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ABSTRACT 

Observations of sediment transport pathways and bathymetric change are often difficult to 

obtain over spatial and temporal scales needed to maintain economic and ecological viability in 

dynamic coastal and estuarine environments. As a consequence, numerical models have become 

a useful tool to examine the sediment transport and evolution of inlets, estuaries, and harbors. In 

this work, sediment transport at the Hampton-Seabrook Estuary (HSE) in southern New 

Hampshire is simulated using the Coupled Ocean Atmospheric Waves and Sediment Transport 

(COAWST) modeling framework to assess bathymetric change over a 5-year period from 

September 2011 to November 2016. Initial bathymetry and sediment grain size distribution are 

established from observations and smoothed onto a 30 m rectilinear grid that encompasses the 

entirety of the HSE system and extends two km offshore into the Gulf of Maine.  Careful 

consideration is made to include hardened structures, such as jetties and sub-surface bulkheads, 

into the model framework. The model is forced with observations of water levels (including 

subtidal and tidal motions) from a local tide gauge.  Field observations of sea surface height and 

currents are used to validate model hydrodynamics and establish bottom boundary conditions. 

The verified model predicts bathymetric change in the harbor consistent with observed changes 

obtained from bathymetric surveys conducted at the beginning and end of the five-year study.  

Of particular interest is a cut through the middle ground of the flood tidal delta and the filling in 

of the navigational channel leading to the Seabrook side of the Harbor that is qualitatively well 

reproduced by the model.  In general, the model qualitatively well-predicts the gross 5-year 

evolution of the flood tidal delta and the channels leading to the upstream rivers suggesting that 

hydrodynamically-verified numerical models can be used to qualitatively predict depositional 

and erosional regions over inter-annual time scales at Hampton Harbor. 
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CHAPTER 1 

INTRODUCTION 

 

In dynamic, shallow-water coastal areas, wave and current induced sediment transport and 

subsequent morphologic change to the seafloor are difficult to observe in situ on spatial and 

temporal scales that quantify changes to shallow bathymetry. Man-made structures (e.g., jetties) 

constructed to control coastal dynamics and additional climate change-induced consequences (e.g., 

sea-level rise) add complexity to the problem and limit our ability to understand feedback between 

human activities and the physical system. However, changes in bathymetry caused by seabed 

erosion or infilling (deposition) of navigable areas can often disrupt the economic and natural 

function of coastal areas. The coastal zone supports vital navigational routes, coastal infrastructure, 

and natural resources, all dependent on changes to sub-tidal topography; thus, it is necessary to 

identify controls and magnitudes of sediment transport to understand morphologic evolution and 

predict bathymetric change to support resilient coastal communities. 

Evaluating geomorphic evolution of the seafloor in shallow water areas is commonly 

achieved by directly differencing two successive surveys completed at distinct times t1, and t2,  

 ∆𝑍 = 𝑍(𝑥, 𝑦, 𝑡1) − 𝑍(𝑥, 𝑦, 𝑡2) (1) 

where Z is bathymetric depth, and x and y are the horizontal Cartesian coordinate.  Spatial maps 

of the bathymetric difference, Z, depict areas of erosion (net loss of sediments) and deposition 

(net gains in sediments), changes to the coastline, or changes to tidal channels and inlets. Repeated 

surveys inform longer-term trends about the sediment dynamics of a study area.  Such empirical 

studies may be used, for example, to guide dredging decisions ensuring safety to mariners in 
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navigable channels, or to allow coastal managers to better manage the economical and natural 

resources of the area.  However, in practice, economic and logistical constraints can limit the 

feasibility of conducting time consuming and expensive regular bathymetric surveys.  

Currently, high-resolution bathymetric surveys in shallow, coastal areas are usually 

conducted using ship-mounted acoustic multi-beam and single beam sonar systems or with 

airborne optical Light Imaging Detection and Ranging (LIDaR) systems.  Both technologies come 

with setbacks.  For example, ship-based acoustic bathymetry systems often are unable to directly 

survey in shallower depths typical of estuarine environments (< 1-10 m) due to the draft of the 

vessel and can be limited by surface wave and current conditions. Optical LIDaR technologies 

become less accurate in deeper water depths or under turbid, sediment-laden conditions where 

laser pulses are attenuated and reflections from the seabed are not resolved in the back-scattered 

waveform. Moreover, both methods can be cost-prohibitive thus reducing how often repeat 

surveys can be conducted, limiting robust time-sensitive detection in highly dynamic coastal areas 

such as beaches, inlets, and harbors.  

In the absence of repeated and timely high-resolution seabed surveys, coastal scientists and 

engineers have turned to numerical shallow water hydrodynamic models (that simulate waves and 

currents) coupled with sediment transport models to simulate morphodynamic evolution over 

varying temporal and spatial scales.  On weekly and monthly time-scales, realistic numerical 

model simulations have compared well to observations of storm-induced sediment transport in 

nearshore environments in both three dimensions (e.g., Warner, et al., 2010; Ganju, et al., 2016) 

and two-dimensions (e.g., Hopkins, et al., 2018). On longer time scales over a seven-month period, 

Moriarty, et al. (2014) demonstrated high skill using a three-dimensional hydrodynamic–sediment 

transport numerical model to track sediment dispersal from river output along the continental shelf. 
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Many coastal sediment and transport models link finer scale sediment transport processes to 

larger scale geomorphic evolution using a heuristic morphological acceleration model factor (MF) 

to accelerate bed-level updating and to reduce the computational cost of simulations over long 

periods of time (Lesser, et al., 2004; Luijendijk, et al., 2019). For example, Luan, et al. (2017) 

applied an MF in Delft3D to hindcast and forecast erosion and deposition patterns over decadal 

time-scales of the Yangtze Estuary using multiple sediment size fractions and with variations in 

river flow and sediment discharge. Results indicated that modeled patterns of morphological 

change qualitatively agreed with observations and the study successfully applied the validated 

model to forecast future sediment transport trends of the estuary. Likewise, Ganju and 

Schoellhamer (2010) forecasted decadal geomorphic change in Suisun Bay, California under 

different climate scenarios using ROMS, a coupled hydrodynamic-sediment transport model. Such 

studies elucidate dominate processes of morphologic forcing and allow for forecasting future 

evolution patterns. 

The advent of increased computational resources and publically available models has given 

rise to application of high-resolution numerical modeling studies to a variety of coastal areas 

without MF acceleration factors (e.g.,  Roelvink and Reniers, 2012, and references therein).  These 

seafloor change detection studies have been shown to have some skill in simulating 

morphodynamic change over short (< 1 yr) and long (> 1 yr) time scales, and are now significant 

tools in elucidating sediment transport processes in dynamic, coastal waters, particularly at higher 

temporal resolution than can be tested with repeat bathymetric surveys.  

In this work, we apply a coupled hydrodynamic and sediment transport model to the 

Hampton-Seabrook Estuary (HSE) over a five-year period to test the model’s ability to reproduce 

observed temporal changes to the seafloor.  HSE is a tidally-dominated, back-barrier estuary in the 
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southern Gulf of Maine with a dynamic sediment transport regime (Randall, 1989; Kedzierski, 

1993; Ward, et al., 2013; Ward and Irish, 2014; Figure 1.1).  Of particular interest to HSE is the 

significant shoaling and sediment redistribution within the back bay and inlet that requires regular 

dredging of navigational waterways and anchorages to maintain safe passageways (Kedzierski, 

1993; PDA, 2012). As the local center for New Hampshire commercial and recreational fishing, 

forecasting sediment transport patterns and morphologic evolution of the seafloor over inter-

annual time-scales is important to the livelihood and economic viability of the region (e.g., 

Eberhardt and Burdick, 2008).  

 

Figure 1.1: Hampton-Seabrook Estuary, New Hampshire, U.S. Light contours show the 2, 5, 10, 

and 20 m bathymetry intervals. Insert map shows the study location within the southern Gulf of 

Maine.  Data from Natural Earth, 2016, and UNH-GRANIT 2005 and 2015. 
 

Observations of HSE bathymetry over a five-year interval from 2011-2016 (discussed 

herein) reveal large changes to the flood tidal delta and various channels leading into the extensive 

back bay salt marshes.  Of particular importance is a newly cut channel through the flood tidal 
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delta and the infilling of the navigation channel leading to the principal moorage for the fishing 

fleet and commercial tourism vessels.  Figure 1.2 shows a Google Earth satellite image from 2005 

after the construction of sub-tidal bulkheads (described later in more detail) compared with a recent 

aerial photograph of the same area in 2017.  Although the bulkheads alleviated the chronic erosion 

problem along the southern shore of the harbor (Figure 1.2a), a new cut across the flood tidal delta 

resulted in sediment infilling of the navigational channel to the harbor (Figure 1.2b), and 

necessitating emergency dredging operations. In this work, a coupled hydrodynamic and sediment 

transport numerical model is used to simulate the 5-year bathymetric change observed qualitatively 

in Figure 1.2.  Model simulations are compared with the observed bathymetric changes from the 

bathymetric surveys.  Sensitivity to critical bed shear stress and erodibility model parameters are 

examined with repeated simulations.   

 
Figure 1.2:  (A) 2005 satellite imagery post construction of sub-tidal bulkheads along the southern 

shore of the harbor. (B) 2017 oblique airborne imagery showing rearrangement of the flood tidal 

delta, cut across the Middle Ground, and active sedimentation of navigational channel leading into 

the Seabrook Harbor mooring area. Satellite imagery from Google Earth.  Airborne image from 

the USACE. 
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Section 2 describes the geographical setting and previous research of the HSE study area. 

Section 3 describes the modeling system and the numerical methodologies.  Section 4 examines 

how the model results compare to the observations.  Section 5 discusses the results in terms of 

sediment transport patterns and morphologic change, as well as applicability of numerical 

modeling techniques to observing seafloor evolution and modeling limitations. Section 6 

summarizes the conclusions.
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CHAPTER 2 

STUDY SITE 

 

2.1 Physical Setting 

The Hampton-Seabrook Estuary is a tidally-dominated, back-barrier estuary located in 

southern New Hampshire, USA, and is connected to the Gulf of Maine by the Hampton Inlet 

(Figure 1.1).  Two sandy barrier beaches to the north and south separate the back-barrier from the 

Atlantic Ocean, with the only ocean water exchange occurring through Hampton Inlet.  The estuary 

is typical of many systems along the western Gulf of Maine, similarly characterized by tidal 

mudflats and expansive salt marshes. 

HSE is a mesotidal system with a semi-diurnal tide ranging 2-4 m during neap and spring 

periods (e.g., McKenna, 2012). The swiftest currents occur within the inlet, reaching 1.5-2 m/s 

during peak flows with typical back bay currents in tidal channels ranging 0.5-1.0 m/s (Lippmann, 

et al., 2020).  Although the back-bay is fed by five tidal rivers, the Hampton River and Taylor 

River to the north, Mill Creek and Browns River to the west, the Black Water River to the south, 

and numerous tidal creeks, the total mean freshwater discharge is estimated to be 0.12 m3 s-1 

(NHDES, 1994), and is considered to have negligible impact on estuarine dynamics (Letter, et al., 

2005).  

Locally, HSE is an important economic and ecological center. The tidal wetlands support a 

diverse habitat, including the largest clam industry in the state (NHDES, 1994). Two harbors 

located within the estuary, Hampton Harbor to the north and Seabrook Harbor to the south, house 
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the largest commercial fishing fleet in the state, and is heavily used by recreational boaters, charter 

fishing, and whale-watching outfits (Hall-Arber, et al., 2001).  Vessel traffic is high, particularly 

in the summer months, with ample dedicated moorings and marine services. State and local 

authorities prioritize the health and function of the estuary to support the coastal NH economy 

(PREP, 2019). 

The estuary has a dynamic sediment transport regime dominated by tidally-driven currents, 

with frequent shoal reconfiguration and sediment infill of waterways and harbors (Kedzierski, 

1993). The southern domain of the estuary is less stable than the northern, with frequent migration 

of tidal channels through the primary flood shoal – locally known as the Middle Ground – where 

the Black Water River meets the back-bay (Letter, et al., 2005). Dense vegetation of the salt marsh 

reduces the momentum of the water, resulting in enhanced sedimentation of fine sands and mud 

during flood tides (Letter, et al., 2005).  Migration of tidal channels is generally slow but can 

contribute sediment to the continuously changing seabed in the back-bay. Numerous field studies 

on sediment grain size distribution indicate the estuary is largely sand dominated (0 φ to -1 φ, 2 

mm to 4 mm), particularly on the beaches, inlet and back barrier shoals (Letter, et al., 2005; Ward, 

2007; Ward, et al., 2015).  The proportion of mud (8 φ to 4 φ) increases upstream as distance from 

the inlet increases.   

Due to the mobile nature of the sediment, the USACE actively work to reduce the impact of 

sedimentation on the economic function of the estuary.  Human intervention on the natural system 

began in the 1930s with construction of the north and south jetties on either side of the inlet, built 

originally to reduce sedimentation within the inlet (discussed in Mahmutoglu, 2001). In the 1940s, 

dredging of the anchorage areas and navigational waterways began, a process that regularly 

continues today to maintain navigational safety.  In the 1990s a significant alteration to the estuary 
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was established to alleviate severe erosion of the shoreline along the southern end of the back-bay 

and infilling of the Seabrook Harbor mooring channel.  

Following hydrodynamic studies (Mahmutaglu, 2001; and discussed in Letter, et al., 2005, 

and Leung, 2007), in 2004 a coastline protection system (known as Section 227) was built by the 

USACE National Shoreline Derision Control Development and Demonstration Program in efforts 

to mitigate what is known as the River Street Cut, a reconfiguration of the tidal channel through 

Middle Ground (Figure 2.1. This breach created a new channel for the outflow of the Black Water 

River adjacent to waterfront homes along River Street. Increased velocities associated with this 

nascent channel increased erosion, threatening the stability of the private homes. Furthermore, 

velocity differences between the channel and Seabrook Harbor promoted sediment deposition in 

Seabrook Harbor, reducing anchorage possibilities for recreational and fishing vessels.  Under 

Section 227, Seabrook Harbor was dredged and the resulting sediment was used to fill in the River 

Street Cut. Subsurface bulkheads constructed of dual vinyl sheet piles were built on either side of 

the cut to retain the fill and reduce future erosion (Letter, et al., 2005).  This system was successful 

for many years and has alleviated the erosion problems along River Street; however, recently a 

new cut across the Middle Ground beginning at the end of the bulkheads resulted in significant 

infilling once again of the navigational channel that provides access to the anchorage (Figure 2.1). 

 

2.2 Previous Modeling Efforts 

As part of the Section 227 plan, the University of New Hampshire was commissioned to 

develop a hydrodynamic numerical model of the system that included a field study to calibrate and 

validate model results. This 2005 study (Letter, et al., 2005) utilized a two-dimensional, depth-

averaged, finite element hydrodynamic model, RMA-2, to evaluate changes in sea-surface heights 
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and tidal currents where the Black Water River flowed into Seabrook Harbor under different 

dredging scenarios (Mahmutoglu, 2001; Leung, 2007). Model-predicted depth-averaged currents 

and sea surface elevation due to tidal forcing during the spring tides were validated against the 

field observations. Sensitivity analysis included tuning of bottom friction and turbulence mixing 

parameters.  

The resulting model was updated by the USACE to include a two-dimensional sediment 

transport model, SED-2D, to predict longer term shoaling in the estuary (Letter, et al., 2005). The 

SED-2D model calculates both bedload and suspended sediment transport using the Acker-White 

total load equations for a single representative sediment grain size. Results indicated sediment 

deposition in the ebb lee of the piers and an increase in sedimentation at the entrance of the harbor 

(Letter, et al., 2005).  While no further numerical studies followed these initial results, the HSE 

system has been continuously monitored and dredged when needed. 

Since the advent of the modeling studies conducted in the 1990s, significant advancements 

have been made to numerical modeling systems and computing resources.  Today there are many 

publically available numerical models that couple three-dimensional hydrodynamics with state-

of-the-art sediment transport formulations (ADCIRC: Luettich, et al., 1992; FVCOM: Chen, et al., 

2003; Delft3D:  Lesser, et al., 2004; COAWST: Warner, et al., 2010).  These advancements allow 

more detailed evaluation of the hydrodynamics resolving vertically varying flow fields, 

implementation of improved understanding of sediment transport under a range of sediment size 

classes, and incorporation of man-made physical structures within the numerical grid.  Access to 

supercomputing resources allow significant extension of model simulations to much longer 

monthly to inter-annual time periods with small, O(1 s), time steps without the need for 

morphological acceleration parameters.  
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CHAPTER 3 

METHODS 

 

In this work, the Coupled-Ocean-Atmospheric-Wave-Sediment Transport (COAWST) 

modeling system is used to simulate the hydrodynamics and sediment transport (discussed later). 

Five-year hindcast simulations include non-cohesive transport formulations to investigate 

erosional and depositional patterns at HSE.  The model is calibrated with observations of vertically 

varying horizontal currents and sea surface elevation obtained over a 40-day spring-neap tidal 

cycle.  Bathymetric change simulated by the model is compared with the observed change obtained 

from two surveys separated by a five-year period (2011-2016).  

Field observations (described in section 3.1) include a 2016 single-beam bathymetric survey 

of the back-bay and inlet, and a 40-day field experiment conducted in 2017 with current profilers 

and pressure sensors deployed at 9 different locations within the estuary. The COAWST modeling 

framework is described in section 3.2.  The numerical grid and model set-up is defined in section 

3.3, and the suite of simulations described in section 3.4. 

 

3.1 Field Observations 

In October-November 2016, the bathymetry of the back bay and inlet was measured with the 

Coastal Bathymetry Survey System (CBASS; Lippmann and Smith, 2009).  The CBASS is a 1998 

Yamaha Waverunner personal watercraft equipped with a 192 kHz single-beam acoustic echo-

sounder, differential GPS, and custom navigation system. The CBASS can survey in water depths 

less than 1 m with seabed elevation accuracy of 0.07 to 0.10 m.  The high maneuverability and 
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shallow draft allowed for accurate mapping of the shallow, upstream areas, along pre-defined 

transect lines separated by 20 m (Figure 3.1).  Raw data were filtered to remove spurious soundings 

gridded to 10-30 m horizontal resolution with a Delauny triangulation and linear interpolation for 

model grid development.   

 

Figure 3.1: Survey transect lines with approximately 20 m spacing spanning the study area used 

for the 2016 shallow water mapping with the CBASS.  Colors indicate the different lines covered 

on any given day. 

 

A hydrodynamic field study was conducted from 3 November 2017 to 8 December 2017 to 

obtain currents and water levels to validate the numerical model.  Nine locations within the inlet 

were instrumented with bottom tripods and various frames (Figure 3.2).  Instrumentation deployed 

includes five acoustic Doppler current meters with pressure sensors and four other bottom mounted 

pressure sensors.  All data were averaged over the same 30 minute intervals for the duration of the 

experiment. 
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Currents and pressure were measured with two Teledyne RD Instruments 1200 kHz 

Workhorse acoustic Doppler current profilers (ADCP) with pressure sensors, the first placed just 

seaward of the inlet in 6.4 m water and the second inside the inlet in 3.5 m water depth, close to 

the flood delta tidal shoal.  Currents and pressures were sampled at 1 Hz in 0.5 m depth bins 

spanning the water column. A Sontek Argonaut ADCP was deployed in the upper reaches of Mills 

Creek in 3.7 m water depth, and also sampled currents at 1 Hz in 1 m depth bins. A Nortek single-

point Aquadopp acoustic Doppler velocimeter (ADV) was deployed in about 3.8 m water depth 

upstream in Taylor River and measured velocities and pressures about 70 cm above the bed.  A 

Nortek AquaPro ADCP was placed near the Rt. 286 Bridge in the Black Water River and recorded 

velocities at 1 Hz in 25 cm vertical bins (no pressure sensor record was recovered from the 

instrument). 

In addition to the pressure records obtained from the ADCPs and ADV, four Sea-Bird 

Electronic instruments (3 SBE-39 and 1 SeaCat16+) were placed in the Taylor River, Mills Creek, 

Black Water Rivers, and near Chouinards Pier in the back-bay in water depths of 3.6 m, 2.8 m, 1.7 

m, and 2.5 m, respectively.  All pressure records were used to estimate the tidal amplitudes and 

were not used for absolute mean sea surface elevations (i.e., no set-up of the water levels was 

considered). 

Sediment grain size was determined from 112 surface grab samples collected from 2005 to 

2016 as part of ongoing studies of sediment composition in the HSE, including Hampton and 

Seabrook Beach (Ward, et al., 2015; Figure 3.3). These data are used to establish the heterogeneity 

of sediment within the study area by defining the spatially variable initial grain size characteristics 

used in sediment transport formulations.  
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Figure 3.2: Instrument locations within study area.  A – 1200 kHz RDI ADCP; B – 1200 kHz RDI 

ADCP; D – SBE39 pressure sensor; E – 3000 kHz Sontek Argonaut ADCP; F – SBE30 pressure 

sensor; G – Nortek Aquapro ADV; H – SBE39 pressure sensor; I – 1000 kHz Nortek Aquapro 

ADP; J – SBE19 and Nortek Vector ADV. 
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Figure 3.3: Locations of sediment grab samples within study area.  Corresponding collection dates 

listed in the legend. 

 

 

3.2 Numerical Model  

The COAWST numerical modeling system (Warner, et al., 2010) couples four open-sourced 

models – the hydrodynamic Regional Ocean Model System (ROMS; Haidvogel et al., 2008; 

Shechepetkin and McWilliams, 2005), the atmospheric Weather Research Forecasting model 

(WRF; Skamarock, et al., 2005), the wave model Simulating WAves Nearshore (SWAN; Booij, 

et al., 1999), and the Coastal Sediment Transport Model (CSTM; Warner, et al., 2008a) through 

the Modeling Coupling Toolkit (MCT; Warner, et al., 2008b).  Wetting and drying algorithms 

allow for the inundation and dewatering of model cells (Warner, et al., 2013).  In this work only 

ROMS and CSTM were utilized as ocean waves and winds were not considered in the model.  

Surface gravity waves emanating from offshore are refracted laterally over the ebb shoals along 

the southern end of the inlet and strongly attenuated through the inlet mouth, and were assumed to 
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have relatively little influence on the back-bay sediment transport (the focus of this study).  

Sediment transport along the adjacent beaches is dominated by waves and wave-driven currents, 

but was not included in the present model.  In essence, the sediment transport along the beach was 

assumed to have no influence on the sedimentation of the harbor over the 5-year study. Winds over 

the back-bay area can generate waves but these tend to by small and were also assumed to produce 

negligible seabed orbital velocities compared to the strong tidal currents that dominate the 

hydrodynamic flows.   

ROMS models have been widely used in coastal applications including a number of estuaries 

similar to HSE and shown to well-predict the tidal hydrodynamics (Warner et al., 2005; Ganju, et 

al., 2017, Cook, et al., 2019). In this study, the coupled hydrodynamics (ROMS) and sediment 

transport (CSTM) models in COAWST are used to hindcast the effect of tidal forcing on erosion 

and deposition in HSE over the five-year study period.  Formulation of the governing equations 

for the ROMS and CSTM model are summarized below (details can be found in Warner, et al., 

2008a, 2010).  

Regional Ocean Modeling System 

ROMS is a three-dimensional, free surface, terrain following, finite difference, ocean 

circulation numerical model that solves the Reynolds-averaged Navier-Stokes (RANS) equations 

using the hydrostatic and Boussinesq assumptions (Haidvogel, et al., 2008). The equations are 

discretized into an orthogonal Arakawa C grid in the horizontal direction and on sigma (terrain-

following) coordinates in the vertical. The barotropic and baroclinic hydrodynamic components 

are propagated forward in time using a split-explicit time-stepping algorithm (Shchepetkin and 

McWilliams, 2005). Within each baroclinic time-stepping interval there are a finite number of 

barotropic time steps that each solve the depth-integrated equations of motions.  
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The ROMS modelling framework is rooted in adaptability to fit the physical problem 

described, thus the structure allows multiple choices to solve many model components. There are 

several options for advection schemes and boundary conditions (Warner, et al., 2010). 

Furthermore, treatment of physical processes that vary over temporal and spatial scales not 

resolved by the model domain – Reynolds stresses, turbulence processes, and bottom boundary 

layer dynamics – are parameterized through selection of eddy viscosity, KM, and horizontal and 

vertical diffusivity, KH and KV, model coefficients.   

Momentum, scalar advection, and diffusive processes are solved using transport equations, 

and the density field is determined using an equation-of-state that accounts for temperature, 

salinity, and suspended sediment concentrations. The governing momentum equations, continuity 

equation, and scalar transport equation in Cartesian horizontal and sigma vertical coordinates are 

well known and described in detail in Warner, et al. (2010).  Turbulence closure schemes utilized 

include the Mellor-Yamada 2.5 and generic length scale (GLS) methods (Warner, et al., 2005; 

Shchepetkin and McWilliams, 2005).   

The shear stress at the seafloor has a first order effect on the hydrodynamic and sediment 

transport behavior. The bottom stress in the horizontal directions defines the bottom boundary 

conditions in the RANS momentum equations. The effective bottom stress influences both the rate 

of sediment resuspension into the water column, and the bedload transport rate (Haidvogel, et al., 

2008; Warner, et al., 2008a).  How the sub-grid scale processes are parameterized in the bottom 

boundary layer (BBL) has important consequences to the overall solution of the numerical model. 

Within ROMS, description of the BBL processes is differentiated by analytical drag-coefficient 

expressions, or formulations representing wave-current interactions over dynamic seabed 

roughness elements.  
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Bottom stress, 𝜏𝑏, is parameterized in the bottom grid cell by a quadratic drag coefficient, 

𝐶𝐷, such that  

 𝜏𝑏 =  𝐶𝐷𝑈|𝑈| (2) 

where |𝑈| =  √𝑢2 + 𝑣2 is the total flow velocity with u and v the orthogonal velocity components 

in the x and y directions, respectively.  The vertical variation in flow velocity is assumed to follow 

a classic logarithmic profile, 

 |𝑈| =  
𝑢∗

𝜅
ln (

𝑧

𝑧0
) (3) 

where the friction velocity 𝑢∗ =  √|𝜏𝑏𝑥| + |𝜏𝑏𝑦| , 𝑧 is the elevation above the seafloor (in this case 

the mid-elevation point of the bottom grid cell), 𝜅 = 0.41 is von Karman’s constant, and 𝑧0 is the 

bottom roughness length (in m).  The kinematic bottom stresses in the x and y directions, 𝜏𝑏𝑥 and 

𝜏𝑏𝑦 are given by 

 |𝜏𝑏𝑥| =  
𝜅2𝑢√𝑢2+𝑣2

𝑙𝑛2(
𝑧

𝑧0
)

 (4) 

 |𝜏𝑏𝑦| =  
𝜅2𝑏√𝑢2+𝑣2

𝑙𝑛2(
𝑧

𝑧0
)

 (5) 

In the above formulation, roughness length 𝑧0 is an explicitly defined bottom roughness 

length scale that parameterizes the drag on the flow associated with grain roughness, saltating 

grains, and subgrid scale bottom topography. When representing the BBL in the lowest grid cell 

with a constant drag-coefficient, 𝑧𝑜 also remains constant in time, but can be uniform or spatially 

distributed within the model domain. More complicated methods (not used herein) include wave 

and current interactions that determine the BBL and include spatially and temporally updating 

bottom roughness formulations (Ganju and Sherwood, 2010). 
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The interior (back-bay) lateral boundary conditions were defined as closed, and the ocean 

boundary defined by an open boundary condition for sea surface height, velocities, and particles. 

An implicit Chapman condition (Chapman, 1985) was applied to sea surface height in conjunction 

with a Flather condition (Flather, 1976) for 2D momentum to account for the wave motions (tides) 

that exit the domain at the shallow water phase speed.  Radiation and gradient boundary conditions 

eliminate reflections of velocity components that deviate from the gravity wave relationships and 

allow tracers and momentum to leave the domain (Marchesiello, et al., 2001).  

Community Sediment Transport System 

The CSTS model provides routines for sediment transport, and feeds bottom stress 

calculations and updated bathymetry back to the hydrodynamic components in ROMS. 

Formulations account for both suspended sediment and bedload transport of a user-defined 

discretization of sediment grain size classes, as well as a dynamic sediment bed tracking time-

evolving morphology and stratigraphy. While sediment classes are distinguished between cohesive 

and non-cohesive sediments, each corresponding to individual formulations (Tarpley, et al., 2019), 

this work only considers non-cohesive sediments.   

The sediment module is broken down into three primary components: non-evolving 

individual grain sizes and their attributes, a two-dimensional array describing the evolving bulk-

properties of the sediment bed, and a three-dimensional sediment bed. Both the two-dimensional 

and three-dimensional arrays are updated each time-step, while individual grain size characteristics 

remain constant and uniform.  Each defined sediment grain size is assigned a diameter, density, 

fall velocity, critical shear stress for erosion, and erodibility constant.  The individual grain 

attributes determine the two-dimensional bulk properties of the sediment bed, including mean 

grain diameter, mean density, mean settling velocity, and mean critical shear stress for erosion. 
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Sub-grid morphology (small-scale bedforms) contribute to the bottom roughness length scale and 

are parameterized with bulk properties of the seabed.  

The sediment bed itself is a three-dimensional array with a user-defined number of layers 

beneath each horizontal model cell. Each cell of each layer is initialized by the user with a porosity, 

bed thickness, age, and fraction of  defined sediment classes. This information, combined with the 

mean density of the sediment classes make up the mass of each cell.  Bed layers evolve with each 

time-step via bedload and suspended sediment transport. The amount of sediment available to 

bedload transport, exchanged horizontally between the top layers of the bed, is limited to the 

amount of mass in the top layer. Suspended transport of sediment, exchanged between the top bed 

layer and the water column, is limited to the availability of sediment mass in the active layer 

thickness, 𝑧𝑎, calculated at each time-step following Harris and Wiberg (1997)  

 𝑧𝑎 = max[0.007(𝜏𝑠𝑓 − 𝜏𝑐𝑒)𝜌0, 0] + 6.0𝐷50  (6) 

where 𝜏𝑠𝑓 is the maximum bottom shear stress,  𝜏𝑐𝑒 is the averaged critical shear stress for erosion 

(determined by the grain size; described later), and 𝐷50 is the median grain diameter of the surface 

sediment. If the bed layer is thicker than 𝑧𝑎, its size is not altered. However, if the top layer is less 

than the computed active layer thickness, then sediment mass from deeper layers in entrained into 

the top layer until the top layer is equal to 𝑧𝑎. Thus, the top layer is always at least equal to 𝑧𝑎. In 

this way, the stratigraphy of the sediment bed can be tracked. In the numerical simulation, the 

active-layer thickness 𝑧𝑎 is calculated first.  Then after erosion and deposition are accounted for 

in a given sediment bed cell, the two-dimension sediment characteristics are updated. 

Suspended sediment is transported by solving the advection-diffusion equation with an 

additional source/sink term to account for sediments settling out of the water column and the 
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vertical flux of sediment into the water column, represented by the erosion flux, 𝐸𝑠 (Warner, et al., 

2008a), given by 

 𝐸𝑠 =  𝐸0(1 − 𝜑)
𝜏𝑠𝑓−𝜏𝑐𝑒

𝜏𝑐𝑒
, 𝑤ℎ𝑒𝑛 𝜏𝑠𝑓 >  𝜏𝑐𝑒 (7) 

Erosion flux represents the mass of sediment resuspended into the water column (in kg m-2 s-1), 

controlled by two explicitly defined coefficients: an empirical bed erodibility constant 𝐸0 and the 

sediment bed porosity 𝜑.  

For advection of sediment and other tracers (i.e., temperature), ROMS includes numerous 

high-order accuracy, non-oscillatory, and mass conserving schemes. Amongst these include two 

positive definite advection schemes – multidimensional positive definite advection transport 

algorithm (MP-DATA) and the high-order spatial interpolation at the middle temporal level 

coupled with a total variation diminishing scheme (HSIMT-TVD), both of which are suited for 

transport of suspended sediment (Wu and Zhu, 2010). In the vertical, advection is calculated with 

a piece-wise parabolic method, including a weighted non-oscillatory scheme (Warner, et al., 

2005). 

Within the CTSM, bedload transport is calculated for unidirectional flow following the 

Meyer-Peter Mueller (1948) formulation, or for the combined effect of waves and currents 

following the Soulsby and Damgaard (2005) formulation.  Both routines are a function of sediment 

density, grain size, and critical shear stress, where non-dimensional sediment transport rates, 𝛷, 

are calculated for each defined grain-size and then represented by a quantitative bed-load transport 

rate, 𝑞𝑏𝑙 

 𝑞𝑏𝑙 = 𝛷 √(
𝜌𝑠

𝜌
− 1) 𝑔𝐷50

3 𝜌𝑠 (8) 
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where (
𝜌𝑠

𝜌
− 1) is the submerged sediment weight with  the density of water and s the density 

of the grains, and 𝐷50 is the median grain diameter. Total bedload flux for each sediment class is 

limited to the available mass in the top bed layer. At each time-step, flux differences account for 

the change in sediment mass in the bed due to transport. Here, the Meyer-Peter Mueller 

formulation is considered. 

Under the Meyer-Peter Mueller routines, the magnitude of the non-dimensional transport 

rate, 𝛷, is calculated for each sediment class at the cell faces as a function the non-dimensional 

shields parameter, and then interpolated to cell centers following Soulsby and Damgaard (2005) 

and detailed in Warner, et al. (2008a).  The transport rate is given by 

 𝛷 = max [8(𝜃𝑠𝑓 − 𝜃𝑐)
1.5

, 0] (9) 

where 𝜃𝑐 = 0.047 represents the critical Shields parameter.  𝜃𝑠𝑓 is the non-dimensional Shields 

parameter given by 

 𝜃𝑠𝑓 =  
𝜏𝑠𝑓

(
𝜌𝑠
𝜌

−1)𝑔𝐷50

 (10) 

where 𝜏𝑠𝑓 is the total magnitude of the skin-friction component of the x and y components of the 

bottom stress,  

 𝜏𝑠𝑓 =  √𝜏𝑏𝑥
2 +  𝜏𝑏𝑦

2  (11) 

 

3.3 Model Setup  

Within the COAWST framework, ROMS and CSTM routines are used to investigate seafloor 

morphology change to HSE over a five-year time span. The model solution is forced by 

observations of sea surface heights on the eastern (open ocean) boundary of the domain in the Gulf 

of Maine. Creating a numerical model for HSE requires defining the horizontal and vertical 
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resolution of the domain, establishing an initial bathymetry, applying appropriate forcing, and 

specifying boundary conditions. Due to the abundance of methods to parameterize physical 

processes in both ROMS and CSTM routines, there are many explicitly defined coefficients and 

parameters that can be tuned to represent the physical processes of any specific study area. 

Consequently, creating a feasible model becomes an iterative process whereby a model simulation 

is performed many times to examine sensitivities to certain variables by comparing the result with 

field observations. 

Simulations were performed on a rectilinear grid with 30 m horizontal resolution (Figure 

3.4), and eight vertical, terrain-following, sigma layers. The domain encompasses the tidally 

inundated HSE including barrier beaches and inlet, and extends seaward roughly 2 km. Depths 

offshore extend to 30 m (NAVD88) and range 0-6 m within the back-bay while allowing for 

inundation of subaerial profiles along the water’s edge (accounted for with wetting and drying 

algorithms). The model domain also includes upland elevations up to 20 m.  

Vertical resolution varies in the domain and depends on the water depth (i.e., the depth 

changes but the number of vertical layers stays the same).  In shallow water applications, this 

transformation function behaves like equally spaced sigma coordinates when ℎ(𝑥, 𝑦, 𝑡) < ℎ𝑐, 

absolving unnecessarily high resolution and the associated CFL limitation and reduces pressure 

gradient errors (Shchepetkin and McWilliams, 2005).  The vertical transformation and stretching 

function for simulations in HSE are configured to enhance bottom boundary resolution, as well as 

limit violations of the CFL condition or inaccuracies in the pressure gradient.  The vertical 

discretization of the water column is updated each time-step as total depth is changing due to tidal 

variations in the sea surface elevation and erosional/depositional processes at the seabed. 
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Figure 3.4: Model domain for the simulations (red bounding box).  Grid resolution is 30 m, with 

8 vertical sigma layers.  The model is forced along the right-hand boundary. 

 

Initial Bathymetry and Bed Characteristics 

The reliability of a numerical model solution depends on the accuracy of the input 

bathymetry and forcing data; without good initial bathymetry, simulations will not accurately 

reproduce the flow.  To best represent bathymetry for the HSE study area, seven different surveys 

were merged together into a single, comprehensive grid (Figure 3.5). Data sources and their 

respective spatial coverage are described in Appendix A. Herein the ‘bathymetry grid’ collectively 

refers to both ocean and land elevations. Location of coastal structures within the study domain, 

such as jetties, are accounted for in the set-up of the initial grid. 



25 
 

 

Figure 3.5: Bathymetry of the study area from composite of seven different surveys (described in 

Appendix A).  Elevations are relative to the NAVD88 vertical datum (approximately mean sea 

level). The red line indicates the 0 m contour.  Color scale for depths range between +/- 20 m. 

 

Bed roughness parameters zo are also established with bottom conditions in the bathymetry 

grid. zo is an independent, spatially varying parameter used in the sediment transport equation (3) 

that determines the velocity profile within the bottom boundary layer important to both dissipation 

of the flow and initiation of sediment transport. A spatially varying bottom roughness is established 

in different domains of higher and lower bed roughness by assigning a subset of grid cells within 

the domain to a prescribed value. These points are then spatially interpolated onto the entire input 

bathymetry grid.  Marsh regions are given a higher bed roughness to account for effects of 



26 
 

subaquatic vegetation, whereas the inlet, flood tidal delta, and tidal channels and creeks are given 

values roughly dependent on their grain size. 

 

𝑑50 
(mm) 

𝑤𝑠 
(mm/s) 

𝜌𝑠𝑒𝑑 
kg/m3 

𝐸𝑎 
kg/m2/s 

𝜏𝑐𝑟𝑖𝑡 
N/m2 

0.03 4.9 2650 5e-5 0.39 

0.15 12 2650 5e-5 0.081 

0.75 90 2650 5e-5 0.03 

3.0 210 2650 5e-5 0.043 

0.25 30 2650 5e-5 3 

Table 1: Sediment grain size and associated properties defined in sediment transport module in 

model setup. Grain sizes are determined from grain size distribution curve from sediment grab 

samples. The fifth grain size (𝑑50 = 0.25 mm ) represents the hardened structures within the 

study area and is given a high critical shear stress to inhibit erosion. 

 

 The heterogeneous sediment distribution at Hampton is represented by five different 

sediment size classes, each defined by a grain size diameter 𝑑50, critical shear stress for erosion 

𝜏𝑐𝑟𝑖𝑡, fall (settling) velocity 𝑤𝑠, and sediment density 𝜌𝑠𝑒𝑑, and erosion rate parameter, 𝐸𝑎,  (Table 

1).  Settling velocity of each grain size is calculated as a function of the immersed weight of the 

grain, drag coefficient, CD, and particle Reynolds number, Re, each given by 

 𝑊𝑠 =  √
4(𝜌𝑠𝑒𝑑−𝜌𝑤)𝑔𝑑50

3𝜌𝑤𝐶𝑑
 (12) 

 𝐶𝐷 =  1.4 +  
36

𝑅𝑒
 (13) 

 𝑅𝑒 =  𝑊𝑠
𝑑50

𝜈
 (14) 

where 𝜌𝑤 is density of water, and 𝜈 is the kinematic viscosity. Critical shear stress, crit, for 

incipient motion is calculated based on the Soulsby and Whitehouse (1997) shields fit curve, using 

the dimensionless grain size, d*, 

 𝜏𝑐𝑟𝑖𝑡 =  
0.24

𝑑∗
+ 0.55(1 − 𝑒(−0.020∗𝑑∗)) (15) 



27 
 

 

 𝑑∗ =  𝑑50 (
𝑔(

𝑝𝑠𝑒𝑑
𝑝𝑤

⁄ −1)

𝑣2 )                                             (16) 

The erosion rate parameter is based on similar sediment transport studies conducted in back-barrier 

estuaries along the United States East Coast (Ganju, et al., 2017). Grain sizes are based on a 

cumulative grain size distribution curve from the 112 sediment grab samples.  

Each grid cell of the bottom boundary grid is initialized with a fractional distribution of grain 

size for each size class (Figure 3.6). Herein, grain size distribution is based on depth, with 

shallower and tidal flats consisting of finer silts and clays. The upper reaches of the tidal creeks 

were altered to be dominantly mud (silts and clays).  Classifying the grain size distribution by 

depth was deemed to be an efficient qualitative method to create a reasonable representation of 

grain size heterogeneity in the system. 

There is no established routine within COAWST to represent hardened shorelines within a 

model domain. However, in HSE three different shoreline stabilization structures are present, 

including a jetty bordering the north side of the inlet, half-tide jetty bordering the south side of the 

inlet, and the subsurface bulkheads in the southern end of the Seabrook side to the harbor (Figure 

3.6). These structures have an integral influence on the circulation and local stabilization of the 

sediments. To account for the effect of these hardened shorelines on hydrodynamics and sediment 

transport within HSE, the bulk properties of the sediment bed layer are configured to represent 

permanent properties of a hardened (non-erodible) coastal structure.  

To represent the hardened structures, a fifth, non-cohesive, grain size class was introduced 

in which the grain class is characterized by a high critical shear stress to inhibit erosion (𝜏𝑐𝑟𝑖𝑡 =

3.0 𝑁 𝑚−2).  In locations of the hardened structures, the sediment size class represents 100% of 

the corresponding bed cell. The geographical extent of the Hampton Jetty, Seabrook half-tide jetty, 
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and harbor bulk heads impinging on the Middle Ground are determined through a GIS shape layer 

obtained from the New Hampshire Department of Environmental Services (NHDES) and from 

satellite imagery, and matched to the corresponding grid cell locations.  

 

 

Figure 3.6: Initial d50 grain size map based on smoothing of the observed distribution from the 

grab samples and used for the initial bottom boundary condition in the numerical model. Sub-tidal 

and hardened structures are represented with solid black pixels. 

 

Apart from where hardened structures are located, the sediment bed is defined to consist of 

a single layer with thickness of 5 m and a porosity of 0.5 (following Warner, et al., 2008a). At the 

hardened locations, the bed is set to a thickness of 0.001 m to discourage sediment from settling 

and accumulating on the structures. 

 

Forcing Conditions 
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The hydrodynamic model (ROMS) is forced at the eastern open boundary with sea surface 

height observations (Figure 3.7) obtained from the NOAA Tide Station 8423898, located roughly 

20 km north at Fort Point, NH, the entrance to the Piscataqua River (NOAA, 2020).  Verified sea 

surface elevation observations are averaged continuously over six minute intervals, referenced to 

the NAVD88 vertical datum, and publically available through NOAA’s Center for Operational 

Oceanographic Products and Services (CO-OPS) webpage (https://tidesandcurrents.noaa.gov/).  

 

Figure 3.7: Time series of water level elevations relative to MSL used to force the model. Blue 

represents observed sea surface height and the red indicates subtidal motions due to winds and 

atmospheric pressures. Subtidal data is calculated by subtracting the dominate tidal constituents 

from the observed signal. 

 

Water level observations account for the net forcing of tides and weather-driven sub-tidal 

motions due to winds and atmospheric pressure changes.  Comparison of sea surface height 

observations at Fort Point from 16 Sep to 18 Oct 2011 compare well to those obtained from the 

pressure sensor on the ADCP deployed just seaward of Hampton Inlet (Figure 3.8) but with a phase 
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difference of approximately 5-8 deg arising from the spatial separation of the two gauges.  Water 

level observations obtained from the Fort Pt. tidal station are converted to netCDF formatted files, 

and used to drive the model for the 5-year simulations (from 1 September 2011 to 31 December 

2016), as well as a 40-day simulation (25 October 2017 to 10 December 2017) used to compare 

with the field observations of currents and water levels and verify the hydrodynamics in the model.  

To account for model spin-up time, observational data is ramped up from still water to the full 

range of water levels using a hyperbolic tangent function spanning 5 days. 

 

3.4 Model simulations 

Model simulations are conducted for two cases: (1) 40-day model runs for comparison 

against 2017 field observation data to verify that the hydrodynamics are adequately simulated, 

with iteration to determine the sensitivity to viscosity and bottom roughness parameters; and (2) 

five-year model runs beginning September 2011 to simulate longer sediment transport patterns in 

HSE and subsequently compare with observed bathymetric change patterns. Using ideal 

parameters identified through the 40-day model verification runs, five-year sediment transport 

simulations are initiated to estimate the morphologic change in HSE over longer, multi-year time-

scales. Models are ran on a Crap XE6m-200 supercomputer.  
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CHAPTER 4 

RESULTS 

 

4.1 Hydrodynamics 

Hydrodynamic data to validate the COAWST model runs were collected between 3 

November and 6 December 2017, encompassing an entire spring-neap tidal cycle. Vertical 

variation of the flow is validated against observations from Station B (Figure 3.2), within the 

main portion of the harbor. In this comparison, modeled currents are transformed from the sigma 

coordinate system into the observational Cartesian coordinate system with elevations relative to 

mean sea level (MSL) and corresponding to bin elevations of the Station B ADCP.   

Time series comparison of the north-south and east-west velocity components at 5 

elevations relative to MSL are shown in Figure 4.1.  The model accurately reproduces variations 

in the currents throughout the water column, with RMS differences between observation and 

model simulations at all bin elevations of 20.54 and 17.49 cm/s for east-west and north-south 

velocity, respectively.  The RMS errors amount to about a 11-13% error in velocity, similar to 

other model-data comparisons for the nearby Great Bay Estuary (Cook, et al., 2019).  Errors in 

the model arise from model errors, but also because the bathymetry used in the model 

simulations was obtained in 2016, whereas the observations were deployed in 2017, about 1 year 

later.  Evolution of the harbor sedimentation patterns between 2016 and 2017 likely resulted in 

some change in the current speeds and directions at the sensor location between 2016 and 2017. 

Considering the magnitude of the bathymetric evolution in the harbor over 5 years from 2011-

2016 (shown later in Figure 4.2) was about 20-33% of the water depth near sensor B location, we 
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would expect about a 4-7% change in depth from 2016-2017 (assuming a linear extrapolation in 

erosion/accretion rate).  This change in depth would be expected to have a small effect on the 

currents, resulting in higher RMS errors.   

Cross-spectra between observed and modeled sea surface elevation, and depth-averaged 

east-west, and north-south currents were computed and are shown in Figure 4.2 with the energy 

density spectra for the model and data (upper panels), coherency spectra (middle panels), and 

relative phase spectra (lower panels). Observations and model results show similar energy 

distribution across the frequency range of the spectra, and reveal the dominant M2 semi-diurnal 

tidal constituent induced by the resonance in the Gulf of Maine (Garrett, 1972), as well as the 

diurnal tidal constituents (O1 and K1) and the over-tides (M4, M6, etc.). High coherence is 

observed at the smoothed tidal frequencies for the sea surface elevation time series, as well as for 

the orthogonal velocity components.  The phase spectra show near zero phase for the dominant 

tidal components in sea surface elevation records, as well as across frequency space for the 

velocities.  These results suggest that the model is well able to reproduce the dominant flows and 

water levels within the harbor over the spring-neap tidal cycle, and provide confidence that the 

modeled water levels and velocities within the harbor for the 5-year simulations are reasonable.   

Modeled currents in the narrow tidal channels did not compare well with the observed 

currents obtained upstream in the Black Water River (I) and Mills Creek (Station E).  This result 

is likely due to coarse spatial grid scales in the model (of 30 m) not well resolving the details of 

the flows in the narrow channels. The modeled bed shear stresses are likely under-predicted as 

the smoothed bathymetry with coarse grids spreads the volume flux out over larger areas 

resulting in weaker velocities.  The model also cannot resolve the near-vertical banks of the salt 

marshes, and only approximates the flow fields.  As a consequence, the erosion and depositional  
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Figure 4.1: Time series comparison of modeled currents (red solid line) and observations (black 

dots) from Station B as a function of elevation relative to MSL.  (upper panel) North-south 

velocity component. (bottom panel) East-west velocity component.  Modeled currents were 
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transformed from sigma coordinates to the elevation of the ADCP bins.  RMS values range 20.54 

and 17.49 cm/s. 

 

patterns in the salt marshes and upstream tidal channels are not expected to well simulate the 

sediment transport in those areas.  However, the changes to the salt marsh channels and upstream 

sedimentation patterns are not large, and the limitations of the model upstream would be 

expected to have minor impact on the sediment transport patterns in the harbor where the 

velocities are well modeled.  Significantly higher resolution models would be needed to model 

the transport in the salt marshes and tidal creeks, resulting in significant (orders of magnitude) 

more computational resources, and are considered beyond the scope of the present study. 

Time-series comparisons of sea surface elevation between model simulations and 

observations for the 30 day runs (shown in Figure 4.3) are also used to verify model results at 

stations A, B, D, E, F, G, and H (locations shown in Figure 3.2).  RMS errors between model and 

observed water level range between 13.61 cm and 11.18 cm, indicating that the model accurately 

resolves variations in sea-level height throughout the entire estuary.  These RMS errors amount 

to about a 3% error in estimating water levels, also consistent with results from Cook, et al. 

(2019) for the Great Bay.  Miss-matches between the modeled and observed water level 

fluctuations arising from the 1-year time offset between bathymetric data collection and model 

simulations are not expected to be large as the details of the water levels are not strongly affected 

locally by the bathymetric irregularities (an assumption borne out by the small percent errors in 

water level time series at all locations).  It should be noted that data are shown in Figure 4.3 from 

Station I (located up in the tidal channel of Black Water River), but are not considered in the 

RMS calculations because the pressure record was offset and did not record water levels at lower 

stands of the tide.
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Figure 4.2: Cross-spectra for observed and modeled results from Station B located in the back-bay of the study area. (left panel) shows 

sea surface election. (center panel) depth-averaged east-west velocity. (right panel) depth-averaged north-south velocity. Confidence 

interval is shown in the upper center and right panel. 

3
5
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 Comparison of energy dissipation of the M2 tidal wave from the inlet to the upper 

reaches of Hampton River tributary is considered. Using harmonic analysis with T_TIDE 

(Pawlowicz, et al., 2002), amplitude decay and phase lags between modeled and observed water 

level measurements are compared (Figure 4.4). Following methods described in Cook, et al. 

(2019), the dominant M2 tidal constituent energy is represented by the linear gravity wave 

relation, 

 𝐸 =  
1

2
𝜌𝑔𝐴2 (17) 

 

where E is the total energy per unit surface area, A is the amplitude of the M2 tidal constituent, g 

is gravity, and density of seawater, 𝜌, is constant.  Modeled (lines) and observed (symbols) 

energy decay and phase change of the principal M2 tidal constituent are shown in Figure 4.4 for 

the tidal wave propagating along transects following the channel from the estuary mouth to the 

upper reaches of Hampton River (purple), Mill Creek (yellow), and Black Water River (orange). 

The energy and phase are normalized by the value observed just offshore the estuary mouth at 

Station A (Figure 5).  The energy decay (tidal dissipation) and corresponding phase changes are 

small for all channels, and indicate that the tidal wave is nearly completely reflected and acts as a 

dominantly standing wave. The difference between total energy decay at the upper reaches of the 
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tidal creek between modeled and observed results is small (about 3 %), indicating that the model 

simulations accurately capture the tidal behavior throughout HSE.  

Figure 4.3: Comparison of sea surface elevation time series from model simulations (red) and 

observations (black) for Stations A, B, D, E, F, G, H, and I. RMS values range 13.61 cm and 

11.18 cm Observations from Station I did not include values for lower stands of the tide and are 

not included in the RMS calculations. 

 

Bottom roughness values in the model are iterated during model simulations and evaluated 

by comparing best fits of model tidal analysis to observed energy dissipation of the M2 tidal 

wave. Model results indicate that model simulations best reflect observed conditions with a 

spatially variable bottom roughness, zo, rather than a single value. Values of zo ranged from 10-6 

near the estuary mouth (Stations A and B) to 10-3 upstream near Stations I, E, and G, and were 

spatially smoothed onto the model grid. This result is not surprising given the heterogeneous 

nature of the seafloor with generally coarser sands near the inlet transitioning to finer silts and 
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clays in the upper reaches of the tidal channels where the flows diminish.  Iterating over different 

eddy diffusivity constants showed no significant difference in M2 tidal dissipation, and a single 

value of 0.00 was used for all calculations. 

 

Figure 4.4. Spatial variation of the normalized M2 tidal energy and phase change relative to the 

offshore location of Station A.  Model values are solid and dashed lines with colors indicating 

different channels (red – southern Black Water River channel; yellow – central Mill Creek 

channel; purple – northern Hampton River channel).  Observations are indicated with the triangle 

symbols with colors corresponding to the different channels. 

 

4.2 Geomorphic Change 

Measured bathymetry surveyed in 2016 is compared directly to the 2011 bathymetry 

(Figure 4.5) by subtracting the 2016 survey from the 2011 initial bathymetry at model grid 

points. Significant observed changes to the bathymetry include regions within the flood tidal 

shoal where new channels are cut along and across the Middle Ground, infilling of the 
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navigational channel leading to the southern Seabrook Harbor, channel development of the 

Hampton Harbor and northern channel leading to the Hampton River, and rearrangement of 

sediments within the Inlet.  Net change in water depths range +/- 2 m and are shown by the color 

bar in Figure 4.5.  Changes to the bathymetry seaward of the inlet mouth are not known as the 

2016 survey did not extend seaward into the Gulf of Maine.  Changes to the bathymetry in the 

narrow channels further up the estuary are generally much less than in the harbors and Middle 

Ground, but do indicate some (subtle) evolution in the erosional and depositional patterns. 

 

Figure 4.5: Observed changes to seafloor bathymetry between 2011 and 2016.  ΔZ determined 

by subtracting the 2016 survey from the 2011 initial bathymetry grid with elevation change 

indicated by the color bar (in m).  Regions of deposition are shown in red, and erosion in blue.   

 



40 
 

The end result of the five-year model simulation of sediment transport in HSE is 

subtracted from the initial bathymetry to show the changes produced by the model (Figure 4.6).  

The scale of the change in elevation of the seabed in Figure 4.6 is the same as that for Figure 4.5 

(showing the observed changes).  The model also shows changes to the flood tidal delta with 

new channels cut along and across the Middle Ground very similar in character as that observed, 

and shows the strong infilling of the navigational channel leading to Seabrook Harbor.  The 

magnitude of the change in depths is quite similar to the observed values.  Model results for the 

northern channel heading to the Hampton River show development of the channel similar in 

character to the observations.  In particular, there is a deepening of the channel to the south and 

to the north, with an elongated shoal developing between the two channels.  The observed strong 

deepening of the channel to the north-east (nearer to the Hampton moorage area) is not 

reproduced by the model.  Although the areas of erosion and deposition are not precisely aligned, 

the general sedimentation behavior is well modeled, and considered a reasonable result 

considering integration of incremental changes occurring at very small time steps (~1 s) over the 

long, multi-year simulation period.   

Although the model also shows rearrangement of the Hampton Harbor flood tidal delta 

and main channels with depth changes and morphological evolution similar to the observed 

behavior, upstream in the narrow tidal creeks and in the inlet itself the erosional and depositional 

patterns that deviate more substantially from the observations. This is not surprising considering 

that the model grid does not resolve the flow velocities or bed stress in the narrow channels or 

steep banks of the salt marsh areas.   

Within the inlet itself, the depth changes predicted by the model show significant 

accretion on the north side of the inlet not shown in the data, and patterns of sedimentation of the 
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main channel not precisely aligned with the observed changes.  There are well-known sand 

waves that migrate into and out of the inlet on both inter-annual and spring-neap tidal cycles with 

heights of 1-2 m and wavelengths of 20-40 m, as well as fields of dynamic mega-ripples (0.1-0.3 

m amplitudes and 1-10 m wavelengths) that populate the inlet bathymetry (McKenna, 2013).  

These bedforms are not well modeled with the relatively coarse 30 m grid, and the transport is 

only approximated with the CSTM model parameterizations.  As well, the bathymetric surveys 

smoothed to the 30 m grid also do not well capture those changes.  

 

 

Figure 4.6: Modeled changes to the bathymetry over a five-year period.  Same format and color 

scale as for the observations shown in Figure 4.5 
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Outside the inlet mouth extending 1.5 km offshore, the model shows significant evolution 

of the ebb tidal delta with apparent large undulations of the seabed with scales of 100-500 m and 

depth changes exceeding +/- 2 m.  As there were no bathymetric surveys of the ebb tidal shoal in 

2016, it is not known if this evolution is occurring.  Although ebb-tidal shoals are well known to 

evolve over time with strong rearrangement by the strong tidal flows in many other areas with 

similar tidal currents (e.g., at Oregon Inlet, NC; McNinch and Humberston, 2019), the 

sedimentation patterns and evolution outside the inlet would be expected to be effected by ocean 

waves and wind-driven shelf currents. In our study, neither of these processes were considered 

and would need to be addressed with additional modeling and verification from bathymetric 

surveys.  In essence, we are assuming that the sediment transport over the ebb-tidal shoals does 

not affect the evolution of the flood tidal delta at Hampton. 

In general, the model qualitatively reproduced the observed geomorphic changes within the 

back-bay flood tidal delta, and in particular the cut across the Middle Ground and infilling and 

narrowing of the navigation channel leading to Seabrook Harbor that led to emergency dredging 

operations. The model also showed qualitatively that the northern Hampton Harbor, upstream 

channels, and inlet bathymetry evolved, but with details that do not precisely match the 

observations. 
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CHAPTER 5 

DISCUSSION 

 

Erosional flux (equation 7) is a source or sink term representing total settling of sediment out 

of the water column or the upward flux of sediment with the sediment transport module that 

depends on the model bed shear stress (determined by the hydrodynamics).  Two parameters then 

determine the magnitude of the flux:  the average critical bed stress, 𝜏𝑐𝑒, given by equation (13) 

and the bed erodibility parameter, Eo. The critical bed shear stress is determined by the grain size 

in the model as well as bulk properties of the seabed (including packing and porosity) that are 

poorly understood. Iterating on 𝜏𝑐𝑒 affects the magnitude of erosion and deposition as the fluid bed 

stress changes. As critical shear stress of each grain size decreases, the magnitudes of erosion and 

deposition increase, as shown in Figure 5.1. In these cases, the magnitude of the depth changes 

increase with decreasing 𝜏𝑐𝑒, as expected, but the spatial pattern does not change appreciably. 

Similarly, the magnitude of the sediment flux increases and decreases linearly with erodibility 

constant, with larger changes occurring for larger values of Eo.  Rather than iterating on both 

parameters together, the erodibility parameter was held constant (Eo = 5e-5 kg/m2/s), and 𝜏𝑐𝑒 was 

varied to see the effects of increasing or decreasing sediment flux. 

In the HSE estuary, the sensitivity to 𝜏𝑐𝑒 does not alter the spatial pattern of erosion and 

deposition (i.e., the morphological evolution), but rather the rate at which the channels and shoals 

form, and will accelerate or delay the transport processes effecting the temporal evolution of the 

erosion or sedimentation across the delta.  This behavior is similar to the effect of morphological 

scale factors that accelerate the fluxes of sediments to decrease simulation time (see Roelvink and  
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Figure 5.1: Changes to the model results as a function of critical shear stress (top panel) critical 

shear stress reduced by 25%.  (top panel) critical shear stress reduced by 50%.  (bottom panel) 

critical shear stress reduced by 75%.  Color scale the same as for Figures 4.5 and 4.6. 
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Reniers, 2012).  At HSE, the value of 𝜏𝑐𝑒 effects the timing of when the infilling of the navigational 

channel will occur. This is expected, as a higher critical shear stress of a sediment grain size also 

requires a larger bottom shear stress to initiate motion into the water column.  Without aprior 

knowledge of the appropriate critical bed stress, the value must be determined empirically limiting 

the predictive capabilities of the model.  Nonetheless, while iterating on different bottom 

roughness parameters changes the magnitude of erosion and deposition, the spatial patterns of the 

morphological evolution of the seabed is not strongly affected.   

In the model simulations, the spatially varying bed roughness parameter, zo, was established 

by iteration through comparison of modeled currents and tidal energy dissipation with observations 

for a 40-day period.  The resulting spatial grid of zo thus produces consistent flow fields within the 

harbor (the area of highest interest) and tidal energy decay (weak in HSE) that determines the 

phasing of the tidal flows (and eliminates unrealistic amplification of the tide in the upper reaches 

of the estuary).   

Model simulations qualitatively reproduce erosion and deposition patterns across the flood-

tidal delta of HSE and adequately resolves the gross behavior of the system using a rectilinear 30 

m grid. However, the model is unable to reproduce observed hydrodynamics and geomorphic 

evolution of the seafloor in the upper reaches of the tidal creeks where the spatial resolution of the 

grid does not resolve the flow fields in the much narrower channels (that gradually close out). 

While reducing the horizontal grid resolution may improve model results in the shallower, 

narrower tidal creeks, these changes to the model simulation also significantly increase model 

computation time as both the barotropic and baroclinic time-steps are correspondingly reduced. 

For example, reducing the model grid from 30 to 10 m requires at least an order of magnitude more 

computational resources (or simulation time), and still will not resolve the narrow channels.  
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Models with unstructured grids would be beneficial, as well as simulations considering only depth-

integrated flows (neither of which is presently allowed within COAWST when the sediment 

transport is considered). 

In the present study, only non-cohesive sediment transport formulations were considered 

even though size classes for muddy sediments (silts and clays) were included.  The finer sediments 

behave differently than non-cohesive sediments, and require model components that account for 

flocculation and cohesive bed parameters that presumably would better resolve the sediment 

transport processes and the subsequent evolution of the seafloor, particularly in the upper tidal 

creeks of the study area sediments become progressively muddier. While COAWST sediment 

transport modules can consider calculations for cohesive sediment classes, they were not included 

in this study as the primary area of interest was in the back-bay where only small mud fractions 

are observed (5-10% relative to the 90-95% sand size fractions).  In any case, the high flows and 

bed stress within the harbor and inlet winnow away the fine sediments, and reproduce the general 

evolution of the flood tidal delta. 

In HSE, engineering structures are present that were introduced to alleviate sediment 

transport problems, and include the north jetty at the inlet mouth, the half-tide jetty to the south of 

the inlet, and the sub-tidal bulkheads on the southern side of Seabrook Harbor (Figure 3.6).  The 

presence of these structures was included in the model by specifying a size class with very small 

depth range to eliminate accumulation of sediments on the structures, and a very high critical bed 

shear stress to eliminate sediment from being eroded (mimicking the behavior of the hardened 

structures).  Without the presence of the sub-tidal bulkheads, the sediment transport in the back 

bay could not be simulated correctly as the cuts across the flood tidal delta appear to be somewhat 

controlled by their position and depth.  Although the bulkheads protect the erosion along the 
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southern banks of the Harbor, they likely impact the evolution of the flood tidal delta and the 

infilling of the navigational channel to the Seabrook moorage. 

Application of the model to systems such as HSE can be used to alert coastal managers and 

engineers to future potential dangers to navigation by mariners that may be forthcoming over inter-

annual time periods. Models can also assist in determining re-survey and dredging needs at HSE 

and in other locations, of direct interest to NOAA’s Office of Coast Survey who produce 

navigational charts for navigable waterways and the United States Army Corp of Engineers who 

oversee dredging activities in U.S. coastal waters.  Incorporating numerical model solutions with 

observations from bathymetric surveys also elucidate sediment transport processes and sediment 

pathways at site-specific areas, providing a means to assess the effectiveness of coastal engineering 

practices to alleviate problem areas that affect boating safety and the economics of coastal 

communities.  In addition, numerical models allow for climate change scenarios and storm-

induced response to be evaluated for future planning (Lippmann, et al., 2020). 
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CHAPTER 6 

CONCLUSIONS 

 

This study presents model simulations of gross sediment transport patterns over a five-year 

period for the Hampton-Seabrook Estuary using the coupled numerical modeling system 

COAWST. The model is forced with sea surface elevation observations from a nearby NOAA tide 

station and includes both tidal and subtidal forces. The bottom boundary is established with 

observed depth measurements and the sediment transport module is informed by grain size 

distribution from field studies. In this study, sub-tidal bulkheads and jetties are represented as a 

non-cohesive grain size with a high critical stress that inhibits erosion. 

Field observations of the vertically varying flow field and sea surface elevation over a 

spring-neap tidal cycle are used to verify model skill.  The initial bathymetric grid constructed in 

2011 is compared with surveys conducted in 2016 to determine observed bathymetric change over 

a 5-year period and used to directly compare modeled seafloor evolution to 5-year model 

predictions. Modelled results of geomorphic evolution of the seafloor are qualitatively consistent 

with observed bathymetric change of the study timeframe and capture the gross behavior of the 

back-bay regime (the area of highest interest). Specifically, modeled bathymetric change captured 

observed rearrangement of the flood tidal delta including infilling of the navigational channel 

leading to Seabrook Harbor and new channels cut along and across the Middle Ground.  

Model performance is improved by iterating on the explicitly defined bed roughness 

parameter. The resulting grid of spatially varying of zo captures the observed flow-field through 

the back-bay and tidal energy dissipation of the estuary. Sensitivity analysis of model results to 
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critical shear stress of grain sizes influenced the timing and magnitude or erosion and infilling 

within the study area, the spatial patterns of morphological evolution did not change. The model 

does not accurately reproduce observed hydrodynamics and observed sedimentation patterns in 

the upper reaches of the tidal creeks. Here, the spatial resolution the grid is not fine enough to 

resolve the narrower channels. Additional studies incorporating unstructured grids may improve 

model performance in the complex upper reaches of the salt marsh. 

Geomorphic modelling studies generally focus on short-term evolution of the seafloor during 

storm induced events or multi-decadal studies leveraging a MF factor to represent longer time 

scales. This study shows that detailed modeling without MF factors over inter-annual timescales 

(relevant to monitoring harbor bathymetric evolution by coastal managers and engineers) 

qualitatively reproduces the spatial patterns of erosion and deposition in the back-bay of Hampton 

Seabrook Harbor, including the channel development across the flood tidal delta and the infilling 

of the heavily used navigational channel. Applications of such model systems have the potential 

to inform coastal management decisions and to better understand complex sediment transport 

mechanisms. 
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APPENDIX A 

INITIAL BATHYMETRY GRID 

 

The initial bathymetry grid used as input into the numerical model simulations is compiled 

from a variety of sources. Gridded datasets available online were obtained from the National 

Ocean and Atmosphere Administration Coast Data Viewer and the University of New 

Hampshire Center of Coastal and Ocean Mapping (CCOM) Western Gulf of Maine (WGOM) 

bathymetry compilation. Each survey has a respective acquisition method, resolution, reference 

geometry, and year collected. Multibeam bathymetry is exclusively from the CCOM WGOM 

bathymetry dataset and consists of four distinct surveys merged into one. Data acquired from the 

NOAA Coast Viewer are individual topographic-bathymetric LiDAR data, encompassing both 

sub-tidal depths and above sea level subaerial areas.  

2010 USACE NCMP Topobathy Lidar: Northeast Atlantic Coast 

This data is collected as part of the USACE National Coastal Mapping Program under the 

USACE Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX). Data 

collected using a HawkEye II sensor, meets vertical error at 1 sigma standard deviation, has a 

vertical accuracy of 20 cm, and a horizontal accuracy of 75 cm. Originally acquired to the 

NAD83 ellipsoid, observations are transformed from the ellipsoid to orthometric heights 

referenced to NAVD88 using the National Geodetics Survey’s GEOID09 model. 

2011 USACE NCMP Topobathy Lidar: MA and NH 

This data is also collected as part of the USACE National Coastal Mapping Program under 

the USACE JALBTCX. The data is collected using a Compact Hydrographic Airborne 

RapidTotal Survey (CHARTS) system, with a 20 cm vertical accuracy and 75 cm horizontal 
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accuracy. Again, vertical positions are referenced to the NAD83 ellipsoid, and is transformed to 

NAVD88 with the GEOID03 model.  

2013 USACE NAE Topobathy Lidar: Newbury (MA) 

Data is collected using a Coastal Zone Mapping and Imaging Lidar (CZMIL) system under 

the JALBTCX program. Measurements have a reported vertical accuracy of 7.65 cm and 

horizontal accuracy of 100 cm. Vertical positions are referenced to the NAD83 NA11 ellipsoid 

and are used to transform to NAVD88 using the GEOID12A model. 

2014 - H12696: NOS Hydrographic Survey 

Multibeam data is collected with a Reson multibeam sonars on the NOAA ship Ferdinand 

R. Hassler, managed by NOAA Office of Coast Survey, Hydrographic Surveys Division. 

Soundings are originally acquired in MLLW, with NOAA Fort Point tide station as datum gear. 

The high density of lobster gear on the sea floor shows up as artifacts in the data. 

2004 Cape Ann Salisbury Beach MA 

This data is collected with the R/V Ocean Explorer by Science Applications International 

Corporation (SAIC), under contract to the University of New Hampshire, with a Reson 8101 

MBES (SAIC, 2004). Data supported requirements of the USGS. 

2015 Rye Ledge to Great Boars Head Summer Hydro 2015 

UNH CCOM summer hydro class collected bathymetry from Rye Ledge to Great Boars 

Head in June/July 2015. Data is acquired with a Kongsberg EM2040 MBES aboard the R/V 

Coastal Surveyor and is originally gridded to 1 m horizontal resolution.  

U.S. Coastal Relief Model - Northeast Atlantic 

A small portion of the model domain seaward of the Hampton Inlet contained no recently 

collected data. Bathymetry measurements here are acquired from the United States Coastal 
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Relief Model for the Northeast Atlantic, itself an integrated bathymetry set acquired from a 

variety of sources and gridded to a 90 m horizontal resolution (DOC/NOAA/NESDIS/NCEI 

1999). Due to the large horizontal cell size, no effort was made to establish a common vertical 

datum in processing as the uncertainty in the elevation value exceeds differences between 

vertical datums. This data acquired was absorbed within the comprehensive CCOM Golf of 

Maine bathymetry, subject to quality assurance. The subset of this bathymetry data did not cover 

an area of primary concern in the thesis modeling studies and thus was accepted as accurate, 

despite vertical uncertainties.  

Creating the Bathymetry Grid 

A single, comprehensive bathymetry grid is created in three steps: (i) geometric 

transformation of bathymetry datasets, (ii) merging of datasets, and (iii) quantitative visual 

inspection of data quality.  

NAD83 UTM Zone 19N and the North American Vertical Datum 1988 (NAVD88) form 

the geometric basis for the comprehensive bathymetric grid. Data from the NOAA Coast Viewer 

is downloaded as such while the multibeam data is in WGS84 Web Mercator horizontal datum 

and Mean Lower Lower Water (MLLW). Using ESRI ArcGIS Spatial Analysis toolbox, the 

multibeam data is reprojected to the NAD83 UTM Zone 19N and bathymetry depths were 

adjusted by +1.38 m (check number, it is from the NOAA tidal station) into NAVD88. 

Individual datasets are merged using Global Mapper into a comprehensive bathymetry grid 

with an 8 m resolution. Where there is overlap between data sets, priority is given to the 2011 

LIDaR data as it has the largest footprint and allows for 5-year comparison to the 2016 single-

beam data. Following preference is given to 2013 LIDar, 2010 LIDaR, and finally the CCOM 
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multibeam data. Using Global Mapper tools, remaining gaps in the comprehensive grid are 

interpolated to create a smooth dataset. 

In the merging and interpolation process in creating a single comprehensive grid, precision 

and accuracy of the bathymetric dataset is inherently lost. In effort to best represent the most 

likely elevation measurement, adjustments were made when necessary. Here, the height of the 

north Hampton Inlet jetty is raised from below to above sea level. The resulting elevation is 

based of the most recent LIDaR data. Furthermore, adjustments to the resulting bathymetric grid 

are made to ensure a smooth numerical solution. Here, tight flow restrictions adjacent to bridges 

were deepened and widened.  

Finally, the comprehensive dataset is saved as a geotiff. Bathymetry is inputted into 

COAWST numerical model as 30 m NetCDF file. Using MATLAB routines, the data is 

converted into a xyz file, with Eastings, Northings, and depth in positive meters. The combined 

bathymetry grid is processed with the MATLAB Easygrid routine 

(https://www.myroms.org/wiki/easygrid) to create a 30m rectilinear gri

https://www.myroms.org/wiki/easygrid
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