief whereas the pinks and yellows 

indicate a less entrenched portion of channel with lower channel wall relief. 



Figure 5.15. Average channel wall relief shown in context of the Atlantic continental margin for Hydrographer, 
Veatch, Jones Valley, Hudson and Wilmington canyon channels. Blues indicate a portion of channel with higher 
channel wall relief and the pinks and yellows indicate a portion of channel with lower channel wall relief. 

5.3.2. Channel Top Width 

Although there are no consistent patterns in the channel top width with increased 

distance down-channel for the Type I canyon channels (Fig. 5.16), it is evident that Nygren, 

Hudson and Wilmington canyon channels have the widest channel top widths between the 3500 

and 4000 m isobaths (Fig. 5.17). Hydrographer and the uppermost portion of Norfolk canyon 

channels, in contrast, have the narrowest top widths (Figs. 5.16 and 5.17). The channel top 

widths were plotted separately for the channels that are long (200 to 300 km in length; Figs. 5.18 

and 5.19) and short (<90 km in length; Figs. 5.20 and 5.21) in order to better determine patterns. 

The longest canyon channels include Hydrographer, Veatch, Hudson, Wilmington and Pamlico 
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canyon channels, and the shorter channels include Nygren, Munson, Powell, Jones Valley and 

Washington canyon channels as well as the uppermost portion of Norfolk canyon channel. 
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Figure 5.16. Change in the channel top width of all Type I channels with increased distance down-channel, 
excluding Jones Valley canyon channel. 
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Figure 5.17. Change in the channel top width of all Type I channels with increased channel floor water depth, 
including Jones Valley canyon channel. 
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There is no consistent pattern in channel top width with increased distance down-channel 

for the longer channels (Fig. 5.18). However, the region of widest channel top widths for 

Wilmington and Hudson canyon channels corresponds to depths between the 3500 and 4000 m 

isobaths (Fig. 5.19), which is also the location of the peak in channel wall relief. Neither Veatch 

nor Hydrographer canyon channels show an increase in top width at this location (Fig. 5.19), 

although they show the same increase in channel wall relief the between the 3500 and 4000 m 

isobaths as Wilmington and Hudson canyon channels. 
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Figure 5.18. Change in the channel top width with increased distance down-channel for Hudson, Hydrographer, 
Pamlico, Veatch, and Wilmington canyon channels. 

366 



Figure 5.19. Change in the channel top width with increased channel floor water depth for Hudson, Hydrographer, 
Pamlico, Veatch, and Wilmington canyon channels. 

The channel top widths of the shorter canyon channels (Figs. 5.20 and 5.21) appear to 

cluster by location on the margin. The top widths of the channels within the Far North region that 

includes Nygren, Munson and Powell canyon channels are consistently greater than the top 

widths of Washington and Norfolk canyon channels, which are located in the Central region of the 

margin. It is evident that the top widths of Nygren, Munson and Powell canyon channels decrease 

to a minimum near the 3000 m isobath (Fig. 5.21), after which there is an increase in width to the 

termini of Powell and Munson canyon channels. Nygren canyon channel has the greatest top 

widths between the 3600 and 3700 m isobaths of nearly 10 km. Down-slope from this peak the 

top width decreases to the terminus of the channel. Although Jones Valley canyon channel does 

not extend to the 2550 m isobath, the top width was plotted against channel floor water depth for 

comparison (Fig. 5.22) and appears to have top widths that are intermediate between those from 

the Central and Far North channels. 
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Figure 5.20. Change in the channel top width with increased distance down-channel for Munson, Nygren, 
Washington and the uppermost portions of Powell and Norfolk canyon channels. 
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Figure 5.21. Change in the channel top width with increased channel floor water depth for Munson, Nygren, 
Washington and the uppermost portions of Powell and Norfolk canyon channels. 
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Figure 5.22. Change in the channel top width with increased channel floor water depth for Munson, Nygren, 
Washington, and the uppermost portions of Powell and Norfolk canyon channels. The plot includes Jones Valley 
canyon channel for comparison. 

4.3.3. Channel Floor Width 

The channel floor width was measured with relative consistency for Pamlico, Veatch, 

Munson, Nygren, Powell, Washington, Jones Valley and the uppermost portions of Wilmington 

and Norfolk canyon channels (Figs. 5.23 and 5.24). Due to large differences in the lengths of the 

canyon channels, the longer channels were plotted separately from the shorter channels in order 

to better evaluate whether patterns within the floor widths of the channels with increased depth 

and distance down-channel exists. Pamlico, Veatch and Wilmington canyon channels (Figs. 5.25 

and 5.26) are between 200 and 250 km in length, whereas Munson, Nygren, Powell, Washington 

and the uppermost portion of Norfolk canyon channels (Figs. 5.27 and 5.28) are <90 km in length. 

The floor width for Jones Valley canyon channel is shown with the shorter channels for 

comparison (Fig. 5.29) although the channel does not extend to the 2550 m isobath. 

369 



6000 

5000 

4000 

f 
sz 

I 3000 

o 
LL 

2000 

1000 

-

tl h I 
1 Ĥ ' 
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Figure 5.23. Change in the channel floor width with increased distance down-channel for Type I canyon channels. 
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Figure 5.24. Change in the channel floor width with increased channel floor water depth for Type I canyon 
channels. 
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Although there is no distinct pattern in the change in channel floor width with increased 

distance down-channel for Pamlico, Veatch or Wilmington canyon channels (Fig. 5.25), it is 

evident that Wilmington canyon channel has the greatest floor widths between the 3250 and 3500 

m isobaths (Fig. 5.26). Although Wilmington was considered a Type I channel for comparison 

purposes, the widest widths correspond to a portion that was considered to have morphology 

more typical to that of a Type II channel. The lack of data for the remainder of Wilmington canyon 

channel is because slumps often obscured the floor of the channel. 

There is a variable decrease in floor width from the start of the channels to between 100 

and 125 km down-channel for Pamlico and Veatch canyon channels and then a slight increase to 

150 km down-channel (Fig. 5.25). The floor width of Veatch canyon channel then decreases and 

some of the profiles were V-shaped, which were given a floor width of 100 m (See Methods 

Section 3.6.1). Although there is a portion of Pamlico canyon channel where the channel is 

largely undefined in the vicinity of the 4500 m isobath, the floor width shows a decrease to the 

terminus of the channel (Fig. 5.26). 
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Figure 5.25. Change in the channel floor width with increased distance down-channel for Veatch, Wilmington and 
Pamlico canyon channels. 
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Figure 5.26. Change in the channel floor width with increased channel floor water depth for Veatch, Wilmington 
and Pamlico canyon channels. 

The floor widths of Powell, Munson and the uppermost portion of Norfolk canyon 

channels show a general increase in width with increased distance down-channel to their termini 

(Fig. 5.27). The floor width plots of Nygren and Washington canyon channels are more variable 

(Fig.5.27). There is a peak in floor width between the 3000 and 3300 m isobaths for Nygren 

canyon channel, down-slope from which the channel floor width generally decreases (Fig. 5.28). 

The channel floor width of Jones Valley canyon channel shows a decrease at the start of the 

channel, but the floor width remains relatively constant thereafter (Fig. 5.29). 
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Figure 5.27. Change in the channel floor width with increased distance down-channel for Munson, Nygren, 
Washington and the uppermost portions of Powell and Norfolk canyon channels. 

Figure 5.28. Change in the channel floor width with increased channel floor water depth for Munson Nygren, 
Washington and the uppermost portions of Powell and Norfolk canyon channels. 
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Figure 5.29. Change in the channel floor width with increased channel floor depth for Munson Nygren, 
Washington and the uppermost portions of Powell and Norfolk canyon channels. Plot includes Jones Valley 
canyon channel for comparison. 

4.3.4. Individual Channel Profiles 

In order to evaluate relationships between the channel floor and the channel rims of the 

Type I canyon channels, plots of both the water depth to each channel rim and the water depth to 

the channel floor with increased distance down-channel were constructed (Fig s. 5.30 - 5.40). 

The profiles of the channel floor water depth with increased distance down-channel (i.e., 

longitudinal profiles) display some irregularity. The increase in channel wall relief down-channel is 

evident for Hydrographer (Fig. 5.33), Veatch (Fig. 5.34), Jones Valley (Fig. 5.35), Hudson (Fig. 

5.36) and Wilmington (Fig. 5.37) canyon channels. The southwestern channel rim of these 

channels is often higher than that of the northeastern channel rim. In addition, Washington and 

Pamlico canyon channels, as well as the uppermost portion of Norfolk canyon channel (Figs. 

5.38, 5.40 and 5.39) also show this pattern to an extent. However, neither the southwestern nor 

northeastern channel rims exceed one another for any significant length for Nygren (Fig. 5.30), 

Munson (Fig 5.31) or Powell (Fig. 5.32) canyon channels. 
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Figure 5.30. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Nygren canyon channel. 

1800 

2000 

2200 

.-,2400 
E, 

sz 
"S. 
g 2600 

B 

i 
> 2800 

3000 

3200 

3400 

i 

**VV 

-N. v*"*''^ 

T * . ^ 

^ * s > s > ^ r ^ : : : ^ v ^ 

1 1 E 

) 10 20 30 40 
Distance Down-Channel (km) 

O Southwest Rim 
— 6 — Northeast Rim 

0 Channel Floor 

50 6 0 

Figure 5.31. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Munson canyon channel. 
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Figure 5.32. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Powell canyon channel. 
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Figure 5.33. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Hydrographer canyon channel. 
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Figure 5.34. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Veatch canyon channel. 
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Figure 5.35. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Jones Valley canyon channel. 
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Figure 5.36. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Hudson canyon channel. 
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Figure 5.37. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Wilmington canyon channel. 
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Figure 5.38. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Washington canyon channel. 

Figure 5.39. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for the uppermost portion of Norfolk canyon channel. 
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Figure 5.40. Profiles of channel floor water depth and channel rim water depths with increased distance down-
channel for Pamlico canyon channel. 

5.4. Type II Canyon-Channel Comparisons 

The mixed Type I/Type II canyon-channel systems are, from north to south, Powell, 

Lydonia, Oceanographer, Wilmington, Norfolk, Albermarle and Hatteras canyon channels. There 

are no obvious spatial relationships between location along the margin and type of channel (Figs. 

5.1 and 5.3). In addition, the nature of the mixed systems varies down the length of the channels 

(Fig 5.1). The parameters were thus inconsistent with increased depth and distance down-

channel. This inconsistency and complexity of channel morphology makes parameter 

comparisons inherently difficult. 

Only a very short section of Powell canyon channel, between the 3180 and 3260 m 

isobaths, was classified as a Type II channel before a very small channel continues down-slope. 

The majority of this canyon channel was used for Type I comparisons and will not be considered 

further. In addition, only a small portion of Wilmington canyon channel near the apex of the gather 

area between the 3175 and 3400 m isobaths was classified as a Type II channel. The entirety of 

this channel was used in Type I comparisons and will not be considered further here. 
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The four remaining canyon channels contain significant segments that are considered to 

have morphologies characteristic of Type II channels. These are Oceanographer, Norfolk, 

Albermarle and Hatteras canyon channels. Oceanographer canyon channel is classified as a 

Type II channel for nearly its entire length, between the 1850 and 3750 m isobaths. The Type II 

morphology of Oceanographer canyon channel is the most clearly defined out of all the mixed 

canyon-channel systems and was the channel from which the Type II classification was modeled. 

Norfolk canyon channel displays morphology more typical of a Type II channel between the 3350 

and 3970 m isobaths down-slope from the confluence with Washington canyon channel near the 

3300 m isobath. There is a small incised channel within the confines of elevated bathymetry. 

Albermarle canyon channel has morphology characteristic of a Type II channel for nearly its 

entire length, between the 2500 and 4050 m isobaths. Hatteras canyon channel also displays 

significant segments of channel that are characteristic of Type II channel morphology. These 

segments are present between the 3375 and 3700 m isobaths and between the 3955 and 4660 m 

isobaths. The segments are separated by a portion of channel that is more characteristic of a 

Type I channel with an incised thalweg at the base between the 3700 and 3955 m isobaths. 

Lydonia canyon channel is a more complex channel and complicated by numerous confluences 

as well as interaction with Bear Seamount. However, the last three profiles of Lydonia canyon 

channel that display Type II morphology were included in the comparisons in order to provide a 

measure of verification for any patterns seen between the channels along the northern margin 

(Oceanographer canyon channel) and the channels located along the more southern portion of 

the margin (Norfolk, Albermarle and Hatteras canyon channels). 

Several parameters were evaluated for the Type II segments of the aforementioned 

channels. These parameters include the relief and top width of the bathymetry that confines the 

main incised channel, the channel wall relief and top width of the main incised channel, and the 

width of the terrace-like features adjacent to the incised channel. 
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5.4.1. Confining Bathymetry 

It is evident that both the northeast and southwest relief of the bathymetry that confines 

the main incised channel (Figs. 5.41 and 5.42) for Oceanographer and Lydonia canyon channels 

is the highest out of the five canyon channels. The relief is nearly always >200 m. In contrast, the 

relief of Albermarle, Norfolk and Hatteras canyon channels is much lower and generally <200 m. 

There is no clear distinction between the channels with respect to the width between the tops of 

the confining bathymetry, although the width of the Type II segment of Lydonia canyon channel is 

between 12000 and 18000 m, whereas the widths between the top of the confining bathymetry of 

the other canyon channels are more variable and generally <12000 m (Fig. 5.43). 
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Figure 5.41. Change in the relief of the northeastern wall of the confining bathymetry with increased thalweg 
water depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 
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Figure 5.42.Change in the relief of the southwestern wall of the confining bathymetry with increased thalweg 
water depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 
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Figure 5.43. Change in the width between the tops of the confining bathymetry with increased thalweg water 
depth for Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 
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5.4.2. Main Incised Channel 

The main incised channel of the Oceanographer canyon-channel system is the most 

consistently well-defined channel. The channel wall relief is generally much greater than that of 

the other channels (Figs. 5.44 and 5.45) with a 225-m peak relief on the southwestern side and a 

177-m peak relief on the northeastern side. However, the channel wall relief of the main incised 

channel decreases to less than 50 m at the end of Oceanographer canyon channel. The relief at 

the start of the Type II segments of Hatteras and Albermarle canyon channels are -70 and -100 

m, respectively. These are comparable to the channel wall relief of the main incised channel of 

the Type II section of Lydonia canyon channel (Fig. 5.44 and 5.45). The width of the top of the 

main incised channel is also generally greater for Oceanographer and Lydonia canyon channels 

(Fig. 5.46). Aside from the start of Albermarle canyon channel, the top width of this channel is the 

narrowest out of all the channels. 

Although Hatteras and Albermarle canyon channels have higher relief at the start of their 

Type II sections, the relief of Albermarle canyon channel decreases with increased thalweg water 

depth between the 2500 and 3130 m isobaths. For the majority of the rest of the length of 

Albermarle canyon channel, between the 3130 and 4000 m isobaths, the relief of the main incised 

channel is generally below the stated accuracy for depth determination of 0.5% of water depth 

(Gardner, 2004; Cartwright and Gardner, 2005; Kongsberg Simrad EM 120 Product Description), 

which is -16 to 20 m for these depths. The relief of the main channel of the Hatteras canyon-

channel system decreases but then shows an increase down-slope from the portion of channel 

that displays Type I morphology with an incised thalweg. The relief of the thalweg in the Type I 

section was generally below the stated accuracy of depth determination of 0.5% of water depth, 

which ranges from 19 to 20 m between the 3700 and 3955 m isobaths. The channel wall relief of 

the small, incised channel in the Norfolk canyon-channel system is consistently low, and varies 

from 8 to 44 m on the northeastern side and from 9 to 37 m on the southwestern side. The stated 

accuracy for depth determination of 0.5% of water depth between the 3350 and 3970 m isobaths 

ranges from 17 to 20 m and the relief of the incised channel is occasionally below these values, 

especially between the 3700 and 3850 m isobaths. 
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Figure 5.44. Change in the relief of the northeastern incised channel wall with increased thalweg water depth for 
Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 
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Figure 5.45. Change in the relief of the southwestern incised channel wall with increased thalweg water depth for 
Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 
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Figure 5.46. Change in the width of the top of the main incised channel with increased thalweg water depth for 
Lydonia, Oceanographer, Norfolk, Albermarle and Hatteras canyon channels. 

5.4.3. Terrace Features 

The most well-defined terrace-like features that are adjacent to the main incised channel 

are present for Oceanographer and Albermarle canyon channels. The first portion of Hatteras 

canyon channel also displays distinct terrace-like features; however, neither the lower portion of 

Hatteras canyon channel nor the entire portion of Norfolk canyon channel displays distinct 

terrace-like features. There is no coherent pattern when the widths of the terrace-like features are 

plotted together against thalweg water depth (Fig. 5.47 and 5.48), although the terrace features 

on the southwestern side generally appear to be narrower than those on the northeastern side. 
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Figure 5.47. Change in the width of the northeastern terrace-like features with increased thalweg water depth for 
Lydonia, Oceanographer, Albermarle and Hatteras canyon channels. 
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Figure 5.48. Change in width of the southwestern terrace-like features with increased thalweg water depth for 
Lydonia, Oceanographer, Albermarle and Hatteras canyon channels. 
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5.5. Channel Sinuosity 

Sinuosity is a measure of how much a channel or channel segment deviates from 

straight It is defined as the stream length divided by the straight valley length (Knighton, 1998, 

Ritter et a l , 2002) A sinuosity of 1 5 has been assigned as the transition between straight and 

meandering for subaenal, riverine channels Channels with a sinuosity of less than 1 5 are 

considered straight whereas channels with a sinuosity of greater than 1 5 are considered 

meandering (Ritter et al , 2002) 

The total sinuosity (Table 5 1) of the submarine canyon channels was calculated using 

the planimetric length of the channel (2D length) and the straight line distance between the start 

and end points of the channel (Refer to Methods Section 3 7 3) By the riverine definition, none of 

the submarine canyon channels would be considered meandering The channels with the highest 

overall sinuosities are Wilmington, Hudson, Lydonia and Oceanographer canyon channels, which 

are 1 24, 1 20, 1 17 and 1 18 respectively The channel with the lowest sinuosity is Nygren 

canyon channel, with a sinuosity to 1 03 Table 5 2 shows the sinuosity of Pamlico and Hatteras 

canyon channels without their uppermost portions which are interpreted to have incised into the 

upper continental margin, however, the recalculated sinuosities are unaffected 

Table 5.1. Total planimetric lengths (2D_Length) of canyon channels (from north to south), starting and ending 
coordinates, straight line distance calculated from the starting and ending coordinates (StraightL) and the 
sinuosity. 

Canyon Channel 

Nygren 

Munson 

Powell 

Lydonia 

Oceanographer 

Hydrographer 

Veatch 

Jones Valley 

Hudson 

Wilmington 

Washington 

Norfolk 

Albermarle 

Hatteras 

Pamlico 

2D Length 

101378 

61766 

83486 

80117 

166537 

256453 

253593 

127779 

308323 

269938 

80963 

236683 

175596 

265496 

273464 

Start X 

711218 

681798 

638303 

596791 

579325 

505940 

455653 

356465 

258388 

648787 

597623 

588976 

545029 

509803 

484823 

Start Y 

4502776 

4478102 

4465376 

4455284 

4449511 

4404188 

4391452 

4291598 

4341179 

4216235 

4113824 

4084763 

3929365 

3903241 

3865311 

End X 

789550 

715989 

668913 

625409 

659463 

631054 

581268 

379178 

390640 

806194 

653911 

766473 

682112 

672601 

639097 

End Y 

4443097 

4431371 

4395989 

4392893 

4332801 

4208121 

4192438 

4179391 

4121661 

4066933 

4062904 

3967211 

3831923 

3717543 

3658810 

Straight L 

98476 

57903 

75839 

68641 

141574 

232584 

235342 

114483 

256279 

216951 

75902 

212893 

168187 

246956 

257766 

Sinuosity 

1 03 

1 07 

1 10 

1 17 

1 18 

1 10 

1 08 

1 12 

1 20 

1 24 

1 07 

1 11 

1 04 

1 08 

1 06 
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Table 5.2. Sinuosities calculated that exclude the portions of channels that have incised into the upper 
continental margin (for Hatteras and Pamlico canyon channels). Also shown is the sinuosity for the portion of 
Norfolk canyon channel up to the merge with Washington canyon channel. 

Canyon Channel 

Norfolk2 

Hatteras2 

Pamlico2 

2D Length 

88772 

261052 

268206 

Start X 

588976 

513711 

489123 

Start Y 

4084763 

3901161 

3862335 

End X 

659530 

672601 

639097 

End Y 

4056657 

3717543 

3658810 

Straight L 

75946 

242820 

252814 

Sinuosity 

1.17 

1.08 

1.06 

Canyon channels were divided into segments between successive 250 m contour 

intervals for calculation and comparison of sinuosity at the segment level (Table 5.3 and 5.4). 

Using a sinuosity of 1.5 as the transition from straight to meandering, only one segment out of all 

the channel segments is meandering. This is the interval between the 3250 and 3500 m isobaths 

in Hudson canyon channel (Table 5.3). The subsequent down-slope section of Hudson canyon 

channel, between the 3500 and 3750 m isobaths, also has a high sinuosity of 1.31. 

Oceanographer canyon channel has a segment of higher sinuosity of 1.35 between the 2250 and 

2550 m isobaths. It is interesting that although Wilmington canyon channel has one of the highest 

overall sinuosities for the channel in its entirety, the sinuosity of individual segments never 

exceeds 1.11 (Table 5.4). 

Table 5.3. Sinuosity of channel segments between successive 250 m contour intervals for Nygren through 
Hudson canyon channels (located in the Far North and North regions of the Atlantic continental margin - Fig. 
3.4). For channel lengths between successive contour intervals, see Sinuosity Appendix. 

Contour 
Interval 

1750-2000 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

Canyon Channel 

Nygren 

1.02 

1.05 

1.01 

1.00 

1.00 

1.01 

Munson 

1.07 

1.01 

1.06 

1.00 

Powell 

1.08 

1.05 

1.02 

1.01 

1.03 

1.05 

Lydonia 

1.06 

1.01 

1.10 

1.06 

1.08 

1.11 

1.14 

Oceanographer 

1.09 

1.35 

1.14 

1.18 

1.13 

1.09 

1.07 

1.06 

Hydrographer 

1.13 

1.10 

1.13 

1.18 

1.20 

1.09 

1.02 

1.03 

Veatch 

1.04 

1.02 

1.02 

1.01 

1.08 

1.04 

1.02 

1.05 

1.05 

Jones 
Valley 

1.06 

1.18 

1.01 

1.01 

Hudson 

1.16 

1.16 

1.16 

1.58 

1.31 

1.03 

1.02 
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Table 5.4. Sinuosity of channel segments between successive 250 m contour intervals for Wilmington through 
Pamlico canyon channels (located in the Central and South regions of the Atlantic continental margin - Fig 3.4). 
For channel leng 

Contour 
Interval 

1750-2000 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

4500-4750 

4750-5000 

ths between successive con 

Wilmington 

1.06 

1.01 

1.02 

1.05 

1.11 

1.09 

1.11 

1.01 

tour intervals >, see Sinuosit y Appendix. 
Canyon Channel 

Washington 

1.08 

1.01 

1.03 

Norfolk 

1.16 

1.04 

1.04 

1.07 

1.07 

1.04 

1.03 

Albermarle 

1.14 

1.04 

1.02 

1.07 

1.02 

1.02 

1.01 

1.14 

1.04 

Hatteras 

1.00 

1.00 

1.04 

1.06 

1.10 

1.07 

1.20 

1.01 

1.02 

1.03 

1.01 

1.07 

1.03 

Pamlico 

1.00 

1.00 

1.01 

1.01 

1.06 

1.01 

1.04 

1.03 

1.02 

1.07 

1.04 

1.03 

5.6. Channel Slope 

The slopes of the channels in their entirety, from the start point to end point of the 

channels (Table 5.5) are greatest for the channels located in the Far North region. These channel 

have overall slopes that range from 0.8° to 1.3°. Powell canyon channel has the highest overall 

slope out of all the canyon channels. The canyon channels in the North and Central regions have 

much lower slopes that range between 0.4° and 0.6°. Hydrographer and Veatch canyon channels 

have similar slopes of 0.5° and 0.6°, respectively. The slopes of the canyon channels located in 

the South region of the margin are slightly higher than those of the north or central regions. 

Pamlico and Hatteras canyon channels have similar overall slopes of 0.7°, respectively. However, 

because of interest in this study are the channels on the lower continental margin, the portions of 

channel that are interpreted to have incised into the upper continental margin were removed and 

the channel slope re-calculated. These slopes are much lower: 0.5° for Pamlico canyon channel 

and 0.6° for Hatteras canyon channel (Table 5.6) 
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Table 5.5. Planimetric lengths (2D Length) and surface lengths (SLength) of the channels with starting and 
ending depths, the depth difference and the slopes calculated using the planimetric length (2D slope) and using 
the surface length (3D Slope) for the canyon channels in their entirety. Also shown are the differences in the 
slopes and the differences in the lengths. A negative value indicates that the planimetric length was calculated to 
be longer than the surface length (See Methods section 3.7.3 for full explanation) 

Canyon 
Channel 

Nygren 

Munson 

Powell 

Lydonia 

Oceanographer 

Hydrographer 

Veatch 

Jones Valley 

Hudson 

Wilmington 

Washington 

Norfolk 

Albermarle 

Hatteras 

Pamlico 

2D_Length 

101378 

61766 

83486 

80117 

166537 

256453 

253593 

127779 

308323 

269938 

80963 

236683 

175596 

265496 

273464 

SLength 

101403 

61786 

83525 

80166 

162998 

256529 

252947 

127796 

308421 

269984 

80975 

236726 

175437 

265338 

273606 

Starting 
Depth 

-2365 

-2300 

-1767 

-1708 

-1839 

-2269 

-2163 

-3000 

-2337 

-2158 

-2401 

-2545 

-2481 

-1635 

-1639 

Ending 
Depth 

-4123 

-3511 

-3686 

-3502 

-4226 

-4657 

-4600 

-4006 

-4291 

-4120 

-3259 

-4137 

-4482 

-5084 

-5026 

Depth 
Difference 

1758 

1211 

1919 

1794 

2387 

2387 

2437 

1006 

1954 

1962 

858 

1591 

2002 

3449 

3387 

2D 
Slope 

10 

1 1 

13 

13 

0 8 

0 5 

0 6 

0 5 

0 4 

0 4 

0 6 

0 4 

0 7 

0 7 

0 7 

3D 
Slope 

10 

1 1 

13 

13 

0 8 

0 5 

0 6 

0 5 

0 4 

0 4 

0 6 

0 4 

0 7 

0 7 

0 7 

difference 
in 2D8c3D 
Slope 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Difference 
in 2D8c3D 
lengths 

25 

20 

39 

48 

-3539 

76 

-645 

17 

98 

47 

12 

43 

-160 

-158 

142 

Table 5.6. Slopes calculated that exclude the portions of channels that have incised the upper continental margin 
(for Hatteras and Pamlico canyon channels). Also shown is the portion of Norfolk canyon channel up to the 
merge with Washington canyon channel. 

Canyon 
Channel 

Norfolk2 

Hatteras2 

Pamhco2 

2D 
Length 

88772 

261052 

268206 

SLength 

88793 

261138 

268250 

Starting 
Depth 

-2545 

-2274 

-2554 

Ending 
Depth 

-3321 

-5084 

-5026 

Depth 
Difference 

776 

2810 

2472 

2D Slope 

0 5 

0 6 

0 5 

3D Slope 

0 5 

0 6 

0 5 

difference 
in 2D&3D 
slopes 

0 0 

0 0 

0 0 

Difference 
in 2D&3D 
lengths 

21 

86 

44 

Canyon channels were also divided into segments between successive 250 m contour 

intervals for calculation and comparison of channel slope at the segment level. The slopes shown 

are calculated from the surface length of the channel segments (see Methods Section 3.7 3 and 

Appendix E for detailed slope explanation) The slopes of the uppermost portions of the canyon 

channels in the Far North region of the margin (Fig 3 4) are all above 1.0° (Table 5.7). The 

slopes of Nygren, Munson and Lydonia canyon channels decrease within each successive down-

slope contour interval The slope of Powell canyon channel decreases for most of the successive 

down-slope contour intervals, although there is a slight increase between the 2750 to 3000 m 

interval. The slope of Oceanographer canyon channel decreases within successive down-slope 
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contour intervals with the exceptions of between the 3250 and 3500 m isobaths and the 3750 and 

4000 m isobaths. 

The slopes of the channels within the North section of the margin (Fig. 3.4) are much 

lower in their uppermost sections than that of the canyon channels in the Far North region, and 

never exceed 1.0° (Table 5.8). In addition, the first full interval for canyon channels in the North 

region begins with the 2250 to 2500 m interval (for Veatch canyon channel), whereas several Far 

Northern channels begin in shallower depths, the shallowest being near the 1750 m isobath for 

Lydonia canyon channel. The slope of Hydrographer canyon channel generally decreases within 

successive down-slope contour intervals, with the exception of the 3500 to 3750 m interval. The 

slope of Veatch canyon channel also generally decreases within successive down-slope contour 

intervals, with the exception of between the 3500 to 3750 m and the 3750 to 4000 m intervals. 

The slope of Jones Valley canyon channel generally decreases within successive down-slope 

contour intervals. The slope of Hudson canyon channel generally decreases within successive 

down-slope contour intervals, with the exception of between the 3500 and 3750 m isobaths. 

The slopes of the canyon channel segments within the Central region of the margin (Fig. 

3.4) are low as well, and do not exceed 0.80° (Table 5.9). The slope of Wilmington and 

Washington canyon channel generally decreases within successive down-slope contour intervals. 

The slope of Norfolk canyon channel is low in the first interval, increases for the second interval 

between the 3000 and 3500 m isobaths, and then decreases within successive contour intervals 

down-slope from the 3500 m isobath. 

The slopes of two canyon-channel segments within the South region of the margin (Fig. 

3.4) are much greater than any of the segments within the more northern channels (Table 5.10). 

These are the anomalously high slopes of Hatteras and Pamlico canyon channels between the 

1750 and 2250 m and 2000 and 2500 m isobaths, respectively, and represent portions of the 

canyons that have incised into the upper continental margin. The slopes of Albermarle canyon 

channel decrease within successive down-slope contour intervals, with the exception of the 3750 

to 4000 m interval. The slope of Hatteras canyon channel also generally decreases within 
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successive down-slope contour intervals with the exception of the 4500 to 4750 m interval. The 

slope of Pamlico canyon channel decreases within successive down-slope contour intervals. 

Table 5.7. Slopes of channel segments within the Far North region of the margin. Slopes are calculated using the 
surface length of the channels between contour intervals. 
Canyon 
Channel 

Contour 
Interval 

1750-2000 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

Nygren 

Slope 

1.9 

1.4 

1.2 

1.1 

0.7 

0.6 

Munson 

Slope 

1.2 

1.1 

1.0 

0.9 

Powell 

Slope 

2.3 

1.8 

1.3 

1.4 

1.0 

0.9 

Lydonia 

Slope 

3.1 

2.2 

2.1 

1.4 

1.0 

0.9 

0.7 

Oceanographer 

Slope 

1.4 

1.2 

1.0 

1.0 

0.7 

1.4 

0.6 

0.7 
The slope calculated from the planimetric slope was 1.04° - this portion has significant gaps and planimetric 
slope may be more representative. 

Table 5.8. Slopes of channel segments within the North region of the margin. Slopes are calculated using the 
surface length of the channels between contour intervals. 
Canyon 
Channel 

Contour 
Interval 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

Hydrographer 

Slope 

0.8 

0.7 

0.6 

0.5 

0.6 

0.5 

0.4 

0.4 

Veatch 

Slope 

0.9 

0.7 

0.7 

0.6 

0.5 

0.6 

0.6 

0.5 

0.3 

Jones Valley 

Slope 

0.5 

0.5 

0.5 

0.4 

Hudson 

Slope 

0.6 

0.5 

0.4 

0.3 

0.4 

0.3 

0.2 
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Table 5.9. Slopes of canyon channel segments within the Central region of the margin. Slopes are calculated 
using the surface length of the channels between contour intervals. 

Canyon 
Channel 

Contour 
Interval 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

Wilmington 

Slope 

0.8 

0.7 

0.5 

0.4 

0.4 

0.3 

0.3 

0.2 

Washington 

Slope 

0.7 

0.6 

0.6 

Norfolk 

Slope 

0.5 

0.6 

0.4 

0.3 

0.3 

0.2 

0.1 

Table 5.10. Slopes of canyon channel segments within the Southern region of the margin. Slopes are calculated 
using the surface length of the channels between contour intervals. 
Canyon 
Channel 

Contour 
Interval 

1750-2000 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

4500-4750 

4750-5000 

Albermarle 

Slope 

0.9 

0.9 

0.7 

0.7 

0.6 

0.7 

0.7 

Hatteras 

Slope 

18.8 

6.1 

2.0 

1.0 

0.8 

0.8 

0.6 

0.6 

0.5 

0.5 

0.4 

0.5 

0.5 

Pamlico 

Slope 

16.0 

8.5 

1.6 

1.1 

1.1 

0.7 

0.5 

0.5 

0.4 

0.4 

0.4 

0.3 
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5.7. Regional Slope of the Continental Margin 

A map of the slope of the Atlantic continental margin was generated in ESRI ArcMap. 

The slope was calculated using a grid cell size of 100 m (Fig. 5.49) and a grid cell size of 1000 m 

(Fig. 5.50). The 1000-m cell size shows a smoothed slope because the slope is calculated over 

larger areas. Intervals of slope were defined for 0.0° to 0.7°, 0.7° to 1.0°, 1.0° to 2.0° and > 2.0°. 

Two regions in particular appear to show greater slopes along the margin on the 1000-m cell size 

map and are delineated with black boxes in Figure 5.50. The northern region is in the vicinity of 

Hydrographer and Veatch canyon channels and located between the 3500 and 4000 m isobaths. 

The slopes are generally between 0.7° and 1.0° although higher slopes between 1.0° and 2.0° 

are evident in the northern part of the section. The more southern region of increased slope 

occurs mainly between Hudson and Wilmington canyon channels and is located between the 

3250 and 4000 m isobaths. This region has slopes between 0.7° and 1.0°. 

Figure 5.49. Slope of the Atlantic continental margin calculated with a100-m grid cell size 
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Figure 5.50. Slope of the Atlantic continental margin calculated with a 1000-m grid cell size. Black polygons 
indicate regions of increased slope. 

In order to verify that the locations identified in the ESRI ArcMap slope maps do show an 

increase in slope, selected profiles were constructed in Fledermaus IVS3D Visualization software 

(5.51). The slope of each profile was measured in its entirety and then at the segment level (Fig. 

5.52). From north to south the profiles have overall slopes of 0.6° between the 1700 and 4650 m 

isobaths for profile A - A', 0.5° between the 2060 and 4650 m isobaths for profile B - B', 0.3° 

between the 2200 and 4300 m isobaths for profile C - C, 0.3° between the 2460 and 4000 m 

isobaths for profile D - D', 0.4° between the 2370 and 4290 m for profile E - E' and 0.5° between 

the 2550 and 4740 m isobaths for profile F - F'. 

The northernmost profile (Fig. 5.52, A - A') has a steeper local slope of 1.1 ° between the 

1700 and 4000 m isobaths. Down-slope from the 4000 m isobath to the 4650 m isobath the slope 

decreases to 0.2°. The profile drawn between Veatch and Hydrographer canyon channels (Fig. 

396 



5.52, B - B') shows a slope of 0.7° between the 2050 and 2900 m isobaths. This is followed by a 

segment with a lower slope of 0.4° between the 2900 and 3500 m isobaths. There is a brief 

section between the 3500 and 4000 m isobaths that has a higher slope of 0.7°. This section is 

consistent with the location of the higher slope identified on ESRI ArcMap slope maps. The 

lowermost portion of the profile has a lower slope of 0.3° between the 3400 and 4650 m isobaths. 

The profile constructed between Veatch and Jones Valley canyon channels (Fig. 5.52, C - C) 

shows a break in slope near the 2850 m isobath. The slope is 0.3° above the break between the 

2200 and 2850 m isobaths and there is a slight increase to 0.4° between the 2850 and 3900 m 

isobaths. The slope decreases to 0.3° between the 3900 and 4300 m isobaths. The profile drawn 

between Hudson and Wilmington canyon channels (Fig. 5.52, D - D') shows the most clearly 

defined break in slope near the 3250 m isobath. The slope is 0.3° above the break between the 

2450 and 3250 m isobaths. The slope increases to 0.7° between the 3250 and 4000 m isobaths. 

This is consistent with the region of increased slope identified on the ESRI ArcMap slope maps. 

The slope then decreases to 0.2° down-slope from the 4000 m isobath to the end of the profile 

near the 4400 m isobath. Two profiles were constructed on the southern portion of the margin, 

one just south of Norfolk canyon channel (Fig 5.52, E - E') and one between Hatteras and 

Pamlico canyon channels (Fig. 5.52, F - F'). These profiles do not show an increase in slope 

down their length; instead, the slope decreases from the start of the profile to the end of the 

profiles. However, the upper portions of the profiles are steeper than the lower portions. 
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Figure 5.51. Atlantic bathymetry with ETOP01 background and regional profiles constructed for slope 
verification shown in white. 
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Figure 5.52. Profiles from north to south along the margin that correspond to the profiles shown in Figure 5.51. 
Entire slope of the profile is shown as and segments of the profiles and associated slopes are delineated. 
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5.8. Local Effects 

Local effects within individual canyon-channel systems include the confluence with other 

channels, bends in the channels, slumps that occur along the channel walls and floor, and 

interaction with submarine features such as seamounts. These factors may have an effect on the 

channel morphology and be superimposed on larger morphologic patterns. 

5.8.1. Confluences 

Confluences with other channels occur in Nygren, Lydonia, Oceanographer, 

Hydrographer, Hudson, Wilmington, Norfolk and Hatteras canyon channels. A channel that 

extends down-slope from the northeast enters Nygren canyon channel near the 3000 m isobath. 

Lydonia canyon channel has more complicated confluence morphology and is formed from 

several confluences (Fig. 4.35). Two canyons (Chebacco and Gilbert Canyons) merge near the 

2400 m isobath, and two other canyons, (Jigger and Lydonia Canyons) merge near the 2600 m 

isobath. The two channels, Lydonia canyon channel to the east and Gilbert canyon channel to the 

west, merge near the 2850 m isobath to form Lydonia canyon channel. The terminus of Lydonia 

canyon channel is the confluence with Oceanographer canyon channel near the 3490 m isobath. 

In addition to the merge with Lydonia canyon channel, a channel enters Oceanographer canyon 

channel from the northeast near the 2150 m isobath and another small channel appears to 

traverse down-slope from the northwest to intersect Oceanographer canyon channel near the 

2800 m isobath, although there is no clear entrance point. 

A small channel-like feature with a short upslope extension enters Hydrographer canyon 

channel from the northwest near the 3450 m isobath. There is a region of Hudson canyon 

channel between the 2900 and 3150 m isobaths where two small channel-like features enter from 

the northeast; these have indistinct extensions upslope. Wilmington canyon channel itself is the 

product of two channels at the apex of the gather area near the 3350 m isobath. However, 

several additional channels merge upslope within the gather area. Two distinct merges occur: 

one near the 3160 m isobath where the Baltimore tributary channel merges with a small channel 

from the northeast, and a second near the 3300 m isobath where two channels to the east of the 

Baltimore tributary channel merge. 
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Washington canyon channel starts to lose its bathymetric expression near the 3100 m 

isobath, where it turns more eastward and traverses parallel to Norfolk canyon channel until the 

3300 m isobath where there in an indistinct merge with Norfolk canyon channel. A small channel 

extends down-slope northeast of Hatteras canyon channel and bifurcates near the 3330 m 

isobath. The western branch enters Hatteras canyon channel near the 3425 m isobath whereas 

the eastern branch continues to traverse parallel to Hatteras canyon channel on the northeastern 

side of the channel. This small channel enters Hatteras canyon channel near the 3700 m isobath. 

Hatteras canyon channel itself terminates at the confluence with Hatteras Transverse Canyon 

(Fig. 4.191) near the 5100 m isobath. A knickpoint is located upslope from the point of entrance, 

near the 5025 m isobath. 

5.8.2. Bends 

Several channels display large-scale bends, whereas other channels are mainly straight. 

Large scale bends occur in Oceanographer canyon channel near the 2550 and 2850 m isobaths 

and a sharp turn southward occurs at the confluence with Lydonia canyon channel near the 3500 

m isobath. Jones Valley canyon channel displays several bends in the uppermost section of 

channel between the 2250 and 3450 m isobaths. Hudson canyon channel displays some minor 

bends in the uppermost section, but very sharp bends between the 3250 and 3750 m isobaths. 

Wilmington canyon channel, instead of displaying an area of sharp bends, has a broadly 

backwards S-shape in plan view. 

5.8.3. Slumps 

Slumps are a common feature in many of the canyon-channel systems and range from 

small-scale slumps to slumps that cover wide areas and slump scars along the canyon channel 

walls. Small scale slumps along the side walls exist in nearly all the canyon channels, however, 

several extensive slumps occur in Hudson and Wilmington canyon channels. Much of the upper 

portion of Hudson canyon channel is dominated by slump features and slumps are especially 

common on the inside of channel bends between the 3250 and 3750 m isobaths. In addition, the 

thalweg traverses around a series of slumps that occur between the 4000 m isobath and the 

terminus of Hudson canyon channel. Wilmington canyon channel also displays extensive slump 
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features, especially between the 3450 and 3760 m isobaths. Features that appear to be slump 

scars occur on the southwestern side of Nygren canyon channel between the 3250 and 3500 m 

isobaths and on the uppermost southwestern wall of Hudson canyon channel above the 2500 m 

isobath. 

5.8.4. Seamount Interaction 

Powell, Lydonia, and Oceanographer canyon channels in the Far North region of the 

margin (Fig. 3.4) interact with seamounts. The well-defined channel morphology of Powell canyon 

channel loses its bathymetric expression near the 3100 m isobath and becomes more 

characteristic of a Type II channel until the 3250 m isobath where a small channel continues to 

traverse down-slope. This small channel is deflected westward by Physalia Seamount (Fig. 4.24), 

which is on the eastern side of the channel between the 3330 and 3500 m isobaths. Lydonia 

canyon channel passes Bear Seamount (Fig. 4.35), which is to the east of the channel between 

the 3000 and 3300 m isobaths. There is no clear distinction between the eastern channel walls of 

Lydonia canyon channel and Bear Seamount for this segment of channel. The lowermost portion 

of Oceanographer canyon channel passes Mytilus Seamount, which is to the east of the channel 

between the 3900 and 4100 m isobaths (Fig. 4.50). However, neither the channel morphology nor 

channel plan view appears affected by the location of the seamount. 

5.8.5. Channel Bifurcation 

Norfolk and Hatteras canyon channels display a degree of channel-thalweg bifurcation at 

some locations down their length. Hydrographer appears to show a region of bifurcation to an 

extent as well. The small channel within confining bathymetry that is characteristic of Norfolk 

canyon channel down-slope from the confluence with Washington canyon channel splits into two 

channels near the 3670 m isobath, although the southwestern branch remains the most 

prominent. The northeastern branch mainly disappears and does not appear to merge back with 

the southwestern branch. There is further bifurcation near the 3900 m isobath but the channels 

merge near the 3950 m isobath. Near the 3955 m isobath in Hatteras canyon channel, the small 

incised channel within the confines of elevated bathymetry bifurcates and each branch follows the 

base of the confining bathymetry, one channel on the southwestern side and one on the 
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northeastern side. The two branches merge near the 4175 m isobath. Hydrographer canyon 

channel has a region between the 4200 and 4310 m isobaths where the main channel has 

divided into multiple channels, although individual channels are not clearly defined at the 100 m 

resolution of the data and the scale (10x) used. 

5.9. Incision 

The canyon channels express incision through two different morphologies; an entrenched 

thalweg at the base of a wider, U-shaped channel, or through the Type II morphology where there 

is an incised channel with adjacent level seafloor surfaces (e.g., terrace-like features) within 

confining bathymetry (Table 5.11). Munson and Hudson canyon channels only display an 

entrenched thalweg at the base of a U-shaped channel for segments of channel. Oceanographer, 

Norfolk and Albermarle canyon channels display Type II morphology for the majority of their 

lengths. Washington canyon channel shows incision only around slump features. Lydonia, 

Wilmington and Hatteras canyon channels display both types of incision at different reaches 

down the length of the channels and Powell canyon channel displays both types to a degree as 

well. There is no evidence that Nygren, Hydrographer, Veatch, Jones Valley or Pamlico canyon 

channels are incised anywhere along their lengths. For further description of each individual 

canyon channel, refer to specific channels in Chapter 3. 

Table 5.11. Canyon channels and their location on the continental margin as well as the type of incision they do 
(or do not) exhibit. 

Canyon Channel 

Nygren 

Munson 

Powell 

Lydonia 

Oceanographer 

Hydrographer 

Veatch 

Jones Valley 

Hudson 

Wilmington 

Washington 

Norfolk 

Albermarle 

Hatteras 

Pamlico 

Location on Margin 

Far North 

Far North 

Far North 

Far North 

Far North 

North 

North 

North 

North 

Central 

Central 

Central 

South 

South 

South 

Incised 

Type II Channel 

No 

No 

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

No 

Yes 

Yes 

Yes 

No 

Thalweg within confined channel 

No 

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 
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5.10. Summary of Results 

The canyon-channel systems show some very distinct morphologic similarities and 

differences. Trends were established within individual channels (refer to Chapter 4) and between 

channels (this Chapter). Major results are listed below and several of the results will be evaluated 

and discussed further in the following chapter (Chapter 6 - Discussion) 

1) The longitudinal profiles of the canyon channels cluster with respect to location on the 

margin, regardless of channel type (refer to section 5.2). 

2) For the majority of the Type I channels, channel wall relief either decreases with increased 

distance and depth down-channel or increases to a peak in the middle of the channel and 

decreases down-slope (refer to section 5.3.1). 

3) The channels that show an increase in channel wall relief down-channel are Hydrographer, 

Veatch, Jones Valley, Hudson and Wilmington canyon channels and the increase in channel 

wall relief generally occurs between the 3250 and 4000 m isobaths (refer to section 5.3.1). 

4) Although there are no consistent patterns in the channel top width of the Type I channels with 

increased distance down-channel, Nygren, Hudson and Wilmington canyon channels have 

the greatest channel top widths between the 3500 and 4000 m isobaths (refer to section 

5.3.2). 

5) The region of greatest channel top widths for Wilmington and Hudson canyon channels 

corresponds to depths between the 3500 and 4000 m isobaths, which is also in part the 

location of the peak in channel wall relief (refer to section 5.3.2). 

6) The channel top widths of the shorter Type I canyon channels (Nygren, Munson, Powell, 

Washington and the uppermost portion of Norfolk canyon channels) appear to cluster by 

location on the margin; the northern channels have greater top widths (refer to section 5.3.2). 

7) Although there is no distinct pattern in the change in channel floor width with increased 

distance down-channel for Pamlico, Veatch or Wilmington canyon channels, it is evident that 

Wilmington canyon channel has the greatest floor widths between the 3250 and 3500 m 

isobaths. These greatest widths correspond to a portion that was considered to have 

morphology more typical of a Type II channel (refer to section 5.3.3). 
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8) The southwestern rim of Hydrographer, Veatch, Jones Valley, Hudson and Wilmington 

canyon channels is consistently shallower than the northeastern channel rim. Washington, 

Pamlico and the uppermost portion of Norfolk canyon channels show this pattern to an extent 

as well. Neither the southwestern nor the northwestern channel rims exceed one another for 

any significant length for Nygren, Munson or Powell canyon channels (refer to section 5.3.4). 

9) There is no obvious spatial relationship between location along the margin and the type of 

channel and the nature of the mixed systems varies down the length of the channels (refer to 

sections 5.1 and 5.4). 

10) The relief of the confining bathymetry and main incised channel of the Type II sections of 

channel is generally greater for the northern channels than the central and southern channels 

(refer to section 5.4.1). 

11) There is no coherent pattern when the widths of the terrace-like features are plotted together 

against thalweg water depth, although the terrace features on the southwestern side 

generally appear to be narrower than those on the northeastern side (refer to section 5.3.4). 

12) By the riverine definition of sinuosity (1.5 as the transition from straight to meandering) none 

of the submarine canyon channels would be considered meandering (refer to section 5.5). 

13) The slopes of the channels in their entirety are greatest for the channels located in the Far 

North region and range from 0.8° to 1.3° (refer to section 5.6). 

14) The slopes of channel segments between 250 m contour intervals of Far North and South 

channels are generally >1.0° in the uppermost portions surveyed. The slopes of the channel 

segments in the North region of the margin never exceed 1.0°. The slopes of the canyon 

channel segments in the Central region do not exceed 0.8° (refer to section 5.6). 

15) There are two locations on the margin that have increased local slopes (refer to section 5.7) 

16) Local effects within individual canyon-channel systems include the confluence with other 

channels, bends in the channels, slumps that occur along the channel walls and floor, and 

interaction with submarine features such as seamounts. These factors may have an effect on 

the channel morphology and be superimposed on larger morphologic patterns (refer to 

section 5.8). 
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CHAPTER 6 

DISCUSSION 

6.1. Longitudinal Profiles 

The longitudinal profiles (Fig. 5.4) provide a visual of the overall slope or steepness of a 

channel as a plot of the change in water depth between the start point and endpoint of the 

channel over the distance the channel traverses. It is evident that the Central channels (including 

Hudson canyon channel) have the gentlest slopes, whereas the Far North and South channels 

have the steepest slopes. Veatch and Hydrographer canyon channels have more intermediate 

slopes. These trends are generally consistent with the slope values that were calculated for the 

individual channels in their entirety. The channel slopes of Nygren through Oceanographer 

canyon channels in group 4 (Figs. 5.4 and 5.5) range from 0.8° to 1.3°. The channel slopes of 

Veatch and Hydrographer canyon channels in group 2 (Figs. 5.4 and 5.5) are similarly -0.5° and 

the channel slopes of Jones Valley through Washington canyon channels in group 1 (Figs. 5.4 

and 5.5) range from 0.4° to 0.6°. The channel slopes of the three southernmost channels 

(Albermarle, Hatteras and Pamlico canyon channels) in group 3 (Figs. 5.4 and 5.5) ranges from 

0.5° to 0.7°. Note that these values exclude the portions of Hatteras and Pamlico canyon 

channels that appear to have incised into the upper continental margin (see Results Section 5.6 

for complete canyon-channel slope results). 

The slopes of the channels in their entirety (between the start points to end points of the 

channels) may in part be a reflection of the regional slopes (Fig. 5.52). It is evident that the Far 

North region has the highest slope of 0.6° between the 1700 and 4650 m isobaths and a locally 

higher slope of 1.1° between the 1700 and 4000 m isobaths. A profile drawn between Veatch and 

Hydrographer canyon channels between the 2060 and 4650 m isobaths shows an overall 

regional slope of 0.5°, as does a regional profile drawn between Hatteras and Pamlico canyon 
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channels between the 2550 and 4740 m isobaths. Regional slopes are the gentlest in the central 

portion of the margin. Slopes between 0.3° and 0.4° occur between Veatch and Jones Valley 

canyon channels between the 2200 and 4300 m isobaths, between Hudson and Wilmington 

canyon channels between the 2460 and 4000 m isobaths and south of Norfolk canyon channel 

between the 2370 and 4290 m isobaths. There appears to be a relationship between the regional 

slope of the continental margin and channel slope. In general, channels with the highest slopes 

are located where the regional margin slope is high, whereas channels with the gentlest slopes 

are located where the regional margin slope is low. 

6.2. Type I Canyon Channels: Subgroup 1 

The channel wall relief (the vertical distance between the channel floor and the channel 

rims) of Nygren, Munson and Washington canyon channels and the uppermost portion of Norfolk 

and Powell canyon channels, decreases with increased channel floor water depth. This category 

is further subdivided into two subcategories based on the magnitude of the relief (Fig. 6.1). The 

first subcategory includes the 3 northernmost canyon channels considered; Nygren, Munson and 

Powell canyon channels. These canyon channels tend to have high channel wall relief, especially 

in the upper portions of the channels (Figs. 5.6 - 5.9). The second subcategory includes 2 

canyon channels that are located along the central portion of the margin; Norfolk and Washington 

canyon channels. These canyon channels are separated only by a distance of -28 km at the 

upper extent of the dataset, near the 2275 m isobath, and merge to form one channel near the 

3300 m isobath. These channels have lower channel wall relief than the northern channels (Figs. 

5.6-5.9). 
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Figure 6.1. Subcategories of the canyon channels that show decreased channel wall relief with increased channel 
floor water depth (distance down-channel). Black indicates a Type I channel and white indicates a Type II 
channel. Channels that consist of white and black segments are mixed systems. Ny =Nygren, M=Munson, Po = 
Powell, L= Lydonia, 0=Oceanographer, Hy=Hydrographer, V=Veatch, JV=Jones Valley, Hu=Hudson, 
Wi=Wilmington, Wa=Washington, No=Norfolk, A=Albermarle, Ha=Hatteras, Pa= Pamlico. The yellow box shows 
subcategory 1 of channel wall relief that includes Nygren, Munson, and the uppermost potion of Powell canyon 
channels. The red box shows subcategory 2 of channel wall relief that includes Washington and the uppermost 
portion of Norfolk canyon channels. 

This general trend of decreased channel wall relief with increased channel floor water 

depth and distance down-channel was not unexpected morphology. Flood and Damuth (1987) 

observed a decrease in channel width, depth and cross-sectional area in a study of submarine 

channels on the Amazon Fan. They suggested that a decrease in flow volume and flow thickness 

down-channel could be responsible for this relationship. Babonneau et al. (2002) also related a 

decrease in the relief of the Zaire channel to the change in turbidity current flow regime down-

channel. They suggested that as turbidity currents progress down a channel, the turbidity current 
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progressively loses material to overbank deposits, and the flows become thinner (Babonneau et 

al. 2002). 

In addition to the higher channel wall relief that the three northern channels (Nygren, 

Munson and Powell canyon channels) show when compared to the two central channels (Norfolk 

and Washington canyon channels), the 3 channels in the northern section of the margin are also 

wider at the top than the two channels along the central portion of the margin (Figs. 5.20 and 

5.21). This is evident in the floor widths as well, although the trend is not as prominent (Figs. 5.27 

and 5.28). These differences in relief and width between the north and central channels could 

reflect differences in the processes that have affected different regions of the margin. The 

northern region has been directly glaciated (Fig. 2.2) whereas the central portion has experienced 

extensive riverine input (Fig. 2.2). These differences could affect sediment supply and flow 

regime along the margin as well as influence the formation of the canyon channels. Norfolk and 

Washington canyon channels have been related to a Susquehanna River-Chesapeake Bay 

drainage (Pratt, 1967) whereas the canyons along the New England continental margin have 

been related to processes of the late Pleistocene deglaciation such as outwash (O'Leary, 1996) 

and dewatering (O'Leary and Dobson, 1992). 

6.3. Type I Canyon Channels: Subgroup 2 

In contrast, the channel wall relief of Hydrographer, Veatch, Jones Valley, Hudson and 

Wilmington canyon channels begins low but increases to a maximum generally between the 3250 

and 4000 m isobaths. The channel wall relief decreases down-slope from the 4000 m isobaths to 

the termini of the channels. These channels are located in close proximity along the continental 

margin and it is evident that the channels have downcut and are entrenched in the central 

segments of channel (Fig. 5.15). 

The high channel wall relief and entrenched portions of Wilmington and Hudson canyon 

channels has been previously recognized and related to steeper seafloor slopes (Pratt, 1967; 

Mountain and Tucholke, 1985; Pratson and Laine, 1989; Sweeney, 2008). The steeper slope has 

been attributed to the location of the Chesapeake Drift (Figs. 2.5 and 2.6) and the subsequent 

sediment accumulation and deposition that was controlled by the location of the Chesapeake Drift 
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(Mountain and Tucholke, 1985; Pratson and Laine, 1989). The Chesapeake Drift formed along 

the middle continental margin seaward of the Baltimore Canyon Trough near 36°N 73°W 

(Mountain and Tucholke, 1985) from sediment transported down-slope that was reworked by 

abyssal currents during the Miocene and Pliocene (Mountain and Tucholke, 1985; Tucholke and 

Mountain, 1986; Poag and Sevon, 1989). 

According to Mountain and Tucholke (1985) and Tucholke and Mountain (1986), 

sediments accumulated landward of the Chesapeake Drift from the Late Pliocene through the 

Quaternary. The sediments were inferred to be glacially derived and are thickest (>400 m) off of 

New Jersey (Mountain and Tucholke, 1985). In contrast, little sediment accumulated on the 

seaward flank of the drift where Pliocene and older outcrops are present (Mountain and Tucholke, 

1985; Mountain, 1987). Hudson Canyon has been interpreted to have developed during the 

Pliocene and Quaternary (Mountain and Tucholke, 1985) and has cut through the upper portion 

of the Chesapeake Drift (Mountain, 1987). Mountain and Tucholke (1985) also stated that 

Hudson Canyon has a nearly graded profile and has incised at least 400 m. Hudson Canyon has 

also cut into Pliocene sediments on the eastern flank of the Chesapeake Drift (Mountain and 

Tucholke, 1985). 

Pratt (1967) also recognized the more entrenched segments of both Wilmington and 

Hudson canyon channels with maximum relief of 400 and 600 m, respectively. Pratt (1967) 

attributed these deepened sections to an oversteepened portion of the continental margin. 

Pratson and Laine (1989) have also attributed the downcut regions in Hudson and Wilmington 

canyon channels to a steeper seafloor slope formed from sediment accumulation landward of the 

Chesapeake Drift. Pratson and Laine (1989) related the long extensions of both Hudson and 

Wilmington canyon channels (to the 4000 m isobath) to the process of downcutting. Sweeney 

(2008) identified a break in slope near the 3000 m isobath between Hudson and Wilmington 

canyon channels and attributed this break in slope to the location of the Chesapeake Drift. 

Upslope from the break, the slope was found to measure -0.2°, which increased to 0.7° between 

the 3000 and 4100 m isobaths. The slope was then shown to decrease to -0.2° down-slope from 

the 4100 m isobath (Sweeney, 2008). The channel wall relief and incision of both channels 
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decreases down-slope from the 4100 m isobath, where the regional slope decreases, and 

depositional lobes are present (Sweeney, 2008). 

The steeper seafloor slope that has been attributed to the accumulation of sediment 

landward of the Chesapeake Drift and to little or no accumulation on the seaward flank of the drift 

(Mountain and Tucholke, 1985) has been confirmed in this study. A profile drawn between 

Hudson and Wilmington canyon channels shows a break in slope near the 3250 m isobath (Fig. 

5.52). The slope of the seafloor is 0.3° above the break between the 2450 and 3250 m isobaths. 

The seafloor slope increases to 0.7° between the 3250 and 4000 m isobaths and down-slope of 

the 4000 m isobath to the end of the profile near the 4400 m isobath the seafloor slope decreases 

to 0.2°. This is similar to the pattern in regional slope that was identified by Sweeney (2008). 

The conclusions of this study with regards to the entrenched segments of Wilmington and 

Hudson canyon channels are consistent with those of previous authors. It is clear that these 

channels have been extensively eroded and have downcut in their central portions. This study 

determined very precisely the location of the entrenched segments of the channels and the 

increase in channel wall relief (Figs. 5.13 and 5.14) and the increase in channel wall relief co-

occurs with the location of increased regional seafloor slope (Fig. 6.2). Jones Valley canyon 

channel is also shown to have an entrenched segment of channel at the same location (Fig. 5.15) 

and it follows that the channel would show a similar trend because the channel is only -12 km to 

the northeast of Hudson canyon channel (Fig. 6.2). 
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Figure 6.2. Atlantic bathymetry with the location of the Chesapeake Drift overlain, adapted from Tucholke and 
Mountain (1986). Average channel wall relief of Hudson, Wilmington and Jones Valley canyon channels is shown. 
The blues and purples indicate more entrenched sections of channel and pinks and yellows are less entrenched 
sections. Black box indicates location of higher regional slope delineated from ArcGIS. The white line indicates a 
profile and the red portion indicates the higher (0.7°) slope while the white portions are lower slopes (<0.7°). 

Entrenched segments in the central portions of Veatch and Hydrographer canyon 

channels have also been recognized in this study, a conclusion which appears to have been 

previously unknown. The study has precisely determined the locations and magnitude of the 

entrenched segments of the channels (Figs. 5.13 and 5.14). These canyon channels are located 

on the southeastern New England continental margin where a terrace feature has been 

recognized (O'Leary and Dobson, 1992). O'Leary and Dobson (1992) attributed the terrace to an 

extension of the Chesapeake Drift and the terrace front was observed to have a slope of -1.0°. 

This feature is in the immediate vicinity of Veatch and Hydrographer canyon channels (Fig. 6.3). 

A profile constructed between Veatch and Hydrographer canyon channels (Fig. 5.52) shows a 

higher seafloor slope of 0.7° between the 2050 and 2900 m isobaths. This is followed by a 

section with a slope of 0.4° between the 2900 and 3500 m isobaths. There is a brief section 

between the 3500 and 4000 m isobaths that has a higher slope of 0.7° (Fig. 5.52). This section of 
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higher local seafloor slope corresponds to the location of entrenchment in Veatch and 

Hydrographer canyon channels (Fig. 6.3) The lowermost portion of the profile has a lower slope 

of 0.3° between the 4000 and 4650 m isobaths The increase in local margin slope is slightly less 

than the magnitude of the slope of the terrace front that was identified by O'Leary and Dobson 

(1992), and the steeper portion of seafloor indentified in this study appears to be located slightly 

upslope from the previously recognized terrace front (Fig. 6.3). However, O'Leary and Dobson 

(1992) recognized that the terrace front was located between the 3600 and 4000 m isobaths, 

similar to the location of the steeper seafloor slope identified between the 3500 and 4000 m 

isobaths in this study. Thus, the discrepancy on the map appears to be a result of a discrepancy 

in the location of the contours of O'Leary and Dobson (1992). 

Figure 6.3. Atlantic bathymetry with location of the southeast New England terrace front from O'Leary and 
Dobson (1992). Average channel wall relief of Veatch and Hydrographer canyon channels is shown. The blues 
and purples indicate more entrenched sections of channel while the pinks and yellows are less entrenched 
sections. Black box indicates a higher slope region delineated from ArcGIS. The white line indicates a profile and 
the red portion indicates the higher (0.7°) slope while the white portions have lower slopes (<0.7°). 

413 



It is evident that the entrenched segments of Hydrographer, Veatch, Jones Valley, 

Hudson and Wilmington canyon channels all co-occur with regions of the seafloor that have an 

increased slope (Fig. 6.4). Gee et al. (2007) explained that submarine flows accelerate and are 

therefore more erosive when flowing across steeper slopes and the increased erosion can 

manifest as an increase in incision. Therefore, because an increase in slope is a factor that 

contributes to channel entrenchment, and the entrenched segments of the canyon channels co-

occur with regions of higher local seafloor slopes, it appears that a reasonable link between the 

increase in seafloor slope and the entrenched segments of the channels can be affirmed. 

Figure 6.4. Atlantic bathymetry with overlay of a map of the southeast New England terrace and Chesapeake Drift 
from O'Leary and Dobson (1992) with the locations and average channel wall relief of Hydrographer, Veatch, 
Jones Valley, Hudson and Wilmington canyon channels. The blues and purples indicate entrenched segments of 
channel while the pinks and yellows are less entrenched segments of channel. The black box indicates a region 
of higher seafloor delineated from ArcGIS. The white lines indicate profiles and the red portions indicate higher 
slope (0.7°) while the white portions have lower slopes (<0.7°). 
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The sediment that accumulated landward of the Chesapeake Drift during the Pliocene 

and Holocene is generally greater than 300 m thick and is thickest (-400 m) in the northern 

section off of New Jersey (Mountain and Tucholke, 1985; Fig. 6.5). Both Wilmington and Hudson 

canyon channels incise through this sediment accumulation. Hudson canyon channel has the 

most entrenched segment and the highest channel wall relief out of all the canyon channels with 

channel wall relief of 300 to 600 m between the 3400 and 4000 m isobaths. The most entrenched 

portion of the channel occurs at a thalweg water depth of -3730 m with 598 m of relief on the 

northeastern side of the channel and 652 m of relief on the southwestern side of the channel. 

This depth of entrenchment for Hudson canyon channel is sufficient to have cut into the entire 

sediment accumulation above the Chesapeake Drift and into underlying, older sediments; 

Mountain and Tucholke (1985) recognized that the canyon has cut into Pliocene and older 

sediments. However, Hudson canyon channel does not seem to have incised through the thickest 

sediment accumulation on the lower continental margin (Fig. 6.5). The maximum channel wall 

relief of Wilmington canyon channel, in contrast to that of Hudson canyon channel, is only 

between 250 and 325 m at thalweg water depths of 3600 to 3900 m. However, this depth of 

entrenchment also appears sufficient to have incised into the entire accumulation of sediment 

above the Chesapeake Drift and into older, underlying sediment and into older sediment on the 

seaward flank of the Chesapeake Drift (Fig. 6.5). The depth of entrenchment of Jones Valley 

canyon channel is comparable to Wilmington canyon channel and on average between 280 and 

330 m between channel floor water depths of 3400 and 3700 m. This also appears to be a 

sufficient amount of entrenchment to have incised through the deposits of the terrace feature 

landward of the Chesapeake Drift (Fig. 6.5). Mountain and Tucholke (1985) have inferred that the 

sediments that have accumulated on top and landward of the Chesapeake Drift are glacially 

derived, and although not necessarily compositionally different from underlying sediment 

(Mountain and Tucholke, 1985), may for some other reason be more erodible, which would 

enable deeper entrenchment (Schumm et al., 1984). Unfortunately, the isopach map of Mountain 

and Tucholke (1985) does not extend northward to Veatch and Hydrographer canyon channels 

and the amount of sediment that has accumulated in this region is unclear (Fig. 6.5). However, 
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Hydrographer and Veatch canyon channels have only incised to a maximum of -250 m near 

channel floor water depths of 3750 and 3700 m, respectively. This lower channel wall relief and 

less entrenchment than that of Jones Valley, Hudson, or Wilmington canyon channels could be a 

reflection of a variety of factors that have yet to be sorted out, including the ages of the canyon 

channels, the type of sediment that the channels have incised into and the processes that have 

formed the canyon channels. 
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Figure 6.5. Atlantic bathymetry with an overlay map adapted from Tucholke and Mountain (1986) that shows the 

amount of sediment that has accumulated along the central Atlantic margin since the Pliocene. The locations and 

average channel wall relief of Hydrographer, Veatch, Hudson, Wilmington and Jones Valley canyon channels are 

shown. The blues and purples indicate more entrenched segments of channel while the pinks and yellows are 

less entrenched segments of channel. 
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6.4. Type I Canyon Channels: Pamlico Canyon Channel 

Pamlico canyon channel also displays Type I morphology for most of its length, but does 

not generally fall into the previously described categories of channel wall relief with increased 

distance down-channel. Whereas the morphology of several of the channels along the central 

portion of the margin appear to be controlled in part by a buried feature (i.e., the Chesapeake 

Drift), Pamlico canyon channel has been affected, at least to some extent, by processes that 

have occurred post-canyon incision, such as large-scale submarine slumps. 

This study provides a more detailed quantitative analysis of the morphology of Pamlico 

canyon channel and builds upon the observations of Popenoe and Dillon (1996), with which many 

of the features of Pamlico canyon channel are in agreement. The channel wall relief decreases 

dramatically in the uppermost portion of the channel that was surveyed. After a brief upslope 

region where Pamlico canyon channel is largely undefined, a broad U-shaped channel takes 

shape near the 3100 m isobath. The channel is flat-floored and the channel rims are asymmetric, 

as Popenoe and Dillon (1996) observed, although they placed the location of the channel with U-

shaped morphology near the 3050 m isobath. Pamlico canyon channel is well-defined and U-

shaped with sharp transitions between the channel rim and the adjacent seafloor between the 

3250 and 4050 m isobaths. The southwestern channel wall relief is between 200 and 250 m 

whereas the relief of the northeastern channel wall is between 100 and 150 m. Rona et al. (1967) 

also observed that the southwestern levees of Pamlico canyon channel were consistently 

shallower than those of the northeastern side. However, only briefly, between the 3770 and 3800 

m isobaths, does the channel become symmetrical with nearly 200 m of relief whereas Popenoe 

and Dillon (1996) observed that by the 3400 m isobath, the channel was more symmetrically U-

shaped with a relief of 200 m. The channel wall relief of Pamlico canyon channel decreases 

down-slope from the 4050 m isobath and the channel becomes less well-defined between the 

4050 and 4260 m isobaths. Although less well-defined, the traceable length of channel is 

extended from the 4000 m isobath of the GLORIA II study (Popenoe and Dillon, 1996), to the 

4260 m isobath with the use of the high-resolution multibeam dataset. Down-slope from the 4260 

m isobath the channel is often unresolvable at the 100 m resolution of the data until the 4700 m 
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isobath where a small, U-shaped channel emerges briefly. Popenoe and Dillon (1996) attributed 

the lack of a well-defined channel near this interval to infill of debris from either the Cape Lookout 

slide or an earlier slide. The major delineations of Pamlico canyon channel indentified in this 

study are shown in Figure 6.6. 
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Figure 6.6. Major delineations in Pamlico canyon channel. The red box shows the channel on the upper 
continental margin that was not used for most calculations, the white boxes show where the channel is clearly 
defined as a U-shaped channel, the black boxes show a less well-defined channel and the yellow boxes show 
where the channel is mainly undefined. 
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6.5. Type II Canyon Channels 

The parameters of the mixed Type I and Type II canyon-channel systems were more 

difficult to compare to one another than those of the Type I channels. The channel morphology of 

the mixed canyon-channel systems is not as consistent down-channel as the Type I channels and 

the very nature of the mixed systems varies both down the length of an individual channel and 

between channels (Fig 5.1). Nevertheless, an attempt was made to compare the morphology of 

several Type II segments from Oceanographer, Lydonia, Norfolk, Albermarle, and Hatteras 

canyon channels. The north-south variation in canyon-channel morphology is also evident to an 

extent in the morphology of the Type II segments of these mixed canyon-channel systems. 

As with the Type I channels, the foremost differentiating parameter is relief. Two main 

relief parameters were evaluated for Type II channels: (1) the channel wall relief of the main 

incised channel (the thalweg), which is the vertical distance between the thalweg floor and 

thalweg rims, and (2) the relief of the confining bathymetry, which is the vertical distance between 

the thalweg floor and the tops of the confining bathymetry. The channel wall relief of the main 

incised channel (Figs. 5.44 and 5.45) of the Oceanographer canyon-channel system is generally 

greater than that of the other canyon channel systems. However, the relief of the main incised 

channel at the start of the Type II sections of both the Hatteras and Albermarle canyon-channel 

systems is between 70 and 100 m and these relief values are comparable to some of the relief 

values of the main incised channel of Oceanographer canyon channel and to the reliefs of the 

main incised channel of Lydonia canyon channel. A stronger relationship occurs with the relief of 

the confining bathymetry. The relief of the confining bathymetry (Figs. 5.41 and 5.42) of 

Oceanographer and Lydonia canyon channels, which are located in the northern region of the 

margin, is generally greater than the relief of the confining bathymetry of Norfolk, Albermarle, and 

Hatteras canyon channels, which are located on the central and southern regions of the margin. 

These differences in relief between the north and central channels could reflect 

differences in the processes that have affected different regions of the margin. The northern 

region has been directly glaciated (Fig. 2.2) whereas the central portion has experienced 

extensive riverine input (Fig. 2.2). These differences could affect sediment supply and flow 
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regime along the margin as well as influence the formation of the canyon channels. In addition, 

these Type II channel segments could be part of a channel morphology continuum that includes 

the Type I and Type II channel morphologies, and the channels could represent different stages 

of morphologic development within the same continuum. 

6.6. Summary 

The trends discussed above indicate that regional characteristics of the margin has 

influenced canyon channel morphology. It is evident that a relationship exists between 

longitudinal profiles and location on the margin, which reflects trends in the regional slope of the 

continental margin. In addition, the morphology of several Type I channels along the central 

portion of the margin is controlled in part by the location of the buried Chesapeake Drift. However, 

additional relationships stem from the above discussion and will be addressed in the following 

section (Chapter 7 - Speculations). These include additional agents that can cause channel 

entrenchment as well as the differing magnitudes of entrenchment between canyon channels. 

Equilibrium profiles of several of the canyon channels will also be evaluated as well as the 

occurrence of Type I and Type II channel segments as part of a continuum of channel 

morphology. 
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CHAPTER 7 

SPECULATIONS 

7.1. Additional Agents in Channel Entrenchment 

It is clear that Hudson canyon channel has the highest channel wall relief in its 

entrenched segment out of all the canyon channels that exhibit entrenched sections (Veatch, 

Hydrographer, Jones Valley, Hudson and Wilmington canyon channels). The most entrenched 

part of Hudson canyon channel is twice as deep as the most entrenched segment in Wilmington 

and Jones Valley canyon channels and greater than 2.5 times as deep as the most entrenched 

portions of Veatch and Hydrographer canyon channels. According to Schumm et al. (1984) 

factors that are responsible for incision and downcutting, in addition to an increase in slope, 

include a decrease in sediment load, an increase in discharge, concentration and constriction of 

flow, and a decrease in erosional resistance. 

The central portion of the U.S. Atlantic continental margin between Long Island and Cape 

Hatteras has been influenced by extensive riverine input since the Jurassic (Poag and Sevon, 

1989). Rivers include the Delaware, Hudson, Susquehanna, Potomac and James Rivers (Fig. 

2.2). In contrast, the wide Gulf of Maine and Georges Bank (Fig. 2.2) isolates the continental 

margin off Georges Bank from the coast and riverine input. Similar morphology is present south 

of Cape Hatteras where the Blake Plateau separates the deep sea from the coast. In contrast to 

the Gulf of Maine region, however, along the Blake Plateau it is the presence of the Gulf Stream 

that inhibits across-shelf sedimentation (Dillon and Popenoe, 1988). However, at least along the 

central portion of the continental margin, rivers have been able to traverse a narrow continental 

shelf and discharge at the shelf break at times of low eustatic sea level, which can initiate or 

enhance submarine canyon and canyon channel incision. Vail et al. (1977) characterized 

highstands of eustatic sea level with restricted sediment input to the deep sea whereas lowstands 

of sea level are characterized by subaerial erosion on the shelf and the formation of deep-sea 
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fans. Rivers bypass the shelf and deposit their sediment loads on the continental margin during 

periods of low eustatic sea level (Vail et al., 1977). Alternately, canyons formed on the upper 

continental margin may breach the shelf edge by headward erosion during periods of low eustatic 

sea level, still ultimately becoming a route for shelf sediments to the deep sea (Farre et al., 1983). 

It has been established that the Hudson River was an important route for meltwater 

during the last deglaciation (Licciardi et al., 1999). In addition, according to Theiler et al. (2007) 

the150-km long Hudson Shelf Valley (Fig. 2.2) connected the Hudson River to Hudson Canyon. 

The Hudson Shelf Valley was likely formed by fluvial processes during the Laurentide glaciations 

and drainage of glacial lakes during glacial retreat (Theiler et al., 2007). This would have provided 

large amounts of meltwater and sediment to Hudson Canyon. In addition, Babonneau et al. 

(2002) suggested that the deep entrenchment of the Zaire Canyon and channel confines turbidity 

currents for a long distance and thus maintains the energy of the flow, which would enhance 

erosion. Therefore, the deep entrenchment of Hudson canyon channel may be due to a 

combination of glacial meltwater flux from the Hudson River and the subsequent confinement of 

turbidity currents by the entrenched nature of Hudson canyon channel, which could serve to 

enhance further erosion and incision. 

Because the canyon channels immediately to the north (Jones Valley, Veatch and 

Hydrographer canyon channels) and immediately to the south (Wilmington canyon channel) of 

Hudson canyon channel also exhibit entrenched segments, this suggests that a similar process 

has influenced their formation. The entrenchment has been established to be due to a steeper 

local seafloor slope (Refer to Chapter 6 Section 6.3). However, the fact that the channels to the 

north and south of Hudson canyon channel are less entrenched than Hudson canyon channel 

also suggests that different processes have contributed to their formation. One of these 

processes could be related to differences in riverine input. Although the formation of Wilmington 

canyon channel has been associated with the ancient Delaware River (Twichell et al., 1977; 

McGregor, 1981), Hudson River was likely a more important agent in canyon formation due to its 

importance as a route for glacial meltwater (Licciardi et al., 1999). In addition, Wilmington canyon 

channel evolves from a gather area (Schlee and Robb, 1991), which likely influenced sediment 
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flux and flow into Wilmington canyon channel. Although ancient river systems in eastern 

Massachusetts contributed to the formation of the southeastern New England continental margin 

(Poag, 1992), Hydrographer and Veatch canyon channels have generally not been associated 

with riverine input, but instead to processes related to glacial outwash of the Pleistocene 

deglaciations (Pratt, 1967; Pilkey and Cleary, 1986). Canyon formation along the New England 

margin has also been attributed to dewatering during glacial lowstands (O'Leary and Dobson, 

1992). In addition, Jones Valley canyon channel, immediately northeast of Hudson canyon 

channel has been interpreted to lack an upslope continuation (Shor and McClennen, 1988), which 

suggests a different mode of formation altogether. These differences in canyon-channel formation 

have likely influenced the magnitude of entrenchment. 

7.2. Implications for Eguilibrium Status of Submarine Canyon Channels 

A model for the development of equilibrium profiles in submarine channels by Pirmez et 

al. (2000) involves the tendency for profiles to become smooth and concave up, tied to a base 

level below which the submarine channel cannot erode. Disruptions to the profile would induce 

readjustment of the channel profile through processes of erosion and deposition by turbidity 

current activity. Erosion is especially prevalent at sites of steeper segments of channel, called 

knickpoints. Erosion occurs above the knickpoint whereas deposition occurs below the knickpoint 

as the channels readjust (Pirmez et al., 2000). According to Babonneau et al. (2002), regions of 

increased gradient (knickpoints) at avulsion sites along the Zaire channel induce incision upslope 

from the knickpoint and sediment accumulation down-slope from the knickpoint. This process 

smoothes the channel profile and helps re-establish equilibrium (Babonneau et al., 2002). The 

optimum slope of a channel is one that can accommodate the flow and sediment load that the 

channel must transport (Flood and Damuth, 1977). 

The entrenchment of Hydrographer, Veatch, Jones Valley, Hudson and Wilmington 

canyon channels may indicate a process through which the channels attain or have attained 

equilibrium profiles. The regions of steeper seafloor slope identified on the U.S. Atlantic 

continental margin (Fig. 5.52) could have acted as knickpoints during the formation of the canyon 

channels. Because channels tend to smooth out these inflections to attain an equilibrium profile 
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(Pirmez et al., 2000; Babonneau et al., 2002), it follows that if the profiles of the canyon channels 

along the U.S. Atlantic continental margin are in equilibrium, then no significant increases in slope 

down the length of the channels should be evident. 

The longitudinal profiles of Hydrographer, Veatch, Jones Valley, Hudson and Wilmington 

canyon channels are generally concave up, but contain irregularities (Figs. 5.33 - 5.37). 

Identifying knickpoints in the vicinity of the entrenched regions at the 5000-m cross-profile interval 

used may not be entirely reliable. However, the slope of the canyon channels was calculated 

between 250 m contour intervals. Although it is evident that the slope of Jones Valley and 

Wilmington canyon channels generally decreases within successive contour intervals, Hudson, 

Veatch and Hydrographer canyon channels do show a slight increase in slope generally between 

the 3500 and 3750 m isobaths (Table 7.1). The slope of Veatch canyon channel shows an 

additional increase between the 3750 and 4000 m isobaths. The increase in slope for these 

channels is on the order of 0.1° and the increases in slope could indicate that the channels have 

not quite reached an equilibrium profile. 

Table 7.1. Slopes of Hydrographer, Veatch, Jones Valley, Hudson and Wilmington canyon channels between 250 
m contour intervals. The slope shown is that calculated from the surface length of the channels between the 
contour intervals. Those highlighted yellow indicates an increase in slope. 
Canyon 
Channel 

Contour 
Interval 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

Hydrographer 

Slope 

0.8 

0.7 

0.6 

0.5 

0.6 

0.5 

0.4 

0.4 

Veatch 

Slope 

0.9 

0.7 

0.7 

0.6 

0.5 

0.6 

0.6 

0.5 

0.3 

Jones Valley 

Slope 

0.5 

0.5 

0.5 

0.4 

Hudson 

Slope 

0.6 

0.5 

0.4 

0.3 

0.4 

0.3 

0.2 

Wilmington 

Slope 

0.8 

0.7 

0.5 

0.4 

0.4 

0.3 

0.3 

0.2 
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7.3. Type I and Type II Canyon-Channel Morphology 

There is a lack of spatial correlation between the type of channel and location on the 

margin (Fig. 5.1). In addition, the very nature of the mixed systems varies with distance down-

channel (Fig. 5.1). It may be that these two morphologies that have been recognized in this study 

are not complete end member morphologies, but represent different stages of development in 

canyon-channel morphology continuum. Several observations made in this study may help 

account for the development of the Type II channel morphology, including re-incision, confluence, 

and channel capture. 

Oceanographer canyon channel has the most well-defined Type II channel morphology 

from which the Type II classification was modeled. McGregor (1985) studied Oceanographer 

Canyon between the 2100 and 2800 m isobaths and concluded that there have been two stages 

of incision and the present channel is incised into a broader valley. Ryan et al. (1978) also 

suggested that the formation and erosion of several canyons off of Georges Bank, including 

Oceanographer Canyon, took place during several phases. The cross-sectional morphology of 

Oceanographer canyon channel suggests that it may at one point have been a channel with 

larger Type I morphology that was filled with sediment, and was then re-incised (Fig. 7.1). 

Additionally, it could be argued that the Type I channels with an incised thalweg at the base are 

smaller scale Type II channel systems. It was found that several Type II channels grade into a 

Type I with an incised thalweg and vice-versa, such as in Hatteras and Wilmington canyon 

channels. It appears that these channels are in different stages of a continuum of channel 

morphology. Although a Type II channel may be able to develop into a Type II channel, it seems 

more likely that a Type I channel, due to an influx of sediment, is either partially or entirely filled in 

and then re-incised. 
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Figure 7.1. Example of cross sectional morphology of Oceanographer canyon channel showing Type II morphology. 

It is also evident that channel confluences are present at the onset of the Type II 

segments of several of the mixed canyon-channel systems. Although confluences are not 

exclusively found at the onset of Type II channel morphology, the confluences could influence 

channel morphology in some instances by altering the flow regime and sediment input. Regions 

where two channels merge in riverine systems are characterized by complex flow and 

sedimentation patterns and these changes are accommodated by downstream modifications 

(Best, 1986). Best (1986) synthesized several factors that affect the flow, sediment transport and 

bed morphology at channel confluences. These include the angle at which the channels merge, 

the planform shape of the confluence and the discharge of the two channels (Best, 1986). In 

addition, Benda et al. (2004) suggested that the affects of a tributary on the main channel would 

depend on the size of the tributary compared to the main stem. These factors may also affect 

submarine canyon-channel confluences and may account for some of the morphologic 

differences between confluences at Type I and Type II channel segments. Confluences and Type 
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II channel segments co-occur in Lydonia, Oceanographer, Wilmington, Norfolk and Hatteras 

canyon channels. An example from Wilmington canyon channel is shown in Figures 7.2 - 7.4. 

39°0'N-

38°0'N-

37°0'N-

36°0'N-

73'0'W 
I 

Wilmington 
Canyon Channel 

I Kilometers 
0 510 20 30 40 

73°0'W 

72°0'W 71°0'W 

horizontal datum WGS84 ellipsoid UTM18n 
vertical datum instantaneous sea level 
100-m grid cell size 

72°0'W 
I 

71°0'W 

-36C0'N 

Figure 7.2. Wilmington canyon channel with black indicating Type I sections, white indicating Type II sections 
and the gather area delineated in red. 
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Figure 7.3 Enlarged view of the apex of the Wilmington canyon channel gather area with Type I sections in black, 
Type II sections in solid white and additional tributary channels in dashed white. 

Figure 7.4. Enlarged view of the apex of the Wilmington canyon channel gather area with Type I sections in black, 
Type II sections in solid white and additional tributary channels in dashed white. Sample profiles are shown. 
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An additional observation of the Type II channel morphology involves channel capture. 

This is most evident in Hatteras canyon channel (Figs. 7.5 - 7.7). The uppermost portion of 

Hatteras canyon channel is a Type I channel that has incised into a feature of elevated 

bathymetry and appears to have captured the down-slope portion of a channel to the northeast 

that would have already been considered a Type II channel. It appears that Hatteras canyon 

channel takes on the Type II morphology of the captured channel because portions both upslope 

and down-slope from the capture would be considered to have morphology characteristic of a 

Type II channel. 

75°0'W 74°0'W 

35*0'N-

73'0'W 
_ _ l 

Hatteras Canyon Channel 

I Kilometers 
0 510 20 30 40 

horizontal datum WGS84 ellipsoid UTM18N 
vertical datum instantaneous sea level 
100-m grid cell size 

75'0'W 73"0'W 

-35'0'N 

Figure 7.5. Overview of Hatteras canyon channel. White indicates Type II channel segments and black indicates 
Type I channel segments. Black box indicates the location of capture and is shown in detail in the next two 
figures. 

429 



hiKuonlil dalum WGS84 rtKiSttd UTM18N 
vert>cai datum nrstanianeous sea level 
tOO-m gird ce« mm 

Figure 7.6. Enlarged view of Hatteras canyon channel where it appears that Hatteras canyon channel has 
captured the down-slope portion of an additional channel. White indicates a Type II channel segment and black 
indicates Type I channel segments. Dashed white indicates the remnant captured channels. 
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VE«10x 

loan 120m 
Distance (m) 

i n n 20000 
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Figure 7.7. Enlarged view of Hatteras canyon channel where it appears that Hatteras canyon channel has 
captured the down-slope portion of an additional channel. White indicates a Type II channel segment and black 
indicates Type I channel segments. Dashed white indicates the remnant captured channels. Sample profiles are 
shown. 
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7.4. North - South Variation in Channel Morphology 

In a study of submarine landslides along the U.S. Atlantic continental margin, Twichell et 

al. (2009) subdivided the margin into 3 regions: (1) the Georges Bank and Southern New England 

region, (2) the region between Hudson Canyon and Cape Hatteras, and (3) the region south of 

Cape Hatteras. Twichell et al. (2009) based this delineation on processes that have occurred 

during the Quaternary. Georges Bank and Southern New England were directly glacially 

influenced (Twichell et al., 2009). The wide Gulf of Maine and Georges Bank also isolates the 

continental margin off Georges Bank from the coast and riverine input. The region between 

Hudson Canyon and Cape Hatteras has been dominated by riverine systems during the 

Quaternary (Twichell et al., 2009) and it has been recognized that this central portion of the 

margin has been influenced by extensive riverine input since the Jurassic (Poag and Sevon, 

1989). Rivers include the Delaware, Hudson, Susquehanna, Potomac and James Rivers (Fig. 

2.2). The region south of Cape Hatteras is dominated by the Blake Plateau, which separates the 

deep sea from the coast. The presence of the Gulf Stream inhibits across-shelf sedimentation in 

this region (Dillon and Popenoe, 1988). 

Similarities and differences in the morphology of canyon channels with respect to location 

along the margin were recognized in the present study. The processes used in the delineation of 

margin regions by Twichell et al. (2009) into the Georges Bank/Southeastern New England 

region, the fluvially dominated central region between Hudson Canyon and Cape Hatteras, and 

the region south of Cape Hatteras dominated by Blake Plateau, can also be used to subdivide 

canyon channel morphology. For instance, the longitudinal profiles of the canyon channels 

generally group in these regions (Fig. 5.4 and 5.5), and it appears that the profiles reflect the 

regional slope. 

In addition, three distinct groups have been delineated from the Type I channels. Nygren, 

Munson and Powell canyon channels comprise one group and are located off of Georges Bank. 

The channel wall relief of these channels is high and decreases with increased channel floor 

water depth and distance down-channel. The trend of higher relief in the north generally holds for 

the Type II sections as well, based on the relief measurements of Oceanographer canyon 
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channel and a small portion of Lydonia canyon channel. Washington canyon channel and the 

uppermost portion of Norfolk canyon channel comprise the second group and are located in the 

southern portion of the central, fluvially dominated region of the margin. The channel wall relief of 

these channels also decreases down-channel. However, the relief is much lower than that of the 

northern channels. 

The third subsection of Type I canyon channels includes five channels from the 

southeastern New England and central regions of the margin: Hydrographer, Veatch, Jones 

Valley, Hudson and Wilmington canyon channels. Although the latter three canyon channels are 

located along the fluvially dominated central portion of the margin, the morphology of pre-existing 

margin features (the buried Chesapeake Drift) has also influenced canyon channel morphology. 

This is evident in the entrenchment of the central segments of the canyon channels. According to 

Twichell et al. (2009), landslides along this portion of the margin are also impeded by the 

Chesapeake Drift, and do not extend across the drift. 

The southern three channels off of Cape Hatteras (Albermarle, Hatteras and Pamlico 

canyon channels) may be in a transitional region between the fluvially dominated central Atlantic 

margin to the north and the Blake Plateau/Gulf Stream-dominated region to the south. The 

channels are a mix of type: Albermarle canyon channel has morphology mainly characteristic of a 

Type II channel, Hatteras canyon channel has alternate Type I and Type II segments and 

Pamlico canyon channel has morphology mainly characteristic of a Type I channel. These 

channels do not group by anything except similar overall channel slopes. 
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CHAPTER 8 

CONCLUSIONS 

The high-resolution multibeam bathymetric data of the U.S. Atlantic continental margin 

provide an unprecedented dataset from which to study the morphology of the margin. This study 

systematically quantifies morphologic parameters of 15 canyon channels mapped along the 

margin between Georges Bank on the north and Cape Hatteras on the south (Fig. 1.1). 

Parameters analyzed include various forms of channel wall relief, top widths and floor widths and 

the canyon channels show some very distinct morphologic similarities and differences. Trends 

were established within individual canyon channels (Refer to Chapter 4), between canyon 

channels (Refer to Chapter 5), and with respect to location along the margin (Refer to Chapters 5 

and 6). Although no one process or influence can explain the morphology of the canyon 

channels, this study provides insight into local and regional factors that have influenced the 

present morphology of the channels, as well as provides additional evidence for previously 

suggested influences. The major morphologic trends and relationships that have been identified 

are highlighted below. 

1) Channels and/or segments of channels were initially classified as either Type I (well-defined 

channel morphology) or Type II (a main incised channel bordered by terrace-like features 

within confining bathymetry). Eight channels were classified entirely as Type I channels: 

Nygren, Munson, Hydrographer, Veatch, Jones Valley, Hudson, Washington and Pamlico 

canyon channels. Seven canyon channels were classified as mixed systems and the type of 

channel varies down the length of the channel. These are Powell, Lydonia, Oceanographer, 

Wilmington, Norfolk, Albermarle and Hatteras canyon channels. 
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2) Eleven canyon channels were included for Type I channel-parameter comparisons, and the 

patterns of channel wall relief with increased distance and depth down-channel are the 

foremost differentiating trends. The channel wall relief of Nygren, Munson and Washington 

canyon channels and the uppermost portions of Norfolk and Powell canyon channel 

decreases with increased distance down-channel. The channel wall relief of Hydrographer, 

Veatch, Jones Valley, Hudson and Wilmington canyon channels increases to a maximum 

generally between the 3250 and 4000 m isobaths. 

3) A decrease in channel wall relief down-channel was not unexpected channel morphology. 

This trend has been observed by previous authors (Flood and Damuth, 1987; Babonneau et 

al., 2002) and the relationship related to a decrease in flow thickness and volume down-

channel. The entrenched channel segments co-occur with an increase in the local seafloor 

slope at the location of the buried Chesapeake Drift. Therefore, it could be expected that the 

relief of all channels tends to decrease with increased depth unless there is an external 

influence such as the location of the buried Chesapeake Drift. 

4) The parameters of the Type II channels were inconsistent down-channel, and it was difficult 

to compare them to one another. In addition, no spatial relationship between the type of 

channel and location along the margin was evident. It may be that the two morphologies 

(Type I and Type II) recognized in this study are not entirely separate morphologies but 

instead represent different stages of development in a continuum of channel morphology. 

Several factors including re-incision, confluence and channel capture may serve to develop 

the Type II channel morphology more prominently in some channels than others. 

5) Although the buried Chesapeake Drift has influenced channel morphology, the morphology of 

the channels also shows a north-south variation along the continental margin. This is 

especially evident in the longitudinal profiles, which appear to reflect the regional seafloor 

slopes of the margin. In addition, the Type I canyon channels that show a decrease in 

channel wall relief with increased distance down-channel can be subdivided by location on 

the margin. The northern channels (Nygren, Munson and Powell canyon channels) have 

434 



higher relief, are wider at the top, and have steeper slopes than two channels (Washington 

and Norfolk canyon channels) located along the south central portion of the margin. These 

differences could be a result of different processes that have occurred along the margin such 

as processes associated with the glacially dominated far north region and the riverine 

dominated central region of the margin. The Type II segments of the mixed canyon channels 

also show the north-south variation in relief with higher relief in the northern channels and 

lower relief in the more southern channels, although this relationship is less obvious than that 

of the Type I channels. As a group, the three southernmost canyon channels (Albermarle, 

Hatteras and Pamlico canyon channels) appear similar only in overall channel slope. 
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APPENDIX A 

T-Test Statistics 

Sample T-tests statistics are shown for each line that is crossed over by a crossline The data 

include the mean difference, the t-test statistic and whether the null hypothesis that the mean of 

the differences is from a data distribution with a mean of 0 is rejected or not 

Table A1. T-test statistics for lines crossed by Crossline 16 

Table A4. T-test statistics for lines crossed by Crossline 48b continued. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

reiected7 (1 = yes) 

Ime64 

-4 30 

-88 52 

16078 

6 16 

1 

Iine69 

-1 49 

-35 97 

18193 

5 59 

1 

Iine71 

0 66 

16 17 

17671 

5 43 

1 

Iine72 

-0 83 

-16 95 

17238 

6 46 

1 

Iine73 

-0 92 

-21 81 

17602 

5 60 

1 

Iine75 

1 52 

38 48 

18319 

5 34 

1 

Ime76 

-3 29 

-54 93 

17286 

7 88 

1 

Iine78 

-1 96 

-27 30 

9568 

7 01 

1 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected'' (1 = yes) 

Iine19 

1 76 

34 83 

19487 

7 05 

1 

Ime20 

1 53 

30 79 

19879 

7 02 

1 

Ime21 

2 18 

38 01 

19157 

7 95 

1 

Iine22 

-1 42 

-24 84 

17555 

7 58 

1 

Ime23 

-0 74 

-11 07 

17161 

8 81 

1 

Ime24 

0 61 

8 17 

17041 

9 74 

1 

lme25 

-1 63 

-21 98 

17523 

9 82 

1 

Iine26 

1 73 

28 61 

18297 

8 17 

1 

Iine27 

0 78 

11 94 

18012 

8 72 

1 

Ime28 

-1 21 

-14 08 

14076 

10 16 

1 

Table A2. T-test statistics for lines crossed by Crossline 47 

mean difference 
(matlab) 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected9 (1 = yes) 

Iine46 

6 33 

84 80 

26679 

12 19 

1 

Iine78 

-1 59 

-25 84 

13459 

7 13 

1 

Iine85 

-1 93 

-36 87 

18834 

7 18 

1 

Iine86 

-0 15 

-2 78 

17612 

7 10 

1 

Iine89 

-5 07 

-68 93 

15740 

9 24 

1 

Iine91 

0 67 

14 82 

21187 

6 59 

1 

Iine93 

-4 37 

-59 52 

15788 

9 23 

1 

Iine94 

410 

50 44 

21903 

12 04 

1 

Iine96 

4 78 

39 15 

16410 

15 65 

1 

Ime99 

3 62 

48 92 

20597 

10 63 

1 

Table A3. T-test statistics for lines crossed by Crossline 48b. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected7 (1 = yes) 

Ime51 

2 23 

31 73 

16350 

8 98 

1 

Ime52 

-1 34 

-19 11 

19094 

9 69 

1 

Iine53 

-0 53 

-5 64 

17274 

12 44 

1 

Iine54 

-1 41 

-16 49 

18090 

11 54 

1 

Iine56 

-1 15 

-16 63 

16985 

8 98 

1 

Iine57 

-0 48 

-8 34 

16967 

7 55 

1 

Iine58 

-0 61 

-13 67 

17973 

5 98 

1 

Ime60 

0 00 

-0 01 

18236 

5 60 

0 

Iine61 

-0 55 

-13 00 

17515 

5 62 

1 

Iine62 

-0 78 

-17 84 

17842 

5 84 

1 
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Table A5. T-test statistics for lines crossed by Crossline 88 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected? (1 = yes) 

Line 
108 

-3 33 

-37 06 

18723 

12 29 

1 

Line 
109 

-4 06 

-104 12 

18739 

5 34 

1 

Line 
111 

-1 38 

-35 51 

17882 

5 21 

1 

Line 
112 

-5 23 

-95 03 

18757 

7 54 

1 

Line 
114 

-3 53 

-46 82 

17867 

10 08 

1 

Line 
115 

-3 24 

-53 53 

19677 

8 50 

1 

Line 
116 

-4 28 

-76 43 

18132 

7 54 

1 

Line 
118 

-5 64 

-106 78 

20548 

7 57 

1 

Line 
119 

-0 48 

-8 94 

18614 

7 36 

1 

Table A6. T-test statistics for lines crossed by Crossline 88 continued. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Line 
121 

-3 29 

-67 54 

19919 

6 88 

1 

Line 
122 

-2 16 

-47 20 

17470 

6 04 

1 

Line 
124 

-2 72 

-70 55 

19377 

5 37 

1 

Line 
125 

-0 79 

-21 65 

18405 

4 92 

1 

Line 
128 

-1 17 

-36 33 

18618 

4 39 

1 

Line 
129 

0 06 

1 88 

19502 

4 30 

0 

Line 
130 

-1 09 

-31 95 

18786 

4 66 

1 

Line 
132 

-1 13 

-31 78 

20638 

5 12 

1 

Line 
133 

-1 84 

-52 12 

19492 

4 94 

1 

Line 
138 

-1 72 

-61 70 

19755 

3 91 

1 

Table A7. T-test statistics for lines crossed by Crossline 88 continued. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

reiected7 (1 = yes) 

lineUO 

-0 30 

-8 99 

18831 

4 59 

1 

Iine141 

-3 12 

-60 04 

8035 

5 65 

1 

Iine159 

-2 33 

-48 49 

6094 

3 76 

1 

Iine160 

-0 66 

-10 38 

6393 

5 09 

1 

hne161 

-1 56 

-52 54 

17473 

3 93 

1 

Iine162 

-1 99 

-59 27 

14482 

4 03 

1 

Iine165 

-4 73 

-38 29 

1192 

4 27 

1 

Iine166 

-3 33 

-107 03 

17399 

410 

1 

Table A8. T-test statistics for lines crossed by Crossline 135. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Line 
144 

-1 50 

-32 13 

18901 

6 41 

1 

Line 
145 

-0 93 

-19 07 

18448 

6 65 

1 

Line 
155 

-1 78 

-47 13 

18843 

5 18 

1 

Line 
156 

-0 80 

-22 28 

19983 

5 07 

1 

Line 
170 

-1 80 

-57 50 

19184 

4 35 

1 

Line 
171 

-0 26 

-7 61 

16612 

4 35 

1 

Line 
174 

-1 74 

-38 31 

15651 

5 69 

1 

Line 
175 

0 50 

15 80 

16124 

4 02 

1 

Line 
181 

-0 06 

-1 95 

16316 

416 

0 

Line 
182 

0 12 

3 95 

16372 

4 03 

1 

Table A9. T-test statistics for lines crossed by Crossline 135 continued. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Line 
184 

0 54 

16 48 

16052 

4 16 

1 

Line 
185 

-0 11 

-3 27 

16251 

4 31 

1 

Line 
186 

0 46 

13 03 

16219 

4 54 

1 

Line 
187 

-0 18 

-5 09 

16420 

4 62 

1 

Line 
189 

-0 24 

-5 48 

15845 

5 48 

1 

Line 
190 

0 18 

3 96 

10991 

4 81 

1 

Line 
191 

0 03 

0 83 

16464 

5 42 

0 

Line 
194 

0 02 

0 51 

16214 

5 61 

0 

Line 
195 

0 42 

9 00 

16179 

5 99 

1 

Line 
197 

-0 09 

-1 93 

16131 

5 98 

0 
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Table A10. T-test statistics for lines crossed by Crossline 135 continued 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Iine198 

-0 28 

-6 90 

16519 

5 23 

1 

Iine201 

1 08 

21 18 

20160 

7 27 

1 

Iine202 

-1 58 

-21 96 

15847 

9 08 

1 

Iine204 

-0 85 

-13 20 

17880 

8 60 

1 

Iine205 

-1 20 

-20 60 

15034 

7 16 

1 

. 

Iine207 

-0 67 

-10 26 

20103 

9 28 

1 

Ime208 

0 60 

6 52 

16117 

11 67 

1 

Iine211 

-4 23 

-18 38 

3237 

1311 

1 

Table A11. T-test statistics for lines crossed by Crossline 136. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Iine208 

3 70 

41 43 

14684 

10 83 

1 

Iine209 

2 02 

3143 

18249 

8 67 

1 

Table A12. T-test statistics for I 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Table A13. T-test statis 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Line 
144 

2 41 

28 24 

19804 

12 03 

1 

nes crossed by Crossline 
Line 
150 

-1 36 

-22 10 

20677 

8 84 

1 

Line 
152 

0 98 

15 44 

26362 

10 29 

1 

tics for lines crossed by C 

Line 
184 

-0 22 

-6 12 

16732 

4 72 

1 

Line 
185 

-0 61 

-15 89 

18744 

5 27 

1 

Line 
186 

-0 96 

-23 41 

17500 

5 43 

1 

Line 
156 

-140 

-27 45 

19253 

7 07 

1 

137 
Line 
169 

-1 14 

-22 70 

18918 

6 89 

1 

rossline 137 conti 

Line 
187 

0 24 

6 72 

17356 

4 72 

1 

Line 
189 

-2 36 

-50 54 

18879 

6 42 

1 

Line 
171 

-1 25 

-22 25 

17234 

7 37 

1 

nued 

Line 
191 

0 66 

1818 

17285 

4 77 

1 

Line 
173 

0 28 

6 16 

16938 

6 01 

1 

Line 
193 

-0 19 

-4 87 

17211 

5 03 

1 

Line 
175 

-0 69 

-15 34 

16635 

5 82 

1 

Line 
195 

0 43 

12 10 

19304 

4 88 

1 

Line 
177 

0 21 

5 15 

16994 

5 27 

1 

Line 
196 

-0 22 

-5 53 

17111 

511 

1 

Line 
182 

0 30 

8 40 

16676 

4 60 

1 

Line 
198 

0 22 

5 16 

17706 

615 

1 

Table A14. T-test statistics for lines crossed by Crossline 137 continued 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Iine200 

-0 32 

-6 77 

17274 

6 15 

1 

Iine202 

0 33 

6 38 

17211 

6 81 

1 

Iine203 

0 97 

14 

16409 

8 76 

1 

Iine206 

3 59 

43 

15210 

1021 

1 

447 



Table A15. T-test statistics for I 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Line 
215 

2 03 

57 21 

18060 

4 76 

1 

nes crossed by Crossline 
Line 
217 

1 58 

43 36 

20177 

5 19 

1 

Line 
219 

1 08 

27 75 

17372 

5 14 

1 

Line 
220 

3 04 

61 76 

18943 

6 78 

1 

214. 
Line 
222 

0 26 

6 34 

23248 

6 34 

1 

Line 
223 

2 66 

74 62 

18422 

4 83 

1 

Line 
232 

149 

42 01 

19280 

4 92 

1 

Line 
233 

0 93 

23 82 

18498 

5 31 

1 

Line 
235 

-5 16 

-56 33 

16887 

11 90 

1 

Line 
236 

-0 87 

-15 68 

19739 

7 78 

1 

Table A16. T-test statistics for lines crossed by Crossline 214 continued 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Ime237 

4 60 

64 15 

17711 

9 53 

1 

Iine238 

1 34 

23 27 

17918 

7 69 

1 

Iine240 

1 24 

12 50 

17746 

1321 

1 

Iine241 

-0 54 

-6 44 

17705 

11 25 

1 

Ime247 

0 62 

9 82 

17155 

8 23 

1 

Ime248 

0 22 

4 92 

18465 

6 16 

1 

Iine250 

-0 07 

-140 

18086 

6 52 

0 

Iine251 

-1 64 

-33 29 

16628 

6 35 

1 

Table A17. T-test statistics for lines crossed by Crossline 252. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Iine244 

-0 99 

-17 15 

16486 

7 40 

1 

Iine245 

-0 93 

-16 50 

16631 

7 26 

1 

Iine246 

-0 36 

-6 86 

16369 

6 64 

1 

Table A18. T-test statistics for lines crossed by Crossline 253. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Iine243 

-2 31 

-43 00 

15750 

6 73 

1 

Table A19. T-test statistics for lines crossed by Crossline 390. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Line 
391 

9 83 

287 22 

35230 

6 42 

1 

Line 
392 

6 27 

123 93 

31845 

9 03 

1 

Line 
395 

6 00 

147 92 

36992 

7 81 

1 

Line 
396 

6 02 

93 81 

21279 

9 36 

1 

Line 
398 

2 41 

56 68 

29036 

7 24 

1 

Line 
399 

3 99 

88 83 

26867 

7 36 

1 

Line 
400 

2 21 

44 64 

23663 

7 62 

1 

Line 
402 

0 48 

1011 

27805 

7 88 

1 

Line 
403 

1 70 

35 31 

20489 

6 89 

1 

Line 
404 

-0 72 

-1519 

24255 

7 43 

1 

448 



Table A20. T-test statistics for 1 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

re jected ' (1 = yes) 

Line 
405 

-0 35 

-6 97 

22605 

7 44 

1 

nes crossed by Crossline 390 continued 

Line 
406 

0 46 

9 67 

25513 

7 57 

1 

Line 
407 

0 36 

4 70 

16230 

9 69 

1 

Line 
408 

0 37 

5 69 

22171 

9 60 

1 

Line 
410 

-0 26 

-3 49 

21906 

11 17 

1 

Line 
411 

0 81 

13 91 

23379 

8 86 

1 

Line 
412 

3 47 

65 20 

23843 

8 22 

1 

Line 
413 

1 88 

32 46 

24593 

9 08 

1 

Table A21. T-test statistics for lines crossed by Crossline 390. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

re iected ' (1 = yes) 

Line 
414 

1 69 

35 96 

20030 

6 66 

1 

Line 
415 

3 85 

94 74 

18733 

5 57 

1 

Line 
416 

6 14 

168 73 

17413 

4 80 

1 

Table A22. T-test statistics for I 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

re jected ' (1 = yes) 

Line 
255 

-0 08 

-1 57 

22607 

7 60 

0 

nes crossed by Crossline 
Line 
456 

-0 42 

-8 22 

21853 

7 56 

1 

Line 
458 

0 94 

20 00 

25552 

7 51 

1 

Line 
460 

2 45 

48 29 

21076 

7 35 

1 

146. 
Line 
464 

1 59 

36 48 

25203 

6 93 

1 

Line 
465 

2 23 

30 90 

8831 

6 79 

1 

Line 
466 

1 29 

26 87 

14792 

5 83 

1 

Line 
469 

2 12 

49 50 

23541 

6 58 

1 

Line 
471 

1 83 

56 98 

25423 

5,12 

1 

Line 
476 

1 28 

43 45 

23504 

4 52 

1 

Table A23. T-test statistics for lines crossed by Crossline 446 continued 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

re jected ' (1 = yes) 

Iine519 

-1 71 

-56 67 

19953 

4 25 

1 

Iine479 

0 14 

4 90 

23948 

4 49 

1 

Iine507 

1 35 

35 37 

20134 

5 44 

1 

Iine508 

0 01 

0 21 

21470 

5 44 

0 

Iine510 

-0 95 

-33 28 

22482 

4 49 

1 

. 

Iine514 

0 19 

4 94 

20136 

5 32 

1 

Iine515 

-1 64 

-49 95 

18887 

4 50 

1 

Table A24. T-test statistics for lines crossed by Crossline 447 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

re jected ' (1 = yes) 

Iine448 

0 73 

8 68 

20499 

12 05 

1 

Iine449 

0 43 

6 00 

22758 

10 86 

1 

Iine450 

-1 36 

-21 84 

25062 

9 85 

1 

Iine452 

-0 41 

-7 24 

23321 

8 60 

1 

Iine453 

-1 88 

-27 36 

16993 

8 98 

1 

449 



Table A25. T-test statistics for lines crossed by Crossline 499. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

reiected' (1 = yes) 

Line 
469 

0 83 

18 40 

20422 

6 41 

1 

Line 
471 

1 24 

2160 

15423 

7 14 

1 

Line 
478 

0 83 

15 52 

17941 

7 18 

1 

Line 
480 

0 30 

6 60 

18108 

6 03 

1 

Line 
481 

-0 13 

-2 92 

19349 

618 

1 

Line 
485 

1 04 

22 23 

17237 

615 

1 

Line 
486 

1 11 

27 28 

21029 

5 88 

1 

Line 
490 

-1 08 

-27 48 

18828 

5 39 

1 

Line 
491 

-1 05 

-27 30 

16134 

4 87 

1 

Line 
493 

-0 40 

-13 74 

21568 

4 26 

1 

Table A26. T-test statistics for lines crossed by Crossline 499. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Iine494 

0 68 

19 78 

21538 

5 05 

1 

Iine497 

1 64 

47 40 

15395 

4 30 

1 

Iine498 

0 40 

12 84 

22658 

4 71 

1 

Table A27. T-test statistics for lines crossed by Crossline 500. 

mean difference 

test statistic 
Number of points of 
comparison 

standard deviation 

rejected' (1 = yes) 

Iine453 

1 55 

16 46 

16231 

12 03 

1 

Iine455 

-1 60 

-16 39 

14011 

11 59 

1 

Iine456 

2 36 

34 23 

24971 

10 87 

1 

Iine458 

0 05 

0 84 

17245 

7 60 

0 

Iine460 

1 76 

31 14 

17475 

7 47 

1 

450 



APPENDIX B 

Crosscheck Analyses 

Each crossline and the lines that it crosses over are shown with the data mean, reference mean, 

mean difference, standard deviation of the differences, 2 standard deviations, and the percent of 

water depth 2a represents of the Reference Mean 

Table B1. Crosscheck statistics 

Crossline 

16 

16 

16 

16 

16 

16 

16 

16 

16 

16 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

48b 

47 

47 

Line 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

51 

52 

53 

54 

56 

57 

58 

60 

61 

62 

64 

69 

71 

72 

73 

75 

76 

78 

78 

85 

Data Mean 

-2613 

-2726 

-2876 

-3025 

-3150 

-3275 

-3399 

-3502 

-3580 

-3653 

-1753 

-1926 

-2153 

-2253 

-2348 

-2450 

-2556 

-2660 

-2747 

-2837 

-2917 

-2994 

-3084 

-3172 

-3252 

-3324 

-3399 

-3467 

-3489 

-3778 

Reference 
Mean 

-2614 

-2727 

-2878 

-3024 

-3149 

-3276 

-3397 

-3504 

-3581 

-3652 

-1755 

-1925 

-2153 

-2251 

-2347 

-2449 

-2555 

-2660 

-2746 

-2836 

-2913 

-2992 

-3085 

-3171 

-3251 

-3325 

-3396 

-3465 

-3488 

-3776 

Mean 
Difference 

1 76 

1 53 

2 18 

-142 

-0 74 

0 61 

-1 63 

1 73 

0 78 

-1 21 

2 23 

-1 34 

-0 53 

-1 41 

-1 15 

-0 48 

-0 61 

0 00 

-0 55 

-0 78 

-4 30 

-149 

0 66 

-0 83 

-0 92 

1 52 

-3 29 

-1 96 

-1 59 

-1 93 

Standard 
deviation 

7 05 

7 02 

7 95 

7 58 

8 81 

9 74 

9 82 

8 17 

8 72 

10 16 

8 98 

9 69 

12 44 

11 54 

8 98 

7 55 

5 98 

5 60 

5 62 

5 84 

6 16 

5 59 

5 43 

6 46 

5 60 

5 34 

7 87 

7 01 

7 13 

7 18 

2a 

14 10 

14 04 

15 89 

15 17 

17 62 

19 49 

19 64 

16 33 

17 44 

20 32 

17 96 

19 37 

24 87 

23 08 

17 96 

1510 

11 96 

11 19 

11 24 

11 68 

12 33 

11 18 

10 86 

12 92 

11 20 

10 69 

15 73 

14 02 

14 26 

14 35 

Percent 
water depth 

05 

05 

06 

05 

06 

06 

06 

05 

05 

06 

1 0 

1 0 

1 2 

1 0 

08 

06 

05 

04 

04 

04 

04 

04 

04 

04 

03 

03 

05 

04 

04 

04 

451 



Crossline 

47 

47 

47 

47 

47 

47 

47 

47 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

88 

137 

137 

137 

137 

137 

Line 

86 

91 

89 

93 

94 

96 

46 

99 

166 

165 

162 

159 

161 

141 

160 

140 

138 

133 

132 

130 

129 

128 

125 

124 

122 

121 

119 

118 

116 

115 

114 

112 

111 

109 

108 

152 

144 

150 

156 

169 

Data Mean 

-3988 

-4103 

-4205 

-4291 

-4364 

-4443 

-4530 

-4618 

-2068 

-2056 

-2179 

-2184 

-2280 

-2351 

-2336 

-2417 

-2495 

-2616 

-2749 

-2875 

-2979 

-3058 

-3123 

-3186 

-3247 

-3299 

-3347 

-3422 

-3514 

-3614 

-3724 

-3828 

-3925 

-4025 

-4119 

-2200 

-2209 

-2294 

-2410 

-2506 

Reference 
Mean 

-3988 

-4104 

-4200 

-4287 

-4368 

-4448 

-4537 

-4622 

-2065 

-2051 

-2177 

-2181 

-2278 

-2348 

-2335 

-2417 

-2493 

-2614 

-2748 

-2874 

-2979 

-3057 

-3123 

-3183 

-3245 

-3295 

-3347 

-3417 

-3509 

-3611 

-3720 

-3823 

-3923 

-4021 

-4115 

-2201 

-2211 

-2293 

-2409 

-2505 

Mean 
Difference 

-0.15 

-5.07 

0.67 

-4.37 

4.10 

4.78 

6.33 

3.62 

-3.33 

-4.73 

-1.99 

-2.33 

-1.56 

-3.12 

-0.66 

-0.30 

-1.72 

-1.84 

-1.13 

-1.09 

0.06 

-1.17 

-0.79 

-2.72 

-2.16 

-3.29 

-0.48 

-5.64 

-4.28 

-3.24 

-3.53 

-5.23 

-1.38 

-4.06 

-3.33 

0.98 

2.41 

-1.36 

-1.40 

-1.14 

Standard 
deviation 

7.10 

6.59 

9.24 

9.23 

12.04 

15.65 

12.19 

10.63 

4.10 

4.26 

4.03 

3.76 

3.93 

4.65 

5.09 

4.59 

3.91 

4.94 

5.12 

4.66 

4.30 

4.39 

4.92 

5.37 

6.04 

6.88 

7.36 

7.57 

7.54 

8.50 

10.08 

7.54 

5.21 

5.34 

12.29 

10.29 

12.03 

8.84 

7.07 

6.89 

2a 

14.19 

13.18 

18.47 

18.46 

24.07 

31.30 

24.38 

21.25 

8.21 

8.53 

8.07 

7.51 

7.86 

9.30 

10.18 

9.18 

7.82 

9.87 

10.25 

9.32 

8.59 

8.77 

9.85 

10.73 

12.08 

13.76 

14.73 

15.13 

15.08 

17.00 

20.16 

15.07 

10.42 

10.68 

24.58 

20.59 

24.06 

17.67 

14.15 

13.79 

Percent 
water depth 

0.4 

0.3 

0.4 

0.4 

0.6 

0.7 

0.5 

0.5 

0.4 

0.4 

0.4 

0.3 

0.3 

0.4 

0.4 

0.4 

0.3 

0.4 

0.4 

0.3 

0.3 

0.3 

0.3 

0.3 

0.4 

0.4 

0.4 

0.4 

0.4 

0.5 

0.5 

0.4 

0.3 

0.3 

0.6 

0.9 

1.1 

0.8 

0.6 

0.6 

452 



Crossline 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

137 

136 

136 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

135 

Line 

171 

173 

175 

177 

182 

184 

185 

186 

187 

189 

191 

193 

195 

196 

198 

200 

202 

203 

206 

208 

209 

155 

144 

145 

156 

170 

171 

174 

175 

181 

182 

184 

185 

186 

187 

190 

189 

191 

194 

195 

Data Mean 

-2581 

-2642 

-2691 

-2738 

-2782 

-2820 

-2857 

-2890 

-2928 

-2988 

-3053 

-3137 

-3253 

-3379 

-3525 

-3706 

-3871 

-4006 

-4079 

-4147 

-4215 

-2107 

-2228 

-2308 

-2407 

-2543 

-2661 

-2743 

-2799 

-2860 

-2914 

-2962 

-3004 

-3038 

-3077 

-3111 

-3112 

-3152 

-3200 

-3260 

Reference 
Mean 

-2579 

-2643 

-2690 

-2739 

-2782 

-2820 

-2857 

-2889 

-2929 

-2986 

-3054 

-3137 

-3253 

-3379 

-3525 

-3706 

-3871 

-4007 

-4082 

-4151 

-4217 

-2106 

-2226 

-2307 

-2406 

-2541 

-2660 

-2741 

-2800 

-2860 

-2914 

-2963 

-3004 

-3039 

-3077 

-3111 

-3112 

-3152 

-3200 

-3260 

Mean 
Difference 

-1.25 

0.28 

-0.69 

0.21 

0.30 

-0.22 

-0.61 

-0.96 

0.24 

-2.36 

0.66 

-0.19 

0.43 

-0.22 

0.22 

-0.32 

0.33 

0.97 

3.59 

3.70 

2.02 

-1.78 

1.50 

-0.93 

-0.80 

-1.80 

-0.26 

-1.74 

0.50 

-0.06 

0.12 

0.54 

-0.11 

0.46 

-0.18 

0.18 

-0.24 

0.03 

0.02 

0.42 

Standard 
deviation 

7.37 

6.01 

5.82 

5.27 

4.60 

4.72 

5.27 

5.43 

4.72 

6.42 

4.77 

5.03 

4.88 

5.11 

5.63 

6.15 

6.81 

8.76 

10.21 

10.83 

8.67 

5.18 

6.41 

6.65 

5.07 

4.35 

4.35 

5.69 

4.02 

4.15 

4.03 

4.16 

4.31 

4.54 

4.62 

4.80 

5.48 

5.42 

5.61 

5.99 

2a 

14.74 

12.02 

11.64 

10.53 

9.21 

9.43 

10.53 

10.86 

9.45 

12.83 

9.54 

10.07 

9.76 

10.21 

11.27 

12.29 

13.62 

17.52 

20.42 

21.66 

17.33 

10.36 

12.81 

13.30 

10.13 

8.69 

8.70 

11.39 

8.03 

8.31 

8.07 

8.32 

8.62 

9.08 

9.25 

9.61 

10.96 

10.84 

11.21 

11.98 

Percent 
water depth 

0.6 

0.5 

0.4 

0.4 

0.3 

0.3 

0.4 

0.4 

0.3 

0.4 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.4 

0.4 

0.5 

0.5 

0.4 

0.5 

0.6 

0.6 

0.4 

0.3 

0.3 

0.4 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.4 

0.3 

0.4 

0.4 

453 



Crossline 

135 

135 

135 

135 

135 

135 

135 

135 

135 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

214 

253 

252 

252 

252 

446 

446 

446 

446 

446 

446 

446 

446 

446 

Line 

197 

198 

201 

202 

204 

205 

207 

208 

211 

215 

217 

219 

232 

233 

223 

222 

220 

235 

236 

237 

238 

240 

241 

247 

248 

250 

251 

243 

244 

245 

246 

519 

515 

514 

510 

508 

507 

479 

476 

471 

Data Mean 

-3314 

-3396 

-3509 

-3637 

-3745 

-3843 

-3934 

-4013 

-4061 

-2460 

-2565 

-2644 

-2723 

-2821 

-2924 

-3018 

-3111 

-3221 

-3330 

-3434 

-3548 

-3641 

-3720 

-3794 

-3871 

-3964 

-4049 

-4077 

-4170 

-4275 

-4379 

-2475 

-2484 

-2490 

-2489 

-2508 

-2595 

-2696 

-2834 

-3155 

Reference 
Mean 

-3313 

-3396 

-3510 

-3635 

-3744 

-3842 

-3933 

-4014 

-4057 

-2462 

-2566 

-2645 

-2725 

-2821 

-2927 

-3018 

-3114 

-3216 

-3329 

-3439 

-3550 

-3642 

-3719 

-3795 

-3872 

-3963 

-4047 

-4074 

-4169 

-4274 

-4379 

-2473 

-2482 

-2490 

-2488 

-2508 

-2597 

-2696 

-2835 

-3157 

Mean 
Difference 

-0.09 

-0.28 

1.08 

-1.58 

-0.85 

-1.20 

-0.67 

0.60 

-4.23 

2.03 

1.58 

1.08 

1.49 

0.93 

2.66 

0.26 

3.04 

-5.16 

-0.87 

4.60 

1.34 

1.24 

-0.54 

0.62 

0.22 

-0.07 

-1.64 

-2.31 

-0.99 

-0.93 

-0.36 

-1.71 

-1.64 

0.19 

-0.95 

0.01 

1.36 

0.14 

1.28 

1.83 

Standard 
deviation 

5.98 

5.23 

7.27 

9.08 

8.60 

7.16 

9.28 

11.67 

13.11 

4.76 

5.19 

5.14 

4.92 

5.31 

4.83 

6.34 

6.78 

11.90 

7.78 

9.53 

7.69 

13.21 

11.25 

8.23 

6.16 

6.52 

6.35 

6.73 

7.40 

7.26 

6.64 

4.25 

4.50 

5.32 

4.29 

5.44 

5.44 

4.49 

4.52 

5.12 

2a 

11.95 

10.47 

14.54 

18.15 

17.20 

14.31 

18.57 

23.34 

26.22 

9.53 

10.37 

10.28 

9.84 

10.61 

9.66 

12.68 

13.56 

23.80 

15.56 

19.07 

15.38 

26.41 

22.50 

16.46 

12.33 

13.04 

12.69 

13.45 

14.79 

14.51 

13.27 

8.50 

9.00 

10.64 

8.58 

10.88 

10.87 

8.98 

9.04 

10.23 

Percent 
water depth 

0.4 

0.3 

0.4 

0.5 

0.5 

0.4 

0.5 

0.6 

0.6 

0.4 

0.4 

0.4 

0.4 

0.4 

0.3 

0.4 

0.4 

0.7 

0.5 

0.6 

0.4 

0.7 

0.6 

0.4 

0.3 

0.3 

0.3 

0.3 

0.4 

0.3 

0.3 

0.3 

0.4 

0.4 

0.3 

0.4 

0.4 

0.3 

0.3 

0.3 
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Crossline 

446 

446 

446 

446 

446 

446 

446 

446 

447 

447 

447 

447 

447 

499 

499 

499 

499 

499 

499 

499 

499 

499 

499 

499 

499 

499 

500 

500 

500 

500 

500 

390 

390 

390 

390 

390 

390 

390 

390 

390 

Line 

469 

466 

465 

464 

460 

458 

456 

455 

453 

452 

450 

449 

448 

498 

497 

494 

493 

491 

490 

486 

485 

481 

480 

478 

471 

469 

460 

458 

456 

455 

453 

391 

392 

396 

395 

398 

399 

400 

403 

402 

Data Mean 

-3445 

-3670 

-3847 

-3992 

-4245 

-4445 

-4599 

-4702 

-4807 

-4909 

-5027 

-5113 

-5186 

-1674 

-2013 

-2431 

-2744 

-2949 

-3160 

-3349 

-3566 

-3738 

-3887 

-3981 

-4167 

-4286 

-4621 

-4688 

-4791 

-4882 

-4947 

-4324 

-4365 

-4406 

-4438 

-4460 

-4461 

-4460 

-4443 

-4416 

Reference 
Mean 

-3447 

-3671 

-3849 

-3994 

-4247 

-4446 

-4599 

-4702 

-4805 

-4909 

-5025 

-5113 

-5186 

-1675 

-2014 

-2432 

-2744 

-2948 

-3159 

-3350 

-3567 

-3738 

-3887 

-3982 

-4169 

-4287 

-4623 

-4688 

-4793 

-4880 

-4948 

-4334 

-4371 

-4412 

-4444 

-4463 

-4465 

-4462 

-4444 

-4416 

Mean 
Difference 

2 12 

1 29 

2 23 

1 59 

2 45 

0 94 

-0 42 

-0 08 

-1 89 

-0 41 

-1 36 

0 43 

0 73 

0 40 

1 64 

0 68 

-0 40 

-1 05 

-1 08 

1 11 

1 04 

-0 13 

0 30 

0 83 

124 

0 83 

1 76 

0 05 

2 36 

-1 60 

1 55 

9 83 

6 27 

6 02 

6 00 

2 41 

3 99 

2 21 

0 48 

1 70 

Standard 
deviation 

6 58 

5 83 

6 79 

6 93 

7 35 

7 51 

7 56 

7 60 

8 98 

8 60 

9 85 

10 87 

12 05 

4 71 

4 30 

5 05 

4 26 

4 87 

5 39 

5 88 

615 

618 

6 03 

718 

7 14 

6 41 

7 47 

7 60 

10 87 

11 59 

12 03 

6 42 

9 03 

9 36 

7 80 

7 24 

7 36 

7 62 

6 89 

7 88 

2a 

13 17 

11 67 

13 58 

13 86 

14 71 

15 02 

15 12 

15 20 

17 96 

17 19 

19 70 

21 73 

24 10 

9 42 

8 60 

1011 

8 51 

9 74 

10 77 

11 76 

12 29 

12 35 

12 05 

14 35 

14 28 

12 81 

14 94 

15 19 

21 74 

23 17 

24 07 

12 85 

18 06 

18 73 

15 61 

14 49 

14 73 

15 24 

13 77 

15 76 

Percent 
water depth 

04 

03 

04 

03 

03 

03 

03 

03 

04 

04 

04 

04 

05 

06 

04 

04 

03 

03 

03 

04 

03 

03 

03 

04 

03 

03 

03 

03 

05 

05 

05 

03 

04 

04 

04 

03 

03 

03 

03 

04 

455 



Crossline 

390 

390 

390 

390 

390 

390 

390 

390 

390 

390 

390 

390 

Line 

404 

405 

406 

407 

408 

410 

411 

412 

413 

414 

415 

416 

Data Mean 

-4432 

-4502 

-4601 

-4750 

-4912 

-5037 

-5145 

-5275 

-5331 

-5348 

-5369 

-5370 

Reference 
Mean 

-4432 

-4501 

-4602 

-4751 

-4912 

-5037 

-5146 

-5278 

-5333 

-5350 

-5373 

-5376 

Mean 
Difference 

-0 72 

-0 35 

0 46 

0 36 

0 37 

-0 26 

0 81 

3 47 

1 88 

1 69 

3 85 

6 14 

Standard 
deviation 

7 43 

7 44 

7 57 

9 69 

9 60 

11 17 

8 86 

8 22 

9 08 

6 66 

5 57 

4 80 

2a 

14 86 

14 89 

15 15 

19 37 

19 21 

22 34 

17 71 

16 45 

18 16 

13 32 

11 13 

9 60 

Percent 
water depth 

03 

03 

03 

04 

04 

04 

0 3 

0 3 

0 3 

0 2 

02 

02 

456 



APPENDIX C 

Crosscheck Analyses by Depth 

Each crossline and the lines that it crosses over are shown with the data mean, reference mean, 

mean difference, standard deviation of the differences, 2 standard deviations, and the percent of 

water depth 2a represents of the Reference Mean These are subdivided by 500 m depth 

intervals 

Table C1. Cross-check statistics for water depths between the 1500 m and 2000 m isobaths. 

Crossline 

499 

48b 

48b 

Line 

498 

51 

52 

Data 
Mean 

-1674 

-1753 

-1926 

Reference 
Mean 

-1675 

-1755 

-1925 

Mean 
Difference 

0 40 

2 23 

-1 34 

standard 
deviation 

4 71 

8 98 

9 69 

2a 

9 42 

17 96 

19 37 

Percent water 
depth 

06 

1 0 

1 0 

Table C2. Cross-check statistics for water depths between the 2000 m and 2500 m isobaths. 

Crossline 

499 

88 

88 

135 

48b 

88 

88 

137 

137 

135 

48b 

88 

137 

135 

88 

48b 

88 

135 

137 

88 

499 

48b 

214 

446 

Line 

497 

165 

166 

155 

53 

162 

159 

152 

144 

144 

54 

161 

150 

145 

160 

56 

141 

156 

156 

140 

494 

57 

215 

519 

Data 
Mean 

-2013 

-2056 

-2068 

-2107 

-2153 

-2179 

-2184 

-2200 

-2209 

-2228 

-2253 

-2280 

-2294 

-2308 

-2336 

-2348 

-2351 

-2407 

-2410 

-2417 

-2431 

-2450 

-2460 

-2475 

Reference 
Mean 

-2014 

-2051 

-2065 

-2106 

-2153 

-2177 

-2181 

-2201 

-2211 

-2226 

-2251 

-2278 

-2293 

-2307 

-2335 

-2347 

-2348 

-2406 

-2409 

-2417 

-2432 

-2449 

-2462 

-2473 

Mean 
Difference 

1 64 

-4 73 

-3 33 

-1 78 

-0 53 

-1 99 

-2 33 

0 98 

2 41 

1 50 

-1 41 

-1 56 

-1 36 

-0 93 

-0 66 

-1 15 

-3 12 

-0 80 

-1 40 

-0 30 

0 68 

-0 48 

2 03 

-1 71 

standard 
deviation 

4 30 

4 26 

4 10 

5 18 

12 44 

4 03 

3 76 

10 29 

12 03 

6 41 

11 54 

3 93 

8 84 

6 65 

5 09 

8 98 

4 65 

5 07 

7 07 

4 59 

5 05 

7 55 

4 76 

4 25 

2a 

8 60 

8 53 

8 21 

10 36 

24 87 

8 07 

7 51 

20 59 

24 06 

12 81 

23 08 

7 86 

17 67 

13 30 

1018 

17 96 

9 30 

10 13 

14 15 

9 18 

1011 

15 10 

9 53 

8 50 

Percent water 
depth 

04 

04 

04 

05 

1 2 

04 

03 

09 

1 1 

06 

1 0 

03 

08 

06 

04 

08 

04 

04 

06 

04 

04 

06 

04 

03 

457 



Table C3 Cross-check statistics for water depths between the 2000 m and 2500 m isobaths continued. 

Crossline 

446 

446 

446 

88 

Line 

515 

510 

514 

138 

Data 
Mean 

-2484 

-2489 

-2490 

-2495 

Reference 
Mean 

-2482 

-2488 

-2490 

-2493 

Mean 
Difference 

-1.64 

-0.95 

0.19 

-1.72 

standard 
deviation 

4.50 

4.29 

5.32 

3.91 

2a 

9.00 

8.58 

10.64 

7.82 

Percent water 
depth 

0.4 

0.3 

0.4 

0.3 

Table C4. Cross-check statistics for water depths between the 2500 m and 3000 m isobaths. 

Crossline 

137 

446 

135 

48b 

214 

137 

446 

16 

88 

137 

214 

48b 

135 

137 

446 

214 

16 

137 

135 

499 

48b 

88 

137 

135 

137 

214 

446 

48b 

137 

135 

88 

16 

137 

Line 

169 

508 

170 

58 

217 

171 

507 

19 

133 

173 

219 

60 

171 

175 

479 

232 

20 

177 

174 

493 

61 

132 

182 

175 

184 

233 

476 

62 

185 

181 

130 

21 

186 

Data 
Mean 

-2506 

-2508 

-2543 

-2556 

-2565 

-2581 

-2595 

-2613 

-2616 

-2642 

-2644 

-2660 

-2661 

-2691 

-2696 

-2723 

-2726 

-2738 

-2743 

-2744 

-2747 

-2749 

-2782 

-2799 

-2820 

-2821 

-2834 

-2837 

-2857 

-2860 

-2875 

-2876 

-2890 

Reference 
Mean 

-2505 

-2508 

-2541 

-2555 

-2566 

-2579 

-2597 

-2614 

-2614 

-2643 

-2645 

-2660 

-2660 

-2690 

-2696 

-2725 

-2727 

-2739 

-2741 

-2744 

-2746 

-2748 

-2782 

-2800 

-2820 

-2821 

-2835 

-2836 

-2857 

-2860 

-2874 

-2878 

-2889 

Mean 
Difference 

-1.14 

0.01 

-1.80 

-0.61 

1.58 

-1.25 

1.36 

1.76 

-1.84 

0.28 

1.08 

0.00 

-0.26 

-0.69 

0.14 

1.49 

1.53 

0.21 

-1.74 

-0.40 

-0.55 

-1.13 

0.30 

0.50 

-0.22 

0.93 

1.28 

-0.78 

-0.61 

-0.06 

-1.09 

2.18 

-0.96 

standard 
deviation 

6.89 

5.44 

4.35 

5.98 

5.19 

7.37 

5.44 

7.05 

4.94 

6.01 

5.14 

5.60 

4.35 

5.82 

4.49 

4.92 

7.02 

5.27 

5.69 

4.26 

5.62 

5.12 

4.60 

4.02 

4.72 

5.31 

4.52 

5.84 

5.27 

4.15 

4.66 

7.95 

5.43 

2a 

13.79 

10.88 

8.69 

11.96 

10.37 

14.74 

10.87 

14.10 

9.87 

12.02 

10.28 

11.19 

8.70 

11.64 

8.98 

9.84 

14.04 

10.53 

11.39 

8.51 

11.24 

10.25 

9.21 

8.03 

9.43 

10.61 

9.04 

11.68 

10.53 

8.31 

9.32 

15.89 

10.86 

Percent water 
depth 

0.6 

0.4 

0.3 

0.5 

0.4 

0.6 

0.4 

0.5 

0.4 

0.5 

0.4 

0.4 

0.3 

0.4 

0.3 

0.4 

0.5 

0.4 

0.4 

0.3 

0.4 

0.4 

0.3 

0.3 

0.3 

0.4 

0.3 

0.4 

0.4 

0.3 

0.3 

0.6 

0.4 
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Table C5. Cross-check statistics for water depths between the 2500 m and 3000 m isobaths continued. 

Crossline 

48b 

135 

214 

137 

499 

135 

88 

137 

48b 

Line 

64 

182 

223 

187 

491 

184 

129 

189 

69 

Data 
Mean 

-2917 

-2914 

-2924 

-2928 

-2949 

-2962 

-2979 

-2988 

-2994 

Reference 
Mean 

-2913 

-2914 

-2927 

-2929 

-2948 

-2963 

-2979 

-2986 

-2992 

Mean 
Difference 

-4.30 

0.12 

2.66 

0.24 

-1.05 

0.54 

0.06 

-2.36 

-1.49 

standard 
deviation 

6.16 

4.03 

4.83 

4.72 

4.87 

4.16 

4.30 

6.42 

5.59 

2a 

12.33 

8.07 

9.66 

9.45 

9.74 

8.32 

8.59 

12.83 

11.18 

Percent water 
depth 

0.4 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.4 

0.4 

Table C6. Cross-check statistics for water depths between the 3000 m and 3500 m isobaths. 

Crossline 

135 

214 

16 

135 

137 

88 

135 

48b 

135 

135 

214 

88 

137 

16 

135 

446 

499 

48b 

88 

135 

214 

88 

48b 

137 

135 

16 

88 

Line 

185 

222 

22 

186 

191 

128 

187 

71 

190 

189 

220 

125 

193 

23 

191 

471 

490 

72 

124 

194 

235 

122 

73 

195 

195 

24 

121 

Data 
Mean 

-3004 

-3018 

-3025 

-3038 

-3053 

-3058 

-3077 

-3084 

-3111 

-3112 

-3111 

-3123 

-3137 

-3150 

-3152 

-3155 

-3160 

-3172 

-3186 

-3200 

-3221 

-3247 

-3252 

-3253 

-3260 

-3275 

-3299 

Reference 
Mean 

-3004 

-3018 

-3024 

-3039 

-3054 

-3057 

-3077 

-3085 

-3111 

-3112 

-3114 

-3123 

-3137 

-3149 

-3152 

-3157 

-3159 

-3171 

-3183 

-3200 

-3216 

-3245 

-3251 

-3253 

-3260 

-3276 

-3295 

Mean 
Difference 

-0.11 

0.26 

-1.42 

0.46 

0.66 

-1.17 

-0.18 

0.66 

0.18 

-0.24 

3.04 

-0.79 

-0.19 

-0.74 

0.03 

1.83 

-1.08 

-0.83 

-2.72 

0.02 

-5.16 

-2.16 

-0.92 

0.43 

0.42 

0.61 

-3.29 

standard 
deviation 

4.31 

6.34 

7.58 

4.54 

4.77 

4.39 

4.62 

5.43 

4.80 

5.48 

6.78 

4.92 

5.03 

8.81 

5.42 

5.12 

5.39 

6.46 

5.37 

5.61 

11.90 

6.04 

5.60 

4.88 

5.99 

9.74 

6.88 

2a 

8.62 

12.68 

15.17 

9.08 

9.54 

8.77 

9.25 

10.86 

9.61 

10.96 

13.56 

9.85 

10.07 

17.62 

10.84 

10.23 

10.77 

12.92 

10.73 

11.21 

23.80 

12.08 

11.20 

9.76 

11.98 

19.49 

13.76 

Percent water 
depth 

0.3 

0.4 

0.5 

0.3 

0.3 

0.3 

0.3 

0.4 

0.3 

0.4 

0.4 

0.3 

0.3 

0.6 

0.3 

0.3 

0.3 

0.4 

0.3 

0.4 

0.7 

0.4 

0.3 

0.3 

0.4 

0.6 

0.4 

459 



Table C7. Cross-check statistics for water depths between the 3000 m and 3500 m isobaths continued. 

Crossline 

135 

48b 

214 

88 

499 

137 

48b 

135 

16 

88 

214 

446 

48b 

47 

Line 

197 

75 

236 

119 

486 

196 

76 

198 

25 

118 

237 

469 

78 

78 

Data 
Mean 

-3314 

-3324 

-3330 

-3347 

-3349 

-3379 

-3399 

-3396 

-3399 

-3422 

-3434 

-3445 

-3467 

-3489 

Reference 
Mean 

-3313 

-3325 

-3329 

-3347 

-3350 

-3379 

-3396 

-3396 

-3397 

-3417 

-3439 

-3447 

-3465 

-3488 

Mean 
Difference 

-0 09 

1 52 

-0 87 

-0 48 

1 11 

-0 22 

-3 29 

-0 28 

-1 63 

-5 64 

4 60 

2 12 

-1 96 

-1 59 

standard 
deviation 

5 98 

5 34 

7 78 

7 36 

5 88 

511 

7 87 

5 23 

9 82 

7 57 

9 53 

6 58 

7 01 

7 13 

2a 

11 95 

10 69 

15 56 

14 73 

11 76 

10 21 

15 73 

10 47 

19 64 

1513 

19 07 

13 17 

14 02 

14 26 

Percent water 
depth 

0 4 

0 3 

05 

0 4 

0 4 

03 

05 

03 

06 

04 

06 

04 

04 

04 

Table C8. Cross-check statistics for water depths between the 3500 m and 4000 m isobaths. 

Crossline 

16 

88 

135 

137 

214 

499 

16 

88 

135 

214 

16 

446 

137 

214 

88 

499 

135 

47 

214 

88 

135 

446 

Line 

26 

116 

201 

198 

238 

485 

27 

115 

202 

240 

28 

466 

200 

241 

114 

481 

204 

85 

247 

112 

205 

465 

Data 
Mean 

-3502 

-3514 

-3509 

-3525 

-3548 

-3566 

-3580 

-3614 

-3637 

-3641 

-3653 

-3670 

-3706 

-3720 

-3724 

-3738 

-3745 

-3778 

-3794 

-3828 

-3843 

-3847 

Reference 
Mean 

-3504 

-3509 

-3510 

-3525 

-3550 

-3567 

-3581 

-3611 

-3635 

-3642 

-3652 

-3671 

-3706 

-3719 

-3720 

-3738 

-3744 

-3776 

-3795 

-3823 

-3842 

-3849 

Mean 
Difference 

1 73 

-4 28 

1 08 

0 22 

1 34 

1 04 

0 78 

-3 24 

-1 58 

1 24 

-1 21 

1 29 

-0 32 

-0 54 

-3 53 

-0 13 

-0 85 

-1 93 

0 62 

-5 23 

-1 20 

2 23 

standard 
deviation 

8 17 

7 54 

7 27 

5 63 

7 69 

615 

8 72 

8 50 

9 08 

1321 

10 16 

5 83 

6 15 

11 25 

10 08 

618 

8 60 

7 18 

8 23 

7 54 

7 16 

6 79 

2a 

16 33 

15 08 

14 54 

11 27 

15 38 

12 29 

17 44 

17 00 

18 15 

26 41 

20 32 

11 67 

12 29 

22 50 

20 16 

12 35 

17 20 

14 35 

16 46 

15 07 

14 31 

13 58 

Percent water 
depth 

05 

0 4 

0 4 

0 3 

0 4 

0 3 

05 

05 

05 

07 

06 

03 

03 

0 6 

05 

03 

05 

04 

04 

04 

0 4 

0 4 

460 



Table C9. Cross-check statistics for water depths between the 3500 m and 4000 m isobaths continued. 

Crossline 

137 

214 

499 

88 

135 

214 

499 

47 

446 

Line 

202 

248 

480 

111 

207 

250 

478 

86 

464 

Data 
Mean 

-3871 

-3871 

-3887 

-3925 

-3934 

-3964 

-3981 

-3988 

-3992 

Reference 
Mean 

-3871 

-3872 

-3887 

-3923 

-3933 

-3963 

-3982 

-3988 

-3994 

Mean 
Difference 

0 33 

0 22 

0 30 

-1 38 

-0 67 

-0 07 

0 83 

-0 15 

1 59 

standard 
deviation 

6 81 

6 16 

6 03 

5 21 

9 28 

6 52 

7 18 

710 

6 93 

2a 

13 62 

12 33 

12 05 

10 42 

18 57 

13 04 

14 35 

14 19 

13 86 

Percent water 
depth 

04 

03 

0 3 

0 3 

05 

03 

04 

0 4 

0 3 

Table C10. Cross-check statistics for water depths between the 4000 m and 4500 m isobaths. 

Crossline 

137 

135 

88 

214 

135 

253 

137 

47 

88 

136 

499 

252 

47 

136 

446 

252 

499 

47 

390 

47 

390 

252 

390 

390 

390 

390 

390 

Line 

203 

208 

109 

251 

211 

243 

206 

91 

108 

208 

471 

244 

89 

209 

460 

245 

469 

93 

391 

94 

392 

246 

396 

402 

404 

395 

403 

Data 
Mean 

-4006 

-4013 

-4025 

-4049 

-4061 

-4077 

-4079 

-4103 

-4119 

-4147 

-4167 

-4170 

-4205 

-4215 

-4245 

-4275 

-4286 

-4291 

-4324 

-4364 

-4365 

-4379 

-4406 

-4416 

-4432 

-4438 

-4443 

Reference 
Mean 

-4007 

-4014 

-4021 

-4047 

-4057 

-4074 

-4082 

-4104 

-4115 

-4151 

-4169 

-4169 

-4200 

-4217 

-4247 

-4274 

-4287 

-4287 

-4334 

-4368 

-4371 

-4379 

-4412 

-4416 

-4432 

-4444 

-4444 

Mean 
Difference 

0 97 

0 60 

-4 06 

-1 64 

-4 23 

-2 31 

3 59 

-5 07 

-3 33 

3 70 

1 24 

-0 99 

0 67 

2 02 

2 45 

-0 93 

0 83 

-4 37 

9 83 

410 

6 27 

-0 36 

6 02 

1 70 

-0 72 

6 00 

0 48 

standard 
deviation 

8 76 

11 67 

5 34 

6 35 

1311 

6 73 

10 21 

6 59 

12 29 

10 83 

7 14 

7 40 

9 24 

8 67 

7 35 

7 26 

6 41 

9 23 

6 42 

12 04 

9 03 

6 64 

9 36 

7 88 

7 43 

7 80 

6 89 

2a 

17 52 

23 34 

10 68 

12 69 

26 22 

13 45 

20 42 

13 18 

24 58 

21 66 

14 28 

14 79 

18 47 

17 33 

14 71 

14 51 

12 81 

18 46 

12 85 

24 07 

18 06 

13 27 

18 73 

15 76 

14 86 

15 61 

13 77 

Percent water 
depth 

0 4 

0 6 

03 

03 

0 6 

0 3 

05 

03 

06 

05 

0 3 

0 4 

0 4 

0 4 

0 3 

0 3 

03 

04 

03 

06 

04 

03 

0 4 

04 

03 

04 

03 

461 



Table C.101. Cross-check statistics for water depths between the 4000 m and 4500 m isobaths, continued. 

Crossline 

446 

47 

390 

390 

390 

Line 

458 

96 

400 

398 

399 

Data 
Mean 

-4445 

-4443 

-4460 

-4460 

-4461 

Reference 
Mean 

-4446 

-4448 

-4462 

-4463 

-4465 

Mean 
Difference 

0 94 

4 78 

2 21 

2 41 

3 99 

standard 
deviation 

7 51 

15 65 

7 62 

7 24 

7 36 

2a 

15 02 

31 30 

15 24 

14 49 

14 73 

Percent water 
depth 

03 

07 

0 3 

0 3 

0 3 

Table C112. Cross-check statistics for water depths between the 4500 m and 5000 m isobaths. 

Crossline 

390 

47 

446 

390 

47 

500 

500 

446 

390 

500 

447 

500 

447 

390 

500 

Line 

405 

46 

456 

406 

99 

460 

458 

455 

407 

456 

453 

455 

452 

408 

453 

Data 
Mean 

-4502 

-4530 

-4599 

-4601 

-4618 

-4621 

-4688 

-4702 

-4750 

-4791 

-4807 

-4882 

-4909 

-4912 

-4947 

Reference 
Mean 

-4501 

-4537 

-4599 

-4602 

-4622 

-4623 

-4688 

-4702 

-4751 

-4793 

-4805 

-4880 

-4909 

-4912 

-4948 

Mean 
Difference 

-0 35 

6 33 

-0 42 

0 46 

3 62 

1 76 

0 05 

-0 08 

0 36 

2 36 

-1 89 

-1 60 

-0 41 

0 37 

1 55 

standard 
deviation 

7 44 

12 19 

7 56 

7 57 

10 63 

7 47 

7 60 

7 60 

9 69 

10 87 

8 98 

11 59 

8 60 

9 60 

12 03 

2a 

14 89 

24 38 

15 12 

15 15 

21 25 

14 94 

15 19 

15 20 

19 37 

21 75 

17 96 

23 18 

17 19 

1921 

24 07 

Percent water 
depth 

03 

05 

03 

03 

05 

0 3 

03 

0 3 

0 4 

05 

0 4 

05 

0 4 

0 4 

05 

Table C13. Cross-check statistics for water depths between the 5000 m to 5500 m 

Crossline 

447 

390 

447 

390 

447 

390 

390 

390 

390 

390 

Line 

450 

410 

449 

411 

448 

412 

413 

414 

415 

416 

Data 
Mean 

-5027 

-5037 

-5113 

-5145 

-5186 

-5275 

-5331 

-5348 

-5369 

-5370 

Reference 
Mean 

-5025 

-5037 

-5113 

-5146 

-5186 

-5278 

-5333 

-5350 

-5373 

-5376 

Mean 
Difference 

-1 36 

-0 26 

0 43 

0 81 

0 73 

3 47 

1 88 

1 69 

3 85 

6 14 

standard 
deviation 

9 85 

11 17 

10 87 

8 86 

12 05 

8 22 

9 08 

6 66 

5 57 

4 80 

2a 

19 70 

22 34 

21 73 

17 71 

24 10 

16 45 

18 16 

13 32 

11 13 

9 60 

Percent water 
depth 

04 

04 

04 

0 3 

05 

0 3 

03 

02 

02 

02 

462 



APPENDIX D 

SINUOSITY 

Sinuosity of each canyon channel (Table D1) showing 2D length, straight length, start and end 

points. Following tables (D2 - D16) show the same parameters within 250 m contour intervals 

Lengths and coordinates are in meters (unless otherwise specified). 

Table D1. Total planimetric lengths of canyon channels (from north to south), starting and ending coordinates, 
straight line distance calculated from the starting and ending coordinates and the sinuosity. 

Canyon Channel 

Nygren 

Munson 

Powell 

Lydonia 

Oceanographer 

Hydrographer 

Veatch 

Jones Valley 

Hudson 

Wilmington 

Washington 

Norfolk 

Norfolk2 

Albermarle 

Hatteras 

Hatteras2 

Pamlico 

Pamhco2 

2D Length 

101378 

61766 

83486 

80117 

166537 

256453 

253593 

127779 

308323 

269938 

80963 

236683 

88772 

175596 

265496 

261052 

273464 

268206 

Start X 

711218 

681798 

638303 

596791 

579325 

505940 

455653 

356465 

258388 

648787 

597623 

588976 

588976 

545029 

509803 

513711 

484823 

489123 

Start Y 

4502776 

4478102 

4465376 

4455284 

4449511 

4404188 

4391452 

4291598 

4341179 

4216235 

4113824 

4084763 

4084763 

3929365 

3903241 

3901161 

3865311 

3862335 

End X 

789550 

715989 

668913 

625409 

659463 

631054 

581268 

379178 

390640 

806194 

653911 

766473 

659530 

682112 

672601 

672601 

639097 

639097 

End Y 

4443097 

4431371 

4395989 

4392893 

4332801 

4208121 

4192438 

4179391 

4121661 

4066933 

4062904 

3967211 

4056657 

3831923 

3717543 

3717543 

3658810 

3658810 

Straight L 

98476 

57903 

75839 

68641 

141574 

232584 

235342 

114483 

256279 

216951 

75902 

212893 

75946 

168187 

246956 

242820 

257766 

252814 

Sinuosity 

1 03 

1 07 

1 10 

1 17 

1 18 

1 10 

1 08 

1 12 

1 20 

1 24 

1 07 

1 11 

1 17 

1 04 

1 08 

1 08 

1 06 

1 06 

Table D2. Sinuosity between 250 m contour intervals for Nygren canyon channel. 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

2D Length 

7481 

10497 

11904 

13308 

19450 

23435 

Start X 

715522 

722201 

731033 

740430 

750138 

765095 

Start Y 

4502585 

4499641 

4494983 

4487790 

4478763 

4466364 

End X 

722201 

731033 

740430 

750138 

765095 

783461 

End Y 

4499641 

4494983 

4487790 

4478763 

4466364 

4452205 

Straight L 

7299 

9984 

11834 

13257 

19428 

23190 

Sinuosity 

1 02 

1 05 

1 01 

1 00 

1 00 

1 01 

463 



Table D3. Sinuosity between 250 m contour intervals for Munson canyon channel. 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

2D Length 

11642 

13177 

14852 

15126 

Start X 

686464 

690564 

700623 

711290 

Start Y 

4473523 

4463455 

4455167 

4446129 

End X 

690564 

700623 

711290 

715873 

End Y 

4463455 

4455167 

4446129 

4431729 

Straight L 

10871 

13033 

13981 

15112 

Sinuosity 

1 07 

1 01 

1 06 

1 00 

Table D4. Sinuosity between 250 m contour intervals for Powell canyon channel. 

Contour 
Interval 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

2D Length 

6351 

8005 

10840 

10022 

14361 

16526 

Start X 

639194 

640875 

647086 

655269 

661006 

668535 

Start Y 

4460592 

4454958 

4450573 

4443772 

4435642 

4423919 

End X 

640875 

647086 

655269 

661006 

668535 

668104 

End Y 

4454958 

4450573 

4443772 

4435642 

4423919 

4408117 

Straight L 

5879 

7603 

10641 

9950 

13932 

15808 

Sinuosity 

1 08 

1 05 

1 02 

1 01 

1 03 

1 05 

Table D5. Sinuosity between 250 m contour intervals for Lydonia canyon channel. 

Contour 
Interval 

1750-2000 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

2D Length 

4593 

6467 

6939 

9947 

14812 

16275 

20100 

Start X 

596798 

597907 

598604 

599055 

605798 

617683 

620239 

Start Y 

4454422 

4450254 

4443902 

4437626 

4431098 

4424343 

4409932 

End X 

597907 

598604 

599055 

605798 

617683 

620239 

625336 

End Y 

4450254 

4443902 

4437626 

4431098 

4424343 

4409932 

4392976 

Straight L 

4313 

6390 

6292 

9385 

13670 

14636 

17706 

Sinuosity 

1 06 

1 01 

1 10 

1 06 

1 08 

1 11 

1 14 

Table D6. Sinuosity between 250 m contour intervals for Oceanographer canyon channel. 

Contour 
Interval 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

2D Length 

10003 

11672 

14955 

14732 

22109 

13766 

25041 

20452 

Start X 

581697 

587547 

592050 

591222 

598244 

612675 

625272 

635164 

Start Y 

4445084 

4437963 

4430580 

4417532 

4407162 

4393966 

4392959 

4371784 

End X 

587547 

592050 

591222 

598244 

612675 

625272 

635164 

644543 

End Y 

4437963 

4430580 

4417532 

4407162 

4393966 

4392959 

4371784 

4354958 

Straight L 

9216 

8647 

13075 

12524 

19555 

12637 

23372 

19263 

Sinuosity 

1 09 

1 35 

1 14 

1 18 

1 13 

1 09 

1 07 

1 06 

464 



Table D7. Sinuosity between 250 m contour intervals for Hydrographer 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

2D Length 

18516 

21449 

22650 

27043 

22864 

29074 

36215 

35411 

Start X 

512306 

519747 

528040 

534103 

547629 

558413 

575622 

595892 

Start Y 

4392553 

4378005 

4360330 

4341150 

4322674 

4306885 

4286529 

4257291 

End X 

519747 

528040 

534103 

547629 

558413 

575622 

595892 

621820 

canyon channel. 

End Y 

4378005 

4360330 

4341150 

4322674 

4306885 

4286529 

4257291 

4234620 

Straight L 

16340 

19524 

20115 

22898 

19120 

26655 

35577 

34442 

Sinuosity 

1 13 

1 10 

1 13 

1 18 

1 20 

1 09 

1 02 

103 

Table D8. Sinuosity between 250 m contour intervals for Veatch canyon channel. 

Contour 
Interval 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

2D Length 

16215 

19874 

20722 

22719 

29903 

25239 

22969 

27506 

46948 

Start X 

455233 

455615 

462500 

468844 

480413 

489980 

505195 

518360 

538222 

Start Y 

4385469 

4369904 

4351760 

4332372 

4313081 

4287156 

4268139 

4249941 

4233052 

End X 

455615 

462500 

468844 

480413 

489980 

505195 

518360 

538222 

573036 

End Y 

4369904 

4351760 

4332372 

4313081 

4287156 

4268139 

4249941 

4233052 

4205216 

Straight L 

15569 

19406 

20400 

22494 

27634 

24354 

22461 

26072 

44574 

Sinuosity 

1 04 

1 02 

1 02 

1 01 

1 08 

1 04 

1 02 

1 05 

105 

Table D9. Sinuosity between 250 m contour intervals for Jones Valley canyon channel. 

Contour 
Interval 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

2D Length 

28256 

29362 

29871 

38970 

Start X 

356465 

347298 

349139 

361292 

Start Y 

4291598 

4266666 

4241821 

4214943 

End X 

347298 

349139 

361292 

378876 

End Y 

4266666 

4241821 

4214943 

4180675 

Straight L 

26564 

24913 

29498 

38516 

Sinuosity 

1 06 

1 18 

1 01 

1 01 

Table D10. Sinuosity between 250 m contour intervals for Oceanographer canyon channel. 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

2D Length 

24164 

27035 

36132 

41419 

37030 

42620 

73278 

Start X 

265923 

285795 

304747 

314403 

329750 

333469 

348819 

Start Y 

4334372 

4328368 

4314891 

4285299 

4264052 

4236022 

4197780 

End X 

285795 

304747 

314403 

329750 

333469 

348819 

384039 

End Y 

4328368 

4314891 

4285299 

4264052 

4236022 

4197780 

4134978 

Straight L 

20760 

23255 

31127 

26211 

28276 

41207 

72004 

Sinuosity 

1 16 

1 16 

1 16 

1 58 

1 31 

1 03 

1 02 

465 



Table D11. Sinuosity between 250 m contour intervals for Wilmington canyon channe 

Contour 
Interval 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

2D Length 

17897 

19579 

27219 

34023 

38499 

43598 

48478 

60350 

Start X 

653613 

670442 

689416 

716006 

737684 

743349 

745217 

775662 

Start Y 

4216896 

4218739 

4215261 

4212716 

4188660 

4154432 

4114534 

4083432 

End X 

670442 

689416 

716006 

737684 

743349 

745217 

775662 

826143 

End Y 

4218739 

4215261 

4212716 

4188660 

4154432 

4114534 

4083432 

4051413 

. 

Straight L 

16929 

19291 

26712 

32382 

34694 

39941 

43523 

59779 

Sinuosity 

1.06 

1.01 

1.02 

1.05 

1.11 

1.09 

1.11 

1.01 

Table D12. Sinuosity between 250 m contour intervals for Washington canyon channel. 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

2D Length 

20981 

25525 

25332 

Start X 

601039 

618380 

633494 

Start Y 

4106726 

4097788 

4077530 

End X 

618380 

633494 

653575 

End Y 

4097788 

4077530 

4063508 

Straight L 

19509 

25275 

24492 

Sinuosity 

1.08 

1.01 

1.03 

Table D13. Sinuosity between 250 m contour intervals for Norfolk canyon channel. 

Contour 
Interval 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

2D Length 

31468 

24895 

36043 

41855 

43364 

58253 

106079 

Start X 

603872 

627591 

651263 

682275 

711160 

740324 

788417 

Start Y 

4076903 

4063854 

4059745 

4044398 

4017930 

3989834 

3961402 

End X 

627591 

651263 

682275 

711160 

740324 

788417 

889350 

End Y 

4063854 

4059745 

4044398 

4017930 

3989834 

3961402 

3939766 

Straight L 

27072 

24025 

34603 

39177 

40496 

55869 

103226 

Sinuosity 

1.16 

1.04 

1.04 

1.07 

1.07 

1.04 

1.03 

Table D14. Sinuosity between 250 m contour intervals for Albermarle canyon channel. 

Contour Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

2D Length 

15537 

15671 

20572 

20877 

22733 

20970 

21671 

Start X 

546193 

557014 

568272 

583624 

597233 

617199 

634248 

Start Y 

3928770 

3920484 

3910373 

3897277 

3883178 

3873412 

3861786 

End X 

557014 

568272 

583624 

597233 

617199 

634248 

651994 

End Y 

3920484 

3910373 

3897277 

3883178 

3873412 

3861786 

3849579 

Straight L 

13629 

15132 

20178 

19596 

22226 

20635 

21539 

Sinuosity 

1.14 

1.04 

1.02 

1.07 

1.02 

1.02 

1.01 

466 



Table D15. Sinuosity between 250 m contour intervals for Hatteras canyon channel. 

Contour 
Interval 

1750-2000 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

4500-4750 

4750-5000 

Table D16. Sinuos 

Contour 
Interval 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

4500-4750 

4750-5000 

2D Length 

674 

2664 

7313 

14968 

19034 

18550 

23718 

24107 

27497 

27629 

33608 

28474 

29627 

ity between * 

2D Length 

837 

1653 

9211 

13293 

13236 

20507 

26429 

31807 

36193 

35854 

35731 

42139 

Start X 

510276 

510835 

513222 

518474 

529180 

540272 

555350 

574228 

587002 

601525 

615566 

637653 

653510 

Start Y 

3902909 

3902535 

3901356 

3896639 

3887356 

3874087 

3865370 

3859540 

3839363 

3816773 

3793774 

3769052 

3747800 

End X 

510835 

513222 

518474 

529180 

540272 

555350 

574228 

587002 

601525 

615566 

637653 

653510 

668707 

End Y 

3902535 

3901356 

3896639 

3887356 

3874087 

3865370 

3859540 

3839363 

3816773 

3793774 

3769052 

3747800 

3723400 

>50 m contour intervals for Pamlico canyon channel. 

Start X 

486634 

487276 

488550 

495523 

506147 

516376 

529806 

536319 

558863 

584797 

596689 

609310 

Start Y 

3864319 

3863782 

3862730 

3856790 

3848994 

3841928 

3826609 

3801954 

3780952 

3756507 

3725037 

3693219 

End X 

487276 

488550 

495523 

506147 

516376 

529806 

536319 

558863 

584797 

596689 

609310 

636031 

End Y 

3863782 

3862730 

3856790 

3848994 

3841928 

3826609 

3801954 

3780952 

3756507 

3725037 

3693219 

3662103 

Straight L 

673 

2662 

7060 

14169 

17295 

17417 

19758 

23881 

26855 

26947 

33151 

26516 

28746 

Straight L 

837 

1653 

9160 

13178 

12432 

20373 

25501 

30811 

35638 

33643 

34229 

41015 

Sinuosity 

1.00 

1.00 

1.04 

1.06 

1.10 

1.07 

1.20 

1.01 

1.02 

1.03 

1.01 

1.07 

1.03 

Sinuosity 

1.00 

1.00 

1.01 

1.01 

1.06 

1.01 

1.04 

1.03 

1.02 

1.07 

1.04 

1.03 

467 



APPENDIX E 

SLOPE 

Overall table (Table E1) of the canyon channels in their entirety with the planimetric 

length, surface length, depth difference, slopes calculated from the planimetric length and surface 

length and associated differences. Following are tables (Tables E2 -E16) of each canyon channel 

that show the planimetric (2D length) the surface length (SLength), the slopes calculated from 

each of the lengths, and the differences in slope and length between each 250 m contour interval. 

All slopes are in degrees and all lengths and depths are in meters. A negative length difference 

indicates that the planimetric length is greater than the surface length and negative slope 

differences indicate that the slopes calculated from the planimetric lengths are greater than those 

calculated from the surface length. See Methods section 3.7.3 for complete discussion. 

Table E1. The planimetric slope and surface length slopes with differences in the slopes and lengths. 

Canyon Channel 

Nyqren 

Munson 

Powell 

Lydonia 

Oceanographer 

Hydrographer 

Veatch 

Jones Valley 

Hudson 

Wilminqton 

Washington 

Norfolk 

Norfolk2 

Albermarle 

Hatteras 

Hatteras2 

Pamlico 

Pamlico2 

2D 
Lenqth 

101378 

61766 

83486 

80117 

166537 

256453 

253593 

127779 

308323 

269938 

80963 

236683 

88772 

175596 

265496 

261052 

273464 

268206 

SLength 

101403 

61786 

83525 

80166 

162998 

256529 

252947 

127796 

308421 

269984 

80975 

236726 

88793 

175437 

265338 

261138 

273606 

268250 

Starting 
Depth 

-2365 

-2300 

-1767 

-1708 

-1839 

-2269 

-2163 

-3000 

-2337 

-2158 

-2401 

-2545 

-2545 

-2481 

-1635 

-2274 

-1639 

-2554 

Ending 
Depth 

-4123 

-3511 

-3686 

-3502 

-4226 

-4657 

-4600 

-4006 

-4291 

-4120 

-3259 

-4137 

-3321 

-4482 

-5084 

-5084 

-5026 

-5026 

Depth 
Difference 

1758 

1211 

1919 

1794 

2387 

2387 

2437 

1006 

1954 

1962 

858 

1591 

776 

2002 

3449 

2810 

3387 

2472 

2D Slope 

1.0 

1.1 

1.3 

1.3 

0.8 

0.5 

0.6 

0.5 

0.4 

0.4 

0.6 

0.4 

0.5 

0.7 

0.7 

0.6 

0.7 

0.5 

3D Slope 

1.0 

1.1 

1.3 

1.3 

0.8 

0.5 

0.6 

0.5 

0.4 

0.4 

0.6 

0.4 

0.5 

0.7 

0.7 

0.6 

0.7 

0.5 

in 2D&3D 
slopes 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

00 

00 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

in 2D&3D 
lengths 

25 

20 

39 

48 

-3539 

76 

-645 

17 

98 

47 

12 

43 

21 

-160 

-158 

86 

142 

44 

468 



Table E2. The planimetric slope and surface length slopes with differences in the slopes and lengths between 250 
m contours for Nygren canyon channel. 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

2D Length 

7481 

10497 

11904 

13308 

19450 

23435 

SLength 

7486 

10501 

11907 

13311 

19452 

23439 

2D Slope 

1 9 

1 4 

12 

1 1 

07 

0 6 

SLength 
Slope 

1 9 

14 

1 2 

1 1 

07 

0 6 

Difference in 
Slope 

00 

00 

00 

00 

00 

0 0 

Difference 
between 2D 
and SLength 

5 

4 

3 

3 

2 

4 

Table E3. The planimetric slope and surface length slopes with differences in the slopes and lengths between 250 
m contours for Nygren canyon channel. 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

2D Length 

11642 

13177 

14852 

15126 

SLength 

11646 

13180 

14855 

15128 

2D Slope 

12 

1 1 

1 0 

09 

SLength 
Slope 

1 2 

1 1 

1 0 

09 

Difference in 
Slope 

0 0 

00 

00 

00 

Difference 
between 2D 
and SLength 

3 

3 

3 

3 

Table E4. The planimetric slope and surface length slopes with differences in the slopes and lengths between 250 
m contours for Powell canyon channel. 

Contour 
Interval 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

2D Length 

6351 

8005 

10840 

10022 

14361 

16526 

SLength 

6360 

8011 

10844 

10027 

14364 

16529 

2D Slope 

23 

1 8 

1 3 

14 

1 0 

09 

SLength 
Slope 

23 

1 8 

1 3 

14 

1 0 

09 

Difference in 
Slope 

00 

00 

00 

0 0 

00 

00 

Difference 
between 2D 
and SLength 

10 

6 

4 

4 

3 

3 

Table E5. The planimetric slope and surface length slopes with differences in the slopes and lengths between 250 
m contours for Lydonia canyon channel. 

Contour 
Interval 

1750-2000 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

2D Length 

4593 

6467 

6939 

9947 

14812 

16275 

20100 

SLength 

4601 

6473 

6945 

9959 

14816 

16281 

20106 

2D Slope 

31 

22 

21 

1 4 

1 0 

09 

07 

SLength 
Slope 

31 

22 

21 

1 4 

1 0 

09 

07 

Difference in 
Slope 

00 

00 

00 

00 

00 

00 

00 

Difference 
between 2D 
and SLength 

8 

5 

6 

12 

4 

6 

6 

469 



Table E6. The planimetric slope and surface length slopes with differences in the slopes and lengths between 250 
m contours for Oceanographer canyon channel. 

Contour 
Interval 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

2D Length 

10003 

11672 

14955 

14732 

22109 

13766 

25041 

20452 

SLength 

10008 

11681 

14969 

14739 

21920 

10363 

25045 

20457 

2D Slope 

1 4 

1 2 

1 0 

1 0 

06 

1 0 

06 

07 

SLength 
Slope 

1 4 

1 2 

1 0 

1 0 

07 

14 

06 

07 

Difference in 
Slope 

00 

00 

00 

00 

00 

04 

00 

00 

Difference 
between 2D 
and SLength 

5 

9 

14 

7 

-189 

-3403 

4 

4 

Table E7. The planimetric slope and surface length slopes with differences in the slopes and lengths between 250 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

2D Length 

18516 

21449 

22650 

27043 

22864 

29074 

36215 

35411 

SLength 

18521 

21456 

22657 

27055 

22878 

29084 

36221 

35418 

2D Slope 

0 8 

07 

06 

05 

06 

05 

04 

04 

SLength 
Slope 

0 8 

07 

06 

05 

06 

05 

04 

0 4 

Difference in 
Slope 

0 0 

00 

00 

00 

00 

00 

00 

00 

Difference 
between 2D 
and SLength 

5 

6 

7 

12 

14 

10 

6 

8 

Table E8. The planimetric slope and surface length slopes with differences in the slopes and lengths between 250 
m contours for Veatch canyon channel. 

Contour 
Interval 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

2D Length 

16215 

19874 

20722 

22719 

29903 

25239 

22969 

27506 

46948 

SLength 

16217 

19876 

20725 

22721 

29906 

25242 

22972 

27517 

46269 

2D Slope 

09 

07 

07 

06 

05 

06 

06 

05 

03 

SLength 
Slope 

09 

07 

07 

06 

05 

06 

06 

05 

03 

Difference in 
Slope 

00 

00 

00 

00 

00 

00 

00 

00 

00 

Difference 
between 2D 
and SLength 

3 

2 

3 

3 

3 

3 

3 

11 

-678 

470 



Table E9. The planimetric slope and surface length slopes with differences in the slopes and lengths between 250 
m contours for Jones Valley canyon channel. 

Contour 
Interval 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

2D Length 

28256 

29362 

29871 

38970 

SLength 

28258 

29364 

29878 

38976 

2D Slope 

05 

05 

05 

04 

SLength 
Slope 

05 

05 

05 

04 

Difference in 
Slope 

00 

00 

00 

00 

Difference 
between 2D 
and SLength 

3 

2 

7 

5 

Table E10. The planimetric slope and surface length slopes with differences in the slopes and lengths between 
250 m contours for Hudson canyon channel. 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

2D Length 

24164 

27035 

36132 

41419 

37030 

42620 

73278 

SLength 

24167 

27040 

36147 

41434 

37063 

42634 

73289 

2D Slope 

06 

05 

04 

03 

04 

03 

02 

SLength 
Slope 

06 

05 

04 

03 

04 

03 

0 2 

Difference in 
Slope 

00 

00 

0 0 

00 

00 

00 

0 0 

Difference 
between 2D 
and SLength 

2 

5 

15 

15 

34 

13 

11 

Table E11. The planimetric slope and surface length slopes with differences in the slopes and lengths between 
250 m contours for Wilmington canyon channel. 

Contour 
Interval 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

2D Length 

17897 

19579 

27219 

34023 

38499 

43598 

48478 

60350 

SLength 

17902 

19585 

27222 

34027 

38505 

43607 

48486 

60356 

2D Slope 

08 

07 

05 

04 

04 

03 

03 

02 

SLength 
Slope 

08 

07 

05 

04 

04 

03 

03 

02 

Difference in 
Slope 

00 

00 

0 0 

00 

00 

00 

0 0 

00 

Difference 
between 2D 
and SLength 

5 

6 

3 

4 

6 

9 

8 

6 

Table E12. The planimetric slope and surface length slopes with differences in the slopes and lengths between 
250 m contours for Washington canyon channel. 

Contour 
Interval 

2500-2750 

2750-3000 

3000-3250 

2D Length 

20981 

25525 

25332 

SLength 

20986 

25529 

25335 

2D Slope 

07 

06 

06 

SLength 
Slope 

07 

06 

06 

Difference in 
Slope 

00 

00 

00 

Difference 
between 2D 
and SLength 

4 

4 

3 

471 



Table E13. The planimetric slope and surface length slopes with differences in the slopes and 
250 m contours for Norfolk canyon channel. 

Contour 
Interval 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

2D Length 

31468 

24895 

36043 

41855 

43364 

58253 

106079 

SLength 

31475 

24898 

36049 

41863 

43371 

58256 

105687 

2D Slope 

05 

06 

04 

03 

03 

02 

01 

SLength Slope 

05 

0 6 

04 

03 

0 3 

02 

01 

Difference in 
Slope 

00 

00 

00 

00 

00 

00 

00 

lengths between 

Difference 
between 2D 
and SLength 

7 

3 

6 

8 

7 

3 

-392 

Table E14. The planimetric slope and surface length slopes with differences in the slopes and lengths between 
250 m contours for Albermarle canyon channel. 

Contour Interval 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

2D Length 

15537 

15671 

20572 

20877 

22733 

20970 

21671 

SLength 

15554 

15686 

20589 

20643 

22741 

20976 

21678 

2D Slope 

09 

09 

07 

07 

06 

07 

0 7 

SLength 
Slope 

09 

09 

07 

07 

06 

07 

07 

Difference in 
Slope 

00 

00 

00 

00 

00 

00 

00 

Difference 
between 2D 
and SLength 

17 

15 

17 

-234 

8 

6 

6 

Table E15. The planimetric slope and surface length slopes with differences in the slopes and lengths between 
250 m contours for Hatteras canyon channel. 

Contour 
Interval 

1750-2000 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

4500-4750 

4750-5000 

2D Length 

674 

2664 

7313 

14968 

19034 

18550 

23718 

24107 

27497 

27629 

33608 

28474 

29627 

SLength 

733 

2349 

7319 

14972 

19037 

18554 

23726 

24119 

27502 

27639 

33618 

28481 

29638 

2D Slope 

20 3 

54 

20 

1 0 

08 

08 

06 

08 

05 

05 

04 

05 

05 

SLength 
Slope 

188 

61 

20 

1 0 

08 

08 

06 

06 

05 

05 

04 

05 

05 

Difference in 
Slope 

-1 5 

07 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

00 

Difference 
between 2D 
and SLength 

59 

-315 

6 

4 

3 

4 

7 

12 

5 

10 

11 

7 

10 

472 



Table E16. The planimetric slope and surface length slopes with differences in the slopes and lengths between 
250 m contours for Pamlico canyon channel. 

Contour 
Interval 

2000-2250 

2250-2500 

2500-2750 

2750-3000 

3000-3250 

3250-3500 

3500-3750 

3750-4000 

4000-4250 

4250-4500 

4500-4750 

4750-5000 

2D Length 

837 

1653 

9211 

13293 

13236 

20507 

26429 

31807 

36193 

35854 

35731 

42139 

SLength 

874 

1675 

9218 

13297 

13240 

20511 

26432 

31812 

36197 

35859 

35736 

42144 

2D Slope 

16.6 

8.6 

1.6 

1.1 

1.1 

0.7 

0.5 

0.5 

0.4 

0.4 

0.4 

0.3 

SLength 
Slope 

16.0 

8.5 

1.6 

1.1 

1.1 

0.7 

0.5 

0.5 

0.4 

0.4 

0.4 

0.3 

Difference in 
Slope 

-0.7 

-0.1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Difference 
between 2D 
and SLength 

37 

22 

7 

4 

4 

4 

3 

5 

5 

5 

5 

5 

473 


