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ABSTRACT

Field observations from a vertical stack of two-component current meters obtained from the 1994 Duck94

nearshore field experiment (presented in a companion paper by Lippmann, et al.) show significant vertical

structure in energy, phase, and rotation of motions at low frequencies around 0.005Hz. Low-frequency

motions are typically modeled in the surfzone with the shallow-water (depth averaged) momentum equations

that do not allow for any vertical structure. Following work from the shelf tidal community (Prandle), this

study shows that the observations are consistent with the depth-varying momentum equations including shear

stresses induced by a bottom boundary layer described by a constant eddy viscosity nt and bottom friction

given by a constant drag coefficient and depth-averaged velocity cdjWj. The bidirectional flow field is solved

over arbitrary depth profiles varying only in the cross-shore direction h(x) in the presence of a vertically

uniform mean alongshore current with cross-shore shear structure V(x). Analytic solutions are found to

depend on nt, cd, h, ›V/›x, and the parameter p5 [i(kV2s1 ›V/›x)/nt]
1/2 5 i1/2l, where s and k are the

radian frequency and alongshore wavenumber of the oscillating motion. Model behavior is explored by

plotting solutions for a given parameter space as functions of the nondimensional depth H 5 lh and di-

mensionless friction parameter J5 ntl/cdjWj that combines the effects of bottom drag and vertical mixing.

The behavioral changes in amplitude, phase shift, and rotational structure over the water column are qual-

itatively similar to those observed in the field.

1. Introduction

Since the discovery of vorticity motions in surfzone

field observations in the late 1980s (Oltman-Shay et al.

1989), it has generally been assumed that the motions

are uniform over depth. Initial efforts described the

behavior analytically with linear stability analysis

(Bowen andHolman 1989; Dodd and Thornton 1990) or

numerically with nonlinear equations (e.g., Allen et al.

1996; Slinn et al. 1998; Ozkan-Haller and Kirby 1999).

More recently vertical motions have been shown to be

driven by variations in wave groups (Long and Özkan-

Haller 2009), wave breaking patterns associated with

individual waves (MacMahan et al. 2010; Clark et al.

2012; Feddersen 2014), and unforcedmotions associated

with rip current cells (Geiman and Kirby 2013). Ana-

lyses of field data have often utilized arrays of flow

meters spatially lagged in the alongshore direction (e.g.,

Howd et al. 1991; Noyes et al. 2004) or observations of

pressure and bidirectional currents at a single location

(Lippmann et al. 1999). In these studies, observations of

the flow from each element of the observing array were

made at a single vertical position in the water column

generally near the seabed.

Recent analysis of field observations obtained at

several locations in the surfzone of a naturally barred

beach from a vertical array of two-component electro-

magnetic current meters spanning the water column

show surprisingly large vertical variation in energy,

phase, and rotation for low-frequency motions around

0.005Hz. The observations are described in detail in the

companion paper (Lippmann et al. 2016, hereinafter
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Part I) and are only summarized here. At these low

frequencies, most of the observed energy is associated

with vorticity motions [determined using the methods of

Lippmann et al. (1999)]. Energy levels in the cross-shore

component of the flow decay near the bottom, seaward

of the sandbar and approximately linearly over the en-

tire water column in the trough of the bar, suggesting the

influence of a bottom boundary layer. Oppositely, en-

ergy levels in the alongshore component of the flow in-

crease near the bed seaward of the bar and are nearly

uniform over depth in the trough. The coherence be-

tween each of the 8 vertically separated sensors and the

sensor nearest the surface drops by as much as 70%–

80% over the shallow depths of the surfzone (about

1–3m). The phase relative to the highest sensor shifts

approximately linearly over depth, with as much as 508
phase lags from top to bottom. The bottom sensors

sometimes lead and sometimes lag the surface, de-

pending on their position in the cross shore relative to

the sandbar and mean alongshore current profile. Ad-

ditionally, the cross-shore component of the flow near

the bottom may lag the surface at the same time the

alongshore component of the flow leads the surface.

Rotary coefficients are generally nonzero, indicating

that these low-frequency motions have rotary nature,

with rotational directions that depend on the position of

the sensors relative to the sandbar and alongshore cur-

rent profile. The rotary coefficients are generally not

uniform with depth and can change sign in the vertical.

These observations reveal complex vertical behavior

that the simple, shallow-water (depth uniform) models

for vorticity motions do not consider.

In this paper, we present a theoretical development

based on boundary layer theory following Prandle

(1982) that predicts qualitatively the observed vertical

behavior of low-frequency motions. The theory is de-

scribed in the next section, followed by presentation of

results for selected parameter values that are quantita-

tively similar to expected values in typical surfzone

conditions.

2. Theory

Solutions to the equations of motion are obtained

relative to the water surface to correspond to the vertical

structure observed by Part I shown with variation rela-

tive to the uppermost sensor location. The effects of a

bottom boundary layer are parameterized by a con-

stant drag coefficient and vertical mixing dependent

on a constant eddy viscosity parameter. We consider

unforced solutions that include a depth uniform but

horizontally varying mean alongshore current. The

methodology follows that of Prandle (1982) for

horizontal tidal flows (with negligible vertical veloci-

ties) on the continental shelf, except that Coriolis is

neglected.

The horizontal momentum equations in the absence

of surface wave forcing are given by

›

›t
u0 1 u0 � =u0 52g

›

›x
h0 1

1

r

›

›z
F
zx
, and (1)

›

›t
y0 1 u0 � =y0 52g

›

›y
h0 1

1

r

›

›z
F
zy
, (2)

where x, y, and z are the right-handed Cartesian co-

ordinates (with x increasing positively seaward, y

aligned parallel to the shoreline, and z positive upward

from the mean sea level), with corresponding horizontal

velocity components u0 5 (u0, y0); h0 is the sea surface

elevation; r is the density of water; g is gravitational

acceleration; t is the time; and = is the horizontal gra-

dient operator. The shear stresses in the x and y di-

rections Fzx and Fzy are parameterized with a constant

vertical eddy viscosity nt so that

F
zx
5 rn

t

›

›z
u0, and (3)

F
zy
5 rn

t

›

›z
y0 . (4)

The Coriolis force is neglected in (1)–(2) because mo-

tions with typical frequencies considered here (0.05–

0.001Hz) are not greatly influenced by Coriolis.

We assume that mean cross-shore flows and pressure

gradients are zero and that the total flow consists of a steady

alongshore current with no vertical or alongshore variation

V(x), so that u0 5 [~u(x, y, z, t), ~y(x, y, z, t)1V(x)] with

fluctuating components ~u, ~y � V and h0 5 ~h(x, y, t).

We assume solutions that are wavelike in the alongshore

direction, and with unknown cross-shore and vertical

structure,

~u5 u(x, z)ei(ky2st) , (5)

~y5 y(x, z)ei(ky2st), and (6)

~h5h(x)ei(ky2st) , (7)

where s and k are the radian frequency and alongshore

wavenumber of themotions. Inserting (5)–(7) into (1)–(2),

using (3)–(4), and retaining only linear terms in the fluc-

tuating velocity components, yields

2isu1 ikVu 52g
›h

›x
1 n

t

›2u

›z2
, and (8)

2isy1 ikVy1 u
›V

›x
52igkh1 n

t

›2y

›z2
. (9)
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If we now assume that the shear stresses are negligible

at the surface and denote the spatial structure of the

surface velocities with (uo, yo), then (8)–(9) at the sur-

face become

2isu
o
1 ikVu

o
52g

›h

›x
, and (10)

2isy
o
1 ikVy

o
1 u

o

›V

›x
52igkh . (11)

Subtracting the surface equations from (8) to (9) elimi-

nates the sea surface elevation and makes the velocity

solutions relative to the surface value:

�
i

�
kV2s

n
t

�
2

›2

›z2

�
(u2u

o
)5 0, and (12)

�
i

�
kV2s

n
t

�
2

›2

›z2

�
(y2 y

o
)52

1

y
t

(u2 u
o
)
›V

›x
. (13)

These equations are similar to those derived by

Prandle (1982) for tidal flows on the continental shelf,

except that the cross-shore shear of the alongshore

current ›V/›x has replaced the role of the Coriolis

force in providing a background vorticity field in the

alongshore momentum equation (as in Bowen and

Holman 1989). The unbalanced nature of the equa-

tions, with the cross-shore momentum equation [(12)]

being homogeneous and independent of the along-

shore current shear, precludes simple solution meth-

odology (as in Prandle 1982). Solutions to (12) and

(13) can be found by first doubly integrating (12) and

using surface and bottom boundary conditions to

find a solution for u and then using (13) and the

method of undetermined coefficients (e.g., Swokowski

1979) to find y.

Since we seek solutions that reveal any rotational

properties of the flow, we follow Prandle (1982) and

construct the complex vector velocity w:

w5 ~u1 i~y , (14)

which (following Gonella 1972) can be separated into an

anticlockwise (cyclonic) or positively rotating compo-

nent w1 and a clockwise (anticyclonic) or negatively

rotating component w2, such that

w5w
1
ei(ky1st) 1w

2
ei(ky2st) . (15)

The rotational components are given by an amplitude

jw1j, jw2j and phase ju1j, ju2j:

w
1
5 jw

1
jeiu1 5

1

2
[(a

1
1 b

2
)1 i(a

2
2b

1
)], (16)

and

w
2
5 jw

2
jeiu2 5 1

2
[(a

1
2 b

2
)1 i(a

2
1b

1
)] , (17)

determined from the Fourier coefficients (a1, b1, a2, b2)

of each of the velocity components u and y, whose am-

plitudes juj, jyj and phases uu, uy are given by

juj5 (a21 1 b2
1)

1/2, u
u
5 arctan(2b

1
/a

1
), and (18)

jyj5 (a22 1 b2
2)

1/2, u
y
5 arctan(2b

2
/a

2
) . (19)

Using (14)–(19) provides a method for specifying a

vector flow field with particular rotational properties at

the surface. Solutions as a function of elevation can be

decomposed into cross-spectral phases between velocity

components u and y as well as the rotary coefficient Rc

and ellipse orientation uE given by

R
c
5

22(a
1
b
2
2 a

2
b
1
)

(a21 1 b2
1)(a

2
2 1 b2

2)
, and (20)

tan2u
E
5

2(a
1
a
2
1 b

1
b
2
)

(a21 1 b2
1)2 (a22 1 b2

2)
. (21)

We form a pair of governing equations, one each

for the anticlockwise (denoted with 1 subscript)

and clockwise (denoted with 2 subscript) rotation di-

rections, for the vector velocity by combining (8)1 i3 (9)

with the surface value (10) 1 i 3 (11):

p2
1(w1

2w
o1
)2

›2w
1

›z2

52
1

n
t

(y2 y
o
)
›V

›x
(anticlockwise), and (22)

p2
2(w2

2w
o2
)2

›2w
2

›z2
52

1

n
t

(y2 y
o
)
›V

›x
(clockwise),

(23)

where the parameter p for the anticlockwise p1 and

clockwise p2 rotation is given by

p
1
5

�
i(kV2s1 ›V/›x)

n
t

�1/2
(anticlockwise), and

(24)

p
2
5

�
i(kV1s1 ›V/›x)

n
t

�1/2
(clockwise). (25)

This parameter is very similar to that found by Prandle

(1982), with Coriolis being replaced by kV1 ›V/›x. The

solutions to (22)–(23) should reflect similar qualitative

behavior as found for the tidal flow problem within

the given parameter space. However, unlike in the ho-

mogenous tidal flow equations, our governing equations
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for the rotational components of the vector velocity are

complicated by a term that depends on the alongshore

component of the flow of interest, y 2 yo.

At the surface (z5 0), the shear stresses are assumed

negligible (rnt›wo/›z 5 0) and

w5w
o

at z5 0: (26)

At the bottom (z 5 2h, where h is the local water

depth), we assume a quadratic shear stress

rn
t

›w

›z
5 rc

d
jWjw at z5 2 h , (27)

where cd is a bottom drag coefficient, and jWj is the mag-

nitude of the depth-averaged flow that includes both steady

and unsteady components. Following Longuet-Higgins

(1970),we let j �Wj5 (u2
orb 1V2)1/2,whereuorb is the incident

wave orbital velocity amplitude nominally ofO(1)ms21 in

the surfzone. Complex solutions to (22)–(23) for the vector

velocity relative to the surface for each direction of rotation

(w/wo)6, subject to surface and bottom boundary condi-

tions given by (26) and (27), are found using the method of

undetermined coefficients (Swokowski 1979):

�
w

w
o

�
6

5

�
11

sinhl
6

z

h
sinhl

6
1 j

6
coshl

6

�
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6

(
z

h

coshl
6

z

h
coshl

6

2
sinhl

6

z

h
sinhl

6

"
11 j

6
(l216 1 tanhl

6
)

11 j
6
tanh21l

6

#)
, (28)

where

M
6
5

h
›V

›x
2c

d
j ~Wj

0
B@

1
CA�

y
o

w
o

�
6

�
12 e2l6/j6

j
6
tanhl

6

�
, (29)

l
6
5 p

6
h, and (30)

j
6
5

y
t
p
6

c
d
j �Wj , (31)

and p6 is given by (24) and (25). The first two terms in

(28) arise from the homogeneous solution to (22). The

remaining two terms are due to the (y 2 yo)›V/›x terms

in (22)–(23) and depend on a number of dimensional

quantities contained in (29), including h, ›V/›x, and jWj,
as well as the complex surface velocities yo and wo 5
uo 1 iyo that includes a phase angle for yo, (uy)o, and the

positive and negatively rotating components uo1 and uo2.

When themean alongshore current is absent, (29)–(31)

reduce to the simplified form found by Prandle (1982)

without Coriolis, a solution valid for any unforced

wave motion in the surfzone including surface gravity

waves. The presence of a horizontally sheared, mean,

alongshore current provides a background vorticity

field that supports instabilities but complicates the

solution.

When cd 5 0, that is, the bottom drag goes away,

(w/wo)65 1, and there is no vertical structure. When

cd/ ‘, the solutions are equivalent to those found for a

no-slip bottom boundary condition, and the vertical

structure is largest. When cd is finite and nonzero, the

thickness of the bottom boundary layer depends also on

the eddy viscosity. For large nt, the vertical structure

becomes more uniform, compressing the bottom

boundary layer to a thinner region near the bed. In our

formulation, we have ignored the presence of surface

shear stresses that arise from wave breaking and thus

our mixing parameterized by constant eddy viscosity is

solely due to bottom effects. As nt is dependent some-

what on the bottom drag coefficient, as represented by

our quadratic shear stress at the bed described by (27),

we will simply select a single value for nt that is grossly

consistent with surfzone observations and then vary cd to

determine the effects of bottom drag on the vertical

structure of the flows.

Letting p6 5 i1/2l6, where

l
1
5

�
kV2s1 ›V/›x

n
t

�1/2

, and (32)

l
2
5

�
kV1s1 ›V/›x

n
t

�1/2

, (33)

and l6 5 i1/2L6 and j6 5 i1/2J6, we can replace (30) and

(31) with

H
6
5 l

6
h, and (34)

J
6
5

y
t
l
6

c
d
j �Wj . (35)

The variable H6 is similar in form to that found by

Prandle (1982) for tidal flows and interpreted as a depth

parameter with Ekman-like scaling. For our surfzone

problem, the scaling has similar behavior but depends

on the shear and magnitude of the mean alongshore

current relative to the oscillation frequency; J6 is also

similar in form to that found by Prandle (1982) and

represents the effects of vertical mixing (through the

vertical eddy viscosity) and bottom drag (through the

product of a bottom drag coefficient and depth-averaged

vector velocity).
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The variables J6 and H6 are linearly related by

J
6
5

y
t

hc
d
j �WjH6

, (36)

where the proportionality constant nt/hcdj �Wj is in-

dependent of rotation direction. Although a wide range

of J6 and H6 can be specified, only those values satis-

fying (36) for a particular parameter set are meaningful.

As values cd for instabilities of the alongshore current

are not well constrained by theory or observation,

solutions described by (28) can be explored in

J6, H6 2 space for a given range of l6.

Also, note that l1 and l2 are not the same for any

particular wavenumber and frequency but are related by

l2
1 5l2

2 2
2s

n
t

, (37)

with s determined from (25):

s5
y
t
l2
2 2 ›V/›x

V/c
p
1 1

, (38)

where cp 5 s/k is the phase speed of the low-frequency

motions. The complete solution for the flow field includes

both positively and negatively rotating components; thus,

we need to choose values for the local, mean, alongshore

currentV and phase speed of thewavemotions of interest

cp in order to relate l2
2 to l2

1. In the results presented

below, both V and cp are given in terms of the maximum

alongshore current Vo, a range of l2
2 are specified to

correspond to typical infragravity frequencies using (38),

and then the corresponding l2
1 are found using (37).

3. Results

The solution for the vertically varying vector flow field

relative to the surface is dependent on a large parameter

space that includes a factor M6 [(29)] dependent on

dimensional quantities h, j �Wj, ›V/›x, and the complex

ratio (yo/wo)6 that must be specified independently of

H6, J6, and l6. To examine the general behavior of the

solutions, we let h5 1m, nt5 0.02m2 s21, uorb5 1m s21,

and Vo 5 1ms21, representative of surfzone conditions,

and cp 5 Vo/2 as a reasonable value for the phase speed

of the vorticity wave (following Bowen and Holman

1989). In particular, the choice of eddy viscosity is con-

sistent with model data comparisons for mean cross-

shore flows (Garcez Faria et al. 2000) and is adapted

without modification in the following.

Field observations at f 5 0.005Hz described in the

companion paper (Part I) show rotary parameters at the

surface of about Rc 5 0.2 and uE 5 208. We thus specify

the surface amplitudes and phases to give the same rotary

values: jwoj1 5 0.12ms21, uo1 5 408, jwoj2 5 0.10ms21,

and uo2 5 08. The solutions now depend on ›V/›x

and cd. The general behavior of the solutions can be

found by letting ›V/›x560.025ms21, reasonable values

for moderate alongshore currents in the surfzone (e.g.,

Thornton and Kim 1993), with the sign change repre-

senting differences on the seaward and shoreward side of

the position of maximum alongshore current, and letting

cd 5 0.005 or 0.10 for weak or strong bottom drag, re-

spectively. Bottom drag coefficients, defined in the same

way as in (27), are typically of the order of 1022–1023 for

mean alongshore currents (e.g., Garcez Faria et al. 1998).

The values used for cd ranging a factor of 20 are grossly

representative of conditions withweak and strong bottom

friction.

Solutions to (28) for the cyclonic and anticyclonic

rotational components w1 and w2 can be resolved into

an amplitude jw6j/jw6oj and phase shift u6 2 uo6 rela-

tive to the surface. To find solutions, l2
2 is specified to

be 210, 25, 21, 1, 5, and 10, corresponding to f 5
js/2pj# 0.14Hz and consistent with the range of typical

frequencies of infragravity bandmotions observed in the

field data (e.g., Oltman-Shay et al. 1989), and then

l2
1 5 23.3, 22.1, 21.2, 20.7, 0.2, and 1.3 found from

(37) and (38). Solutions for both rotational components

of the flow computed with ›V/›x520.025 s21 and cd 5
0.005 are shown in Fig. 1 as a function of relative vertical

elevation in the water column z/h. As the magnitude

of l2
6 decreases, the vertical amplitudes decay more

strongly with depth in a progressively more linear

manner, becoming approximately 70% of the surface

value at the bottom for the relatively weak drag pa-

rameter used. As the magnitude of l2
6 increases, the

profile becomes progressively more uniform with depth.

The relative phase shifts approximately linearly over the

water column with the maximum phase change at the

bottom for intermediate values of l2
6 . When l2

6

changes sign, the phase shift also changes sign with the

bottom motion leading (negative phase shifts) the sur-

face when l2
6 , 0.

Because of the nearly linear phase structure, the be-

havior of the predicted phase shifts over the vertical can

be approximated with the bottom value ub. Contours of

ub are shown in Fig. 2 as a function of J26 and H2
6 for

l2
6 , 0 and l2

6 . 0, with ›V/›x 5 20.025 s21 and cd 5
0.005 (the same parameter values used in Fig. 1). For

large J26 , the phase shifts become only a function of

nondimensional depth H2
6 . As J26 decreases, the phase

shifts become smaller and progressively more in-

dependent of H2
6 . Because J26 and H2

6 are both pro-

portional to l2
6 , the specific locations in J26 2H2

6 space
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corresponding to any given l2
6 fall along a straight line

with slope nt/hcdj �Wj5 2:8, as dictated by (36). Locations

where l2
2 5 210,25,21, 1, 5, and 10 (l2

6 5 23.3,22.1,

21.2, 20.7, 0.2, and 1.3) are shown as solid circles in the

upper (lower) panels of Fig. 2 and correspond to the vertical

structure shown in Fig. 1. Maximum phase shifts occur for

intermediate values of l2
6 .

The vector velocity w can be determined from the

rotational components using (15)–(17). The magnitude

jw/woj and phase u 2 uo, relative to the surface value, is

shown in Fig. 3 as a function of z/h for the rotational

components presented in Fig. 1, with ›V/›x520.025 s21,

cd 5 0.005, and l2
2 5 210, 25, 21, 1, 5, and 10. For the

relatively weak bottom drag specified, the amplitudes

decay to about 70% of their surface value for small l2
2,

with maximum bottom phase shifts of about 2108, with
the sign of the phase shift changing as the sign of l2

2

changes, similar to the behavior of the rotational com-

ponents presented earlier (as expected). Contours of

ub for the vector velocity are shown in Fig. 2 as a function

of jJ22j and jH2
2j for l2

2 , 0 and J22 andH2
2 for l2

2 . 0. The

phase behavior is nearly symmetric for positive and

negative l2
2 with maximum phase shifts occurring for

small H2
2. Locations where l2

2 5 210, 25, 21, 1, 5, and

10 are shown as solid circles and correspond to the

vertical structure shown in Fig. 3.

The effect on bottom friction is evaluated by in-

creasing the drag to cd 5 0.10. Contours of ub are shown

in Fig. 4 for ›V/›x520.025 s21 and l2
2 5 210,25,21,

1, 5, and 10, the same parameters used in Figs. 2 and 3.

Vertical phase shifts are much larger for the case with

large bottom drag, with maximum phase change of

about 458 occurring at intermediate values of l2
2. The

slope of the line nt/hcdj �Wj5 0:14 corresponding to

values of l2
2 has decreased inversely proportional to the

factor of 20 increase in cd.

The effect of changing signs in the shear of the along-

shore current, as occurs when moving spatially from

seaward to shoreward of the maximum alongshore cur-

rent, is shown in Fig. 5. Contours of ub are shown for the

same range of l2
2 and cd 5 0.10 as in Fig. 4, but now

›V/›x5 0.025 s21 has opposite sign. In this case, the phase

shifts have decreased by about 2/3 with maximum value of

about 328 again occurring at intermediate values of l2
2.

We can compute the Cartesian velocities u and y from

the solutions for the rotating components of the vector

velocity using (16)–(19). In this case, we select a range of

frequencies, f 5 s/2p 5 0.001, 0.005, 0.01, and 0.02Hz,

and then compute corresponding parameters l2
2 and l2

1

from (37) and (38). Vertical variation in amplitude

ju/uoj and jy/yoj and phase uu 2 (uu)o and uy 2 (uy)o
as a function of z/h are shown in Fig. 6 with

FIG. 1. Vertical profiles of (top) cyclonic and (bottom) anticyclonic velocity (left) amplitudes

and (right) phase relative to the surface value as a function of relative elevation z/h for values of

l2
6 given in the legend. Results are shown for ›V/›x 5 20.025 s21 and cd 5 0.005.
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›V/›x 5 20.025 s21 and intermediate drag given by

cd 5 0.010. Relative cross-shore velocity amplitudes

ju/uoj attenuate with depth for all frequencies in a nearly

linear fashion, with increasing attenuationwith decreasing

frequency, consistent with a thicker bottom boundary

layer for longer-period motions. Cross-shore phase

structure uu 2 (uu)o has maximum phase shift at the bot-

tom occurring at intermediate frequencies, in this case

around f 5 0.005Hz. In contrast, alongshore velocities

show a complex structure in which relative amplitudes

jy/yoj decay at the lowest frequencies (around f 5
0.001Hz), are nearly uniform with depth at intermediate

frequencies (around f 5 0.005Hz), and then increase at

higher frequencies ( f . 0.005Hz) with subsurface maxi-

mum in the lower half of the water column. Phase shifts

are nearly linear with depth and with a sign change be-

tween f 5 0.001 and f 5 0.005Hz.

Phase shifts relative to the surface vary with frequency

and are different in magnitude and sign for u and y, with

larger negative phase shifts for y approaching 228 at the
bottom for intermediate frequencies. The phase be-

havior is complex, with u leading and y lagging the sur-

face. The sign and magnitude of the phase shift is

determined by the direction of rotation selected for the

surface vector velocity amplitudes and phases for the

clockwise and counterclockwise rotating components.

By switching the dominant rotational amplitude or al-

tering the relative phases of the rotational components,

the major axis of the ellipse changes orientation; thus,

the u and y phase shifts relative to the surface can also be

modified and can change sign depending on the ampli-

tudes and phases of the rotary velocity components.

The effect of ›V/›x on the behavior of u and y is ex-

amined by plotting the bottomphase shift foru and y, (uu)b
and (uy)b, respectively, as a function of frequency for

›V/›x 5 60.025 s21. Results are shown in Fig. 7 for inter-

mediate bottom drag cd 5 0.010. At higher frequencies

up to 0.05Hz, (uu)b is about 28 and (uy)b is about 118,
regardless of the sign of ›V/›x; (uu)b reaches a negative

maximum around f 5 0.005Hz and is larger by about a

factor of 4 for negative (2118) than for positive (22.58)
›V/›x. When ›V/›x is positive, (uy)b is roughly constant,

ranging between 78 and 138. On the other hand, when

›V/›x is negative, (uy)b reaches a positive maximum

(248) around f 5 0.012Hz and then rapidly decreases

at lower frequencies, becoming negative when f ,
0.005Hz. The phase structure in either u or y can thus

have opposite sign across the mean alongshore current

FIG. 2. Contours of ub for the (top) cyclonic and (bottom) anticyclonic rotational components

as a function of jJ26 j and jH2
6 j for (left) l2

6 . 0 and (right) l2
6 , 0. Results are shown for

›V/›x520.025 s21 and cd 5 0.005. Solid circles in the upper (lower) panels indicate values for

l2
2 5 210, 25, 21, 1, 5, and 10 (l2

1 5 23.3, 22.1, 21.2, 20.7, 0.2, and 1.3), corresponding to

those used in Fig. 1 showing the vertical variation in amplitude and phase.
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profile, with bottom velocities leading and lagging the

surface on the seaward and shoreward side of Vo, par-

ticularly for y, which has much stronger dependence on

the sign of ›V/›x than does u.

The effect of large and small bottom friction on the be-

havior of u and y is examined by plotting (uu)b and (uy)b
for ›V/›x 5 20.025 s21 as a function of frequency for

cd 5 0.10 and 0.005 (Fig. 8). For weak bottom friction,

phase changes for the cross-shore flows are weak, with

(uu)b ranging 128 to 288 over the infragravity fre-

quency band but are relatively stronger for alongshore

flows with (uy)b reaching a positive maximum (178)
around f 5 0.01Hz and changing sign at the lowest

frequencies. Phase structure as a function of frequency

is more pronounced for higher drag coefficients, with

(uu)b going from 08 at f 5 0.001Hz to a negative max-

imum of2358 around f5 0.008Hz and gradually down

to about 258 at higher frequencies. Phase changes for

y are high and nearly constant (about 288–308) for f .
0.01Hz but decrease rapidly to a large negative value

(2378) at f 5 0.001Hz. Figures 7 and 8 show that, in

general, (uu)b tends be negative (i.e., leading the surface),

whereas (uy)b can be large positive ( f. 0.01Hz) or large

negative ( f , 0.005Hz) for the same ›V/›x or cd.

The rotary parametersRc and uE can be computed as a

function of frequency from (20) and (21) using the

Fourier coefficients for u and y given by (18) and (19).

The vertical variation of Rc and uE is shown in Fig. 9 for

f5 0.001, 0.005, 0.01, and 0.02Hz,with ›V/›x520.025 s21

and intermediate bottom drag cd 5 0.010. The surface

values of Rc and uE are determined from the input condi-

tions specified earlier. The results show that the current

orientation rotates farther down into the water column

with uE at the bottom increasing about 108 relative to

the surface for f. 0.001Hz and decreasing by about 58
for f 5 0.001Hz. The results also show that Rc has

strong vertical variation, and for f . 0.001Hz, Rc

changes sign in about the midwater column, indicating

that the sense of rotational motion is different at the

surface (clockwise in the example) than at the bottom

(counterclockwise).

The effect of ›V/›x on Rc and uE is shown in Fig. 10

as a function of frequency for intermediate bottom drag

cd 5 0.01 and ›V/›x560.025 s21. Crossing the location

of Vo, for example, when moving from positive to neg-

ative ›V/›x, can rotate the current orientation, as in-

dicated byDuE5 (uE)b2 (uE)o shown in the lower panel of

Fig. 10. As well, a vertical sign change in the sense of

rotation can occur at particular intermediate frequen-

cies, 0.005Hz , f , 0.02Hz in this case, as shown by

(Rc)b in the upper panel of Fig. 10. The effect of bottom

friction on Rc and uE is shown in Fig. 11 as a function of

frequency for ›V/›x 5 20.025 s21 and cd 5 0.005 and

0.10. Changes in current orientation are much larger

FIG. 3. Vertical profiles of vector velocity (left) amplitudes and (right) phase relative to the

surface value as a function of relative elevation z/h for values of l2
2 given in the legend. Results

are shown for ›V/›x 5 20.025 s21 and cd 5 0.005.
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for strong bottom drag, with rotations increasing by

about 208 over most of the infragravity band for larger

cd. Vertical variations in rotation also increase with

increasing drag, withRc changing sign in the vertical for

f . 0.001Hz.

4. Discussion

The boundary layer theory developed here, following

Prandle (1982) for tidal motions on the continental shelf,

qualitatively describes the complex vertical amplitude,

phase, and rotational structure of vortical motions ob-

served in the field. The parameter space is large and

dimensional quantities need to be assigned. Values for h,

›V/›x, Vo, and cp used are quantitatively consistent with

values observed in the field. Values for vt and cd are

consistent with those found in model data comparisons

for mean flows. Although the local values of h and V(x)

are measured, ›V/›x can only be roughly estimated. In

addition, while the assumptions of vertically constant

alongshore current and eddy viscosity are necessary to

allow analytic solutions, they are clearly substantial

approximations. Including vertical structure (particu-

larly in V) is likely to further emphasize the complexity

of the vertical structure. However, the theory yields

results that suggest the modeled equations are appro-

priate. Considering the complex behavior in vertical

structure observed and modeled, numerical models ex-

amining quantitative vorticity motion behavior and dy-

namical consequences for surfzone processes should

consider the vertical structure.

In the absence of a mean alongshore current, the so-

lutions collapse to those found by Prandle (1982) with

the exception that Coriolis is not relevant to nearshore

motions with typically much higher frequency. Inclusion

of mean alongshore currents allows for a background

vorticity field that supports instabilities. The solutions

are also valid for surface gravity waves in the presence

of a mean alongshore flow, and they suggest that edge

and leaky waves will also exhibit complex vertical

structure, particularly for the longer periods in which the

boundary layer has time to develop.

Putrevu and Svendsen (1995) examined the vertical

structure of infragravity waves in the surfzone. In their

work, they consider only cross-shore currents and in-

clude wave forcing by shortwave radiation stresses

lumped together with mean pressure contributions

(setup). They solve the inhomogeneous x-momentum

FIG. 5. As in Fig. 4, but for ›V/›x 5 0.025 s21.

FIG. 4. Contours of ub for the vector velocity as a function of jJ22j and jH2
2j for (left) l2

2 . 0

and (right) l2
2 , 0. Results are shown for ›V/›x 5 20.025 s21 and cd 5 0.10. Solid circles

indicate values for l2
2 5210,25,21, 1, 5, and 10 corresponding to those used in Fig. 3 showing

the vertical variation in amplitude and phase.
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equation subject to a bottom boundary condition for bed

shear stress similar to ours as well as a surface shear

stress determined by (and phase locked to) the short-

wave forcing. They parameterize the forcing and keep

track of the phase relationship between the group

forcing and the response, thus their solutions are

representative of forced waves that do not freely

propagate beyond the group structure of the prescribed

forcing and thus are quite different in nature than our

situation for free waves. They conclude that forced

waves have strong vertical variation in amplitude and

phase but that free infragravity waves do not. This is in

FIG. 6. Vertical profiles of horizontal velocity component (top) u and (bottom) y and (left)

magnitude and (right) phase relative to the surface value as a function of relative elevation z/h

for values of frequencies (Hz) given in the legend. Results are shown for ›V/›x 5 20.025 s21

and cd 5 0.010.
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contrast to the results described here where we have

considered only unforced motion at infragravity

frequencies.

Interpretation of surface gravity waves is complicated

by the cross-shore nodal structure that for a broad dis-

tribution of energy across all wavenumbers depends on

the edge wavemodemix. In general, results here [as well

as by Prandle (1982)] suggest that all free infragravity

motions should exhibit vertical structure, particularly at

lower frequencies. Further examination of surface

gravity waves that includes theoretical representation of

their cross-shore structure (e.g., on a planar beach pro-

file) is the subject of ongoing research.

The results show that the sign of the vertical phase

change depends on the sign of l2. When l2 becomes

negative, an additional i is introduced into the parame-

ter p6 [(24) and (25)]. The additional i effectively

changes the direction of rotation because the velocity

profile structure given by (28) depends on exponentials

of the form exp(6p6z), similar to tidal flows as pointed

out by Prandle (1982); l2 can be positive or negative

depending on the relative magnitudes of kV, ›V/›x, and

s and thus sign changes can occur when moving across

the surfzone and passing the location of Vo (i.e., as the

sign of ›V/›x changes). In this work, we have only con-

sideredV to be uniform over depth. In natural surfzones,

V has vertical structure, particularly in the lower half of

the water column (Garcez Faria et al. 1998). If the ver-

tical variation in V is strong enough, and assuming the

phase speed of the motions cp 5 s/k is constant with

depth, a local rotational change can occur over the

vertical independent of ›V/›x. That is, V can be greater

than cp at the surface but less than cp near the bottom,

thereby introducing a rotational change over the water

column. A similar situation exists if we consider cross-

shore mean flows that also have significant vertical

variation (e.g., Garcez Faria et al. 2000). Inclusion of

vertically varying mean flows significantly complicates

the equations, and solutions are not readily derived and

therefore are not considered herein.

It should be noted that our results are computed with

typical values of current speeds, cross-shore current

shear, and bottom drag in order to characterize the

overall properties of the oscillatory motions. However,

our solutions vary only as a function of elevation z and

do not consider that the instantaneous current structure

and parameter space that may vary as a function of

cross-shore location x. This spatial variation might be

significant over cross-shore scales associated with vor-

ticity motions, a problem that Prandle (1982) did not

have to consider for tides. However, the vorticitymotion

orbital excursion is relatively small compared to typical

surfzone widths and profile variations (that scale with

sandbar positions and beach slope), suggesting that the

cross-shore scaling may not be an issue. We have not

neglected any differentiations with respect to x (other

than the nonlinear advective terms) but have ignored

terms that arise from cross-shore profile variations

(typically present in nature). How these nonlinear or

bottom slope terms modify our results is not established

here but is expected to be of higher order.

Depth-integrated values of cross-shore and along-

shore velocities are solutions to the vorticity equa-

tion and satisfy any constraint, including continuity

(e.g., Bowen and Holman 1989). Zhao et al. (2003)

FIG. 8. Effect of cd on relative bottom phase shift ub plotted

as a function of wave frequency (Hz) for u (solid dots) and

y (cross marks) for ›V/›x 5 20.025 s21. Results are shown for

cd 5 0.1, 0.005.

FIG. 7. Effect of ›V/›x on relative bottom phase shift ub plotted

as a function of wave frequency (Hz) for u (solid dots) and y (cross

marks) with cd5 0.01. Results are shown for ›V/›x5620.025 s21.
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developed a numerical model that separates depth uni-

form from vertically varying flow and uses a quasi-3D

approach by specifying an analytic formulation for the

departure from a local, depth-uniform momentum bal-

ance (following Putrevu and Svendsen 1999). Their

leading-order solution has quadratic form determined

by shortwave (radiation stresses) and local momentum

fluxes, bottom drag formulation, and balancing a verti-

cally integrated volume flux. Their solution for the ver-

tical variation depends on the nature of the wave

forcing, whereas our vertically varying flows depend on

characteristics of the existing flow field specified at the

surface a priori and a bottom drag coefficient that

modifies the structure. Furthermore, in this work, we

have not explicitly derived or specified theoretical so-

lutions for the surface values, uo and yo, nor derived any

dispersion relation. If these surface values are known, or

say estimated from a depth-integrated model, then our

application of the vertical structure could be applied to

the solutions under the assumption of a given dispersion

relation [e.g., cp 5 s/k5 Vo/2 after Bowen and Holman

(1989)] without specifying the nature of the wave radi-

ation stress forcing or vertical moment balances, a

potential limitation of our approach in quantitative

comparisons to field data. Finally, although Zhao et al.

(2003) compare their quasi-3D model to a 2D depth-

integrated model, no comparisons have been made to

fully 3D models that we are aware of and thus how fully

three-dimensional effects impact the vertical structure is

not known and cannot be compared to our results at

this time.

In this work, following Bowen and Holman (1989)

who assumed a rigid-lid approach to modeling shear

instabilities of the longshore current, we are assuming

that the vertical velocities of the vortical motions are

negligible compared to the horizontal velocities at

frequencies of interest (about 0.005Hz). In general,

vertical velocities of low-frequency vortical motions

in the nearshore are believed be quite small, of

O(0.001)m s21, and difficult to observe. If those small

values for vertical velocities are taken as typical, a depth

scaling of O(1)m, and our assumed eddy viscosity of

0.02m2 s21, the inertial terms for vertical velocity com-

ponents are more than an order of magnitude less than

the viscous terms.

Our results show that observations of the vertical

structure of low-frequency motions in the nearshore

(described in the companion paper) are qualitatively

reproduced with the boundary layer model using the

observed surface values for rotational properties and

reasonable values for the magnitude of alongshore

currents at this beach (1ms21), phase speeds for domi-

nant vorticity wave propagation (approximated as half

the maximum longshore current), water depths (1m),

wave orbital velocities (1m s21), and eddy mixing

coefficients in the nearshore (0.02 m2 s21; after

FIG. 9. Vertical profiles of rotary parameters (left) uE and (right) Rc as a function of relative

elevation z/h for values of wave frequency (Hz) given in the legend. Results are shown for

›V/›x 5 20.025 s21 and cd 5 0.010.
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Garcez Faria et al. 2000). The behavior of the model

thus depends on the magnitude of bottom drag co-

efficients and the cross-shore shear of the mean along-

shore current (including changes in sign). Under a

reasonable range of bottom drag and current shears, the

behavior of the vertical variation in current direction

and rotational properties are reproduced. In particular,

the vertical variation in amplitude and phase (relative to

the surface value) of the cross-shore and alongshore

components of the flows at the bottom and the rotational

components (rotary coefficient and ellipse orientation),

including midwater column sign changes.

5. Conclusions

Analytic solutions to the viscous, linearized, un-

forced horizontal momentum equations are found that

predict a complex vertical structure associated with

low-frequency oscillatory motions in the nearshore in

the presence of a horizontally sheared, depth-

uniform, mean, alongshore current V(x). The verti-

cal distribution of horizontal shear stresses are

parameterized by a depth-uniform eddy viscosity nt

and a quadratic bottom stress formulation that in-

cludes the product of a constant drag coefficient cd and

the depth-averaged vector flow field j �Wj. The devel-

opment follows closely that for tidal flows on the

continental shelf (Prandle 1982) without inclusion of

Coriolis. The inclusion of V in the equations results in

an inhomogeneous equation for the vector velocity

that is solved using the method of undetermined

coefficients.

Solutions are shown to depend on a dense but man-

ageable set of variables, including the water depth h,

horizontal shear of the mean alongshore current ›V/›x,

and the parameter p5 [i(kV6s1 ›V/›x)/nt]
1/2 5 i1/2l.

By letting h5 1m and nt5 0.02m2 s21, representative of

typical surfzone conditions, model behavior is examined

in terms of l2, cd, and ›V/›x, and by forming the non-

dimensional depth H 5 lh and dimensionless friction

parameter J5 ntl/cdjWj that combines the effects of

bottom drag and vertical mixing.

Amplitudes relative to the surface are found to vary

over depth, consistent with typical boundary layer flow

that extends over the entire water column. The vertical

phase structure is complex. Phases relative to the surface

FIG. 11. (top) Effect of cd on change in Rc and (bottom) relative

phase shift in ellipse orientation DuE 5 (uE)b 2 (uE)o, plotted as

a function of wave frequency for ›V/›x 5 20.025 s21. The surface

value for Rc is shown as the dashed–dotted line in the top panel.

Results are shown for cd 5 0.1 (solid dots) and cd 5 0.005

(open dots).

FIG. 10. (top) Effect of ›V/›x on change in Rc and (bottom)

relative phase shift in ellipse orientation DuE 5 (uE)b 2 (uE)o,

plotted as a function of wave frequency for cd 5 0.01. The surface

value for Rc is shown as the dashed–dotted line in the top panel.

Results are shown for ›V/›x520.025 s21 (solid dots) and ›V/›x5
0.025 s21 (open circles).
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vary approximately linearly over depth and can have up

to 458 phase shifts at the bottom depending on the pa-

rameter space examined. The sign of the phase shift

depends on the sign of l2, with negative l2 generally

corresponding to bottom velocities leading the surface.

Interestingly, the sign of the phase shift for cross-shore

flows can be opposite that of alongshore flows at the

same position in the surfzone, indicating that bottom

cross-shore flows can lag the surface while at the same

time alongshore flows lead.

The bottom phase shift also varies as a function of

frequency and depends on the strength of the bottom

drag cd and the mean current shear ›V/›x. At higher

frequencies, phase shifts are generally smaller than

about 208. Maximum phase shifts occur for cross-shore

components of the velocity at low frequencies around

1022–1023Hz, but for alongshore flows the maximum

phase shift can become large at the lowest frequencies

and can change sign depending on the sign of the

current shear. In general, phase shifts are higher when

the bottom drag increases and can also increase (or

decrease) as ›V/›x changes sign.

Solutions are found for rotational properties of the

flow by forming the vector velocity. A surface condition

is specified by amplitudes and phases for clockwise and

counterclockwise rotating components that define the

rotary coefficient and ellipse orientation. The solutions

predict a turning of the flows with depth by as much as

208 over the water column for the parameter space

examined. Rotary coefficients are not uniform over

depth and can change sign, indicating that the sense of

rotation near the surface can be opposite to that near

the bottom.

The complex vertical structure in amplitude, phase,

and rotation is qualitatively consistent with new ana-

lyses of field observations (presented in Part I) from a

vertical stack of two component current meters ob-

tained at the 1994 Duck94 nearshore field experiment.

Solutions are valid for a range of frequencies spanning

the infragravity band, but analysis focuses on the

lowest-frequency band around 0.005Hz in which nearly

all the motions are associated with vorticity motions.

The results show complex vertical behavior necessarily

absent in the commonly used shallow-water (depth

averaged) solutions.
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