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FOREWORD 

The field of surveying, in all areas of study, comprises a vast amount of technical 

terminology. Even practitioners with many decades in the art do not have a complete 

grasp of it all. For the sake of reaching a broader audience as well as providing a quick 

reference to the already adept, a list of acronyms, a list of symbols, and a glossary have 

been incorporated into this thesis. Most terms that are italicized are given definitions in 

the glossary. 

Likewise, the analysis of time series in the spatial (i.e. time) and spectral (i.e. frequency) 

domains is of import to tidal research. General techniques, which are applicable to this 

study, have been appended, including descriptions of source code algorithms used in the 

data processing. 

In the discussion of historic observations, it is necessary to "follow in the footsteps of the 

original surveyor." In order to do this, different units of measure and different surveying 

techniques must be taken into account. The use of "feet," unless otherwise noted, is 

always in U.S. Survey Foot (1 foot = 1200/3937 meter). 
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computed water level observations from the WaterLog Bubbler. 
N=24481. Note the non-linear affect on the tides compared to those of 
Phase 1 (Fig. 3.4.5-8); no aberrations are apparent in the tide signal 
compared to Figure 4.3.3 90 

Figure 4.3.8: t_tide generated water level at Squamscott River, Great Bay, NH 
using computed water level observations from the WaterLog 
MWWL. N=13854. Note the non-linear affect on the tides compared 
to those of Phase 1 (Fig. 3.4.5-8); no aberrations are apparent in the 
tide signal compared to Figure 4.3.4 91 

Figure 4.3.9: Observed atmospheric v. water pressure and computed residual at 
Shankhassic, Great Bay, NH using observations from the Onset 
HOBOlogger. N=10706. Focus is on atmospheric pressure affect on 
water level. The Nor'easter event of 20101226 is apparent in each 
pressure record; no other aberrations are apparent in the residual 
(differential) pressure in comparison to the water pressure 92 
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Figure 4.3.10: Observed atmospheric v. water pressure and computed residual at 
Winnicut River, Great Bay, NH using observations from the SeaBird 
SeaCAT. N= 13681. Focus is on atmospheric pressure affect on 
water level. The Nor'easter event of 20101226 is apparent in each 
pressure record; no other aberrations are apparent in the residual 
(differential) pressure in comparison to the water pressure 93 

Figure 4.3.11: Observed atmospheric v. water pressure and computed residual at 
Adam's Point, Great Bay, NH using observations from the WaterLog 
Bubbler. N=24481. Focus is on atmospheric pressure affect on water 
level. The Nor'easter event of 20101226 is apparent in each pressure 
record; no other aberrations are apparent in the water pressure in 
comparison to the residual (differential) pressure 94 

Figure 4.3.12: Water level power spectrum at Shankhassic, Great Bay, NH using 
observations from the Onset HOBOlogger. Hanning window, 
N= 10705. Observable rc-th order harmonics of the primary lunar 
tide, M, and the diurnal constituents, 0] and AT,, are labeled 99 

Figure 4.3.13: Water level power spectrum at Winnicut River, Great Bay, NH using 
observations from the SeaBird SeaCAT. Hanning window, 
N=13681. See Figure 4.3.12 for labels of the observable «-th order 
harmonics of the primary lunar tide, M 100 

Figure 4.3.14: Water level power spectrum at Adam's Point, Great Bay, NH using 
observations from the WaterLog Bubbler. Hanning window, 
N=24481. See Figure 4.3.12 for labels of the observable n-th order 
harmonics of the primary lunar tide, M 101 

Figure 4.3.15: Water level power spectrum at Squamscott River, Great Bay, NH 
using observations from the WaterLog MWWL. Hanning window, 
N= 13853. See Figure 4.3.12 for labels of the observable n-th order 
harmonics of the primary lunar tide, M 102 

Figure 4.3.16: Atmospheric pressure power spectrum at Shankhassic, Great Bay, 
NH. Hanning window, N=10705. See Figure 4.3.12 for labels of the 
observable rc-th order harmonics of the primary lunar tide, M 103 

Figure 4.3.17: Atmospheric pressure power spectrum at Winnicut River, Great Bay, 
NH. Hanning window, N= 13681. See Figure 4.3.12 for labels of the 
observable n-th order harmonics of the primary lunar tide, M 104 

Figure 4.3.18: Atmospheric pressure power spectrum at Adam's Point, Great Bay, 
NH. Hanning window, N=24481. See Figure 4.3.12 for labels of the 
observable n-th order harmonics of the primary lunar tide, M 105 
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Figure 5.2.1: 

Figure 5.3.1: 
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Figure 5.4.1: 

Figure 5.4.2: 

Figure 5.4.3: 

Figure 5.4.4: 

Figure 5.4.5: 

Figure 5.4.6: 

Shoreline boundary for the lower Piscataqua River, the Great Bay and 
its tributaries. Modified from the NOAA NGS Shoreline Data Rescue 
Project of Portsmouth, New Hampshire, NH2C01. (NGS, 2009) 
Processed using GRASS v.6.4. (GRASS Development Team, 2010) 114 

TCARI grid loaded in Pydro. Note the grid spacing decreases closer 
to the shoreline boundary. Raster navigational chart (RNC) 13283 and 
13285 base layers shown for geographic reference. (OCS, 2005; 
2011) 119 

TCARI solution surface after loading MLLW referenced water level 
records from the model control gauges. Note the different boundary 
conditions for open-ocean, upriver, islands, and mainland. See Figure 
5.4.8 for more information. Raster navigational chart (RNC) 13283 
and 13285 base layers shown for geographic reference. (OCS, 2005; 
2011) 120 

Harmonic constituent weighting function for Shankhassic, Great Bay, 
NH spatially interpolated across the TCARI model. Cornflower blue 
color represents regions that are not influenced by the weighting 
function 121 

Harmonic constituent weighting function for Winnicut River, Great 
Bay, NH spatially interpolated across the TCARI model. Cornflower 
blue color represents regions that are not influenced by the weighting 
function 122 

Harmonic constituent weighting function for Adam's Point, Great 
Bay, NH spatially interpolated across the TCARI model. Cornflower 
blue color represents regions that are not influenced by the weighting 
function 123 

Harmonic constituent weighting function for Squamscott River, Great 
Bay, NH spatially interpolated across the TCARI model. Cornflower 
blue color represents regions that are not influenced by the weighting 
function 124 

Mean lower-low water (MLLW) datum elevations interpolated across 
the TCARI model. Datum elevations referenced to Mean Sea Level 
(MSL). Cornflower blue color represents regions where the datum is 
not spatially interpolated 125 

Mean low water (MLW) datum elevations interpolated across the 
TCARI model. Datum elevations referenced to Mean Sea Level 
(MSL). Cornflower blue color represents regions where the datum is 
not spatially interpolated 126 
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Figure 5.4.7: Mean high water (MHW) datum elevations interpolated across the 
TCARI model. Datum elevations referenced to Mean Sea Level 
(MSL). Cornflower blue color represents regions where the datum is 
not spatially interpolated 127 

Figure 5.4.8: Residual water level weighting function for Squamscott River, Great 
Bay, NH spatially interpolated across the TCARI model. Cornflower 
blue color represents regions that are not influenced by the weighting 
function 128 

Figure 5.4.9: TCARI model error surface. Standard deviation, in meters, spatially 
interpolated across the model area. Note the lower error levels at the 
confluence of multiple tide stations (black). Red represents the 
highest error in the model; cornflower blue color represents the 
lowest error in the model 129 

Figure 6.1.1: Phase 4 tide gauge locations. Current areas of study are highlighted 
in red, while previous areas of interest are muted in grey. (OCS, 
2005; 2011) 130 

Figure 6.1.2: TCARI model error surface. Raster navigational chart (RNC) base 
layer shown for visual reference to Great Bay, NH. (OCS, 2005) 132 

Figure 6.3.1: Modeled v. computed water level at Squamscott River, Great Bay, 
NH using observations from the WaterLog MWWL and computed 
residual. N=7440. Representative comparison of tides at a model 
control gauge in a future epoch. Note the fluctuations in the residual 
water level. A combination of meteorological and shallow-water 
tides, and non-tidal forcings (fortnightly weather effect) contribute to 
the residual water level 143 

Figure 6.3.2: Modeled v. computed approximate water level at Nannie Island, 
Great Bay, NH using observations from the SeaBird SeaCAT and 
computed residual. N=7440. Representative comparison of tides at a 
random site in a past epoch. Note the fluctuations in the residual 
water level. A combination of meteorological and shallow-water 
tides, and non-tidal forcings (fortnightly weather effect) contribute to 
the residual water level 144 

Figure 6.3.3: Modeled v. computed water level at the mooring site in Great Bay, 
NH using observations from the SeaBird SeaCAT and computed 
residual. N=4800. Representative comparison of tides at the site of 
confluence in the TCARI error surface in a future epoch. Note the 
fluctuations in the residual water level. A combination of 
meteorological and shallow-water tides, and non-tidal forcings 
(fortnightly weather effect) contribute to the residual water level 145 
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Figure 6.3.4: Modeled v. t_tide generated water level at Squamscott River, 
Great Bay, NH using observations from the WaterLog MWWL and 
computed residual. N=7440. Representative comparison of tides at a 
model control gauge in a future epoch. Note the fluctuations in the 
residual tide signal. A combination of meteorological and shallow-
water tides contributes to the residual tide signal 146 

Figure 6.3.5: Modeled v. t_tide generated water level at Nannie Island, Great 
Bay, NH using observations from the SeaBird SeaCAT and computed 
residual. N=7440. Representative comparison of tides at a random 
site in a past epoch. Note the fluctuations in the residual tide signal. A 
combination of meteorological and shallow-water tides contributes to 
the residual tide signal 147 

Figure 6.3.6: Modeled v. t_tide generated water level at the mooring site in 
Great Bay, NH using observations from the SeaBird SeaCAT and 
computed residual. N=4800. Representative comparison of tides at 
the site of confluence in the TCARI error surface in a future epoch. 
Note the fluctuations in the residual tide signal. A combination of 
meteorological and shallow-water tides contributes to the residual tide 
signal 148 

Figure 6.3.7: Observed atmospheric v. water pressure at Nannie Island, Great Bay, 
NH using observations from the SeaBird SeaCAT and computed 
residual. N=7440. Representative comparison of tides at a random 
site in a past epoch. Focus is on atmospheric pressure affect on water 
level. A gap in the pressure record is evident; no other aberrations are 
apparent in the residual (differential) pressure in comparison to the 
water pressure 149 

Figure 6.3.8: Observed atmospheric v. water pressure at the mooring site in Great 
Bay, NH using observations from the SeaBird SeaCAT and computed 
residual. N=4800. Representative comparison of tides at the site of 
confluence in the TCARI error surface in a future epoch. Focus is on 
atmospheric pressure affect on water level. No aberrations are 
apparent in the residual (differential) pressure in comparison to the 
water pressure 150 

Figure 6.3.9: Water level power spectrum at Squamscott River, Great Bay, NH 
using observations from the WaterLog MWWL. Hanning window, 
N=7439. Representative comparison of tides at a model control gauge 
in a future epoch. Observable n-th order harmonics of the primary 
lunar tide, M, and the diurnal constituents, O, and A',, are labeled 154 
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