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In general, marine archaeological investigations begin in the archives, using historic maps, coast 
surveys, and other materials, to define submerged areas suspected to contain potentially significant 
historical sites.  Following this research phase, a typical archaeological survey uses sidescan 
sonar and marine magnetometers as initial search tools.  Targets are then examined through direct 
observation by divers, video, or photographs.  Magnetometers can demonstrate the presence, 
absence, and relative susceptibility of ferrous objects but provide little indication of the nature 
of the target.  Sidescan sonar can present a clear image of the overall nature of a target and its 
surrounding environment, but the sidescan image is often distorted and contains little information 
about the true 3-D shape of the object.  Optical techniques allow precise identification of objects 
but suffer from very limited range, even in the best of situations.  

Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area 
from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of 
the object with centimeter-level resolution. A clear demonstration of the applicability of high-
resolution multibeam sonar to wreck and artifact investigations occurred this summer when 
the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the 
University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and 
impact on the surrounding environment of a series of wrecks located off the coast of Normandy, 
France, adjacent to the American landing sectors

The survey augmented previously collected magnetometer and high-resolution sidescan sonar 
data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams 
distributed over a 120° swath.  The team investigated 21 areas in water depths ranging from about 
three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a 
destroyer, troop carrier, etc., while others contained multiple smaller targets such as tanks and trucks. 
Of particular interest were the well-preserved caissons and blockships of the artificial Mulberry 
Harbor deployed off Omaha Beach. The near-field beam-forming capability of the Reson 8125 
combined with 3-D visualization techniques provided an unprecedented level of detail including 
the ability to recognize individual components of the wrecks (ramps, gun turrets, hatches, etc.), the 
state of preservation of the wrecks, and the impact of the wrecks on the surrounding seafloor.
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Abstract:



On 6 June 1944 the combined Allied forces began Operation Overlord, the invasion of 
Hitler’s Fortress Europe, along the beaches of Normandy, France. This operation, described 
by Winston Churchill as “undoubtedly the most complicated and difficult that has ever 
taken place,” was the decisive turning point of the Second World War (Bowden, 2002). 
The logistics of this effort were staggering.  By the end of June more than one million men, 
177,000 vehicles and 586,000 tons of supplies landed on the Normandy beachhead. 

In support of the invasion, Allied naval forces mounted Operation Neptune involving 
nearly 5,000 vessels and an ingenious strategy to float concrete caissons across the 
English Channel, and create, in a matter of days, two fully functional ports (codenamed 
Mulberry). The creation of these ports was a key component of Operation Overlord, as 
the initial invasion avoided the strongly defended harbors of Cherbourg and Le Havre, but 
required the delivery of approximately 5,000 tons of material per day to the Allied troops. 
The capacity of these artificial ports, constructed in less than two weeks, would equal that 
of the Port of Dover that had taken seven years to construct (Ferrand, 1997). 

During Operation Neptune, several hundred Allied vessels and tons of war material 
were lost off the Normandy coastline. Over the years, salvage operations removed many 
of the wrecks deemed hazardous to safe navigation and activities of the local fishing 
communities.  While salvagers completely removed some ships, other vessels remain, 
some heavily impacted and others relatively intact - all an important but vulnerable 
testament to the courageous efforts of the Allied troops and to one of the most important 
operations in U.S. military history. 

The Naval Historical Center’s (NHC), Underwater Archaeology Branch, recognizing 
the potential historical significance of US Navy wreck sites off the D-Day beaches and 
seeking to fulfill its mandate to manage and preserve historic ship and aircraft wrecks, 
undertook a three-year remote-sensing study off the Normandy coast. The specific 
objectives of this study were to: 1- locate and confirm the existence of U.S. Navy wrecks 
associated with Operation Neptune; 2- provide identification and an indication of the 
state of preservation for each wreck site; 3- compare historical cartographic documents 
to remote-sensing analyses, and; 4- identify the authorities and agencies that have an 
interest in the preservation of these possibly significant historical resources and make the 
appropriate recommendations (Neyland and Schmidt, 2002).

In the first two years of its study, the NHC used the traditional tools of marine 
archaeology, sidescan sonar, magnetometer, and ROV video imagery, to locate and 
document potentially significant targets off Omaha Beach, Utah Beach and Point du Hoc. 
The study revealed nearly 3000 magnetic anomalies and more than 700 acoustic targets, 
including the submerged caissons that formed the Mulberry Harbor at St. Laurent sur Mer 
off Omaha Beach.  After closer study, the NHC selected 30-40 targets as high-priority 
sites warranting further investigation (Neyland and Schmidt, 2002). 

Introduction:
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In the summer of 2002, the NHC, in collaboration with Reson Inc. and the Center for 
Coastal and Ocean Mapping/Joint Hydrographic Center at the University of New Hampshire 
(CCOM), returned to the waters off Normandy to conduct detailed surveys of these high-
priority sites. This survey used innovative new, very high-resolution multibeam sonar 
operated to hydrographic standards. When combined with state-of-the-art visualization 
techniques, the data collected with this sonar provided an unprecedented view of the 
nature and state of the wrecks, addressing many of the key issues of concern to the marine 
archaeological community. This paper documents this operation and, in so doing, outlines 
the tremendous potential of multibeam sonar as a tool for underwater archaeology.

Archaeology is the study of the human past - the reconstruction of history, cultures and 
lifestyles through the collection and analysis of artifacts that survive the ravages of time 
and development. Marine archaeologists are faced with special challenges. The artifacts 
they seek are hidden from view, often by thousands of meters of water, and subject to 
decay and degradation from the harsh marine environment. Historical records describing 
clear landmarks and the continuity of human development often pinpoint the location for 
terrestrial archaeological investigations, but marine archaeologists are faced with searching 
vast expanses of featureless ocean with little initial indication of where their targets may 
be. Given the very poor light transmission properties of seawater, marine archaeology 
depends on acoustic and other remote sensing techniques, in particular sidescan sonar and 
marine magnetometers, to carry out the initial search for objects on the seafloor.

The sidescan sonar is the most commonly used tool for the physical search phase of 
marine archaeological projects. Sidescan sonar is typically deployed in a towed body 
and produces fan-shaped acoustic beams (broad [typically > 150º] in a swath orthogonal 
to the direction of travel and narrow [typically less than 1º] in the direction of travel). 
Pinging at a rapid rate (depending on the frequency and the range of the sonar), the 
energy returned from this insonification is displayed as a function of travel along track 
and range across track (converted from acoustic travel-time using a nominal speed of 
sound in the water column). The result is a plan view acoustic image of the seafloor 
that is sensitive to changes in topography (mostly through the generation of shadows) 
and to the composition or small-scale roughness of the seafloor through changes in 
the amount of energy backscattered to the sonar. Objects of archaeological interest 
(wrecks or other man-made objects) will sometimes sit proud above the seafloor and 
thus cast a recognizable shadow or be different enough in composition from their 
surroundings to present a change in acoustic backscatter.

As with all acoustic systems, the sidescan sonar experiences the typical trade-offs 
between range and resolution. Low-frequency sidescan sonar operates at frequencies 
of a few kHz to tens of kHz allowing for the insonification and search of swaths that 
are kilometers wide. While the ability to insonify many kilometers in a single pass is 
an efficient means of searching large areas of the seafloor, the resolution of these low 

MARINE ARCHAEOLOGY -- TOOLS OF THE TRADE:
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frequency systems is such that only very large targets can be found. For example when 
the 11/12 kHz MR-1 long-range sidescan sonar from the University of Hawaii’s Institute 
of Geophysics (http://www.soest.hawaii.edu/HMRG/MR1/mr1images) found the 245-m- 
long aircraft carrier USS Yorktown (CV-5) sunk in 5,200 m of water during the battle of 
Midway, the sonar target was nothing more than a few darkened pixels (Fig. 1).

On the other end of the spectrum, a high-frequency sidescan sonar can have 
extraordinary resolution, but very limited range. The Klein 5000 dynamically focused 
high-speed sidescan sonar operates at 455 kHz and can detect objects less than a meter in 
size, but only over ranges of tens to a few hundred meters. Systems are available at many 
frequencies and resolutions between these end-members; the appropriate system must be 
selected based on the particular circumstances of the search. 

Even when the highest resolution sidescan sonar is used, however, the data collected 
cannot necessarily provide an easily interpretable and unambiguous result. It is the 
unusual case when a sidescan sonar image can be unambiguously identified as a man-
made artifact and even rarer when specific details of the artifact can be gleaned from the 
sidescan imagery. The standard sidescan sonar does not provide information on the depth 
of the target being insonified (interferometric sonar can provide depth information but this 
technique is inappropriate for most surveys over wrecks) and thus the images provided by 

Figure 1. MR-1 long-range sonar image of theUSS Yorktown. With permission of 
Bruce Applegate Hawaii Institute ofGeophysics.
http://www.soest.hawaii.edu/HMRG/MR1/mr1images
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sidescan are created by assuming a linear, monotonic increase in travel-time away from 
the sonar transducer. This “flat seafloor assumption” leads to a range of distortions when a 
target that has much local relief (like a wreck) is insonified. Additionally, poor control on 
the precise position and motion of the sonar tow vehicle leads to other distortions along 
with the inherent danger of towing a vehicle near a wreck. The result is a distorted, plan-
view image of the seafloor, which contains backscattered reflections off targets on the 
seafloor and, most importantly, shadows cast by objects on the seafloor. In areas where a 
man-made object sits proud above a relatively flat seafloor, the backscattered reflection 
from the object and particularly the shadows cast by the object leave little doubt of the 
presence of a target (e.g., Fig. 2a). Even in the very high-resolution example shown in 
Figure 2, however, neither the nature or details of the object are clear.

In environments where the seafloor is rocky and rough, it is often impossible to 
separate man-made objects from natural features using the sidescan sonar record alone. 
To aid in the detection of man-made artifacts in these rough environments as well as 
in those areas where objects may be buried (and thus not detectable by sonar), marine 
magnetometers are used as an additional search tool in support of marine archaeological 
studies. A marine magnetometer measures anomalies in the earth’s magnetic field 
caused by ferrous objects. The size of the anomaly will be a function of the size and 
composition of the object as well as the distance of the object from the magnetometer 
(typically towed behind a vessel, much like a sidescan sonar). As the magnetometer is 
towed through a search area, the anomalies can be contoured (assuming that the position 
of the tow-body is being tracked) providing a coarse picture of the general distribution 
of ferrous objects on or below the seafloor (Fig. 2b).

Figure 2a. Sidescan sonar image of the wreck of the 
tug USS Partridge sunk by torpedo  off Omaha Beach 
on 11 June. Marine Sonic Technology 300 kHz Sea 
Scan sidescan operating at 75m range.

Figure 2b. Magnetic anomaly contours over the 

wreckage of the USS Partridge.

Figure 2c.  Photograph of USS Partridge from
http://www.navsource.org/archives/
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While sidescan sonar and magnetometers provide a means to locate potential 
archaeological targets, neither of these approaches resolves the detail needed for a 
complete archaeological study. In order to be able to identify marine artifacts, ascertain 
their state of preservation, make historical inferences, and plan recovery, the marine 
archaeologist must call upon optical techniques (underwater photographs, video, and 
when possible, direct observation by a diver or submersible). Optical techniques provide 
the ultimate level of resolution (Fig. 3a) but are severely limited by the attenuation of 
light in most marine environments. Cameras must be deployed, or direct observations 
made, within a few meters of the object. As a consequence, the field of view of most 
optical images is rather limited, often making it difficult to extract the context of the image 
(Fig. 3b) and thus get an overall feel for the nature of a large target. Mosaicing techniques 
applied to wreck imagery allow larger areal coverage (e.g., Singh, et al., 2000), but these 
techniques are complex and often very time-consuming.

In this paper we explore another approach to marine archaeological studies, the use 
of a new generation high-resolution multibeam sonar. This new type of sonar uses 
dynamically focused beams to collect extremely detailed bathymetric data over relatively 
long ranges (as compared to optical systems); when operated to hydrographic standards 
and combined with state-of-the-art visualization tools, a quantitative 3-D image of the 
targets and the surrounding seafloor can be generated at a resolution that addresses many 
of the key questions posed in an archaeological study. The feasibility of this approach 
was first demonstrated in a recent study of the scuttled WWI German High Seas Fleet 
off Scapa Flow, Scotland (http://www.ccom.unh.edu/scapa). Here we use examples from 
the ongoing NHC survey of the D-Day beaches off Normandy, France to demonstrate the 
tremendous potential of this approach for marine archaeological investigations.

Figure 3a.  Video image of cartridge shell demonstrating 
the ability of optical imagery to provide critical 
information in support of archaeological studies.

Figure 3b. More typical situation of poor visibility and  
limited field of view in photographic or video imagery, 
making context difficult to discern.
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The Reson 8125 multibeam sonar was the primary survey tool for investigating the high-
priority targets selected by the NHC. The Reson 8125 is the first of a new generation of 
dynamically focused multibeam sonars. Operating at 455 kHz, the system forms 240, 
0.5° x 1.0° beams over a 120° swath. The very narrow beams are achieved by the use 
of a relatively long array (0.5 m), which, in a standard multibeam sonar, would preclude 
working at short ranges from the transducer face (in the near field). The 8125, however, 
uses dynamically focused beam-forming that allows for operation of the sonar in the 
near field. Thus very high frequencies and short pulse lengths can be used (providing 
excellent vertical resolution) while maintaining very narrow beam widths (providing 
excellent lateral resolution). In addition, the focused beam-forming process reduces the 
energy levels associated with side lobes, making for an inherently cleaner return and, 
particularly important for archaeological surveys, the ability to coherently track features 
in the complex environment of wreckage.

The 8125 was deployed on a custom-built pole mounted to the starboard side of 
the M/V Genesis, an 11.3-meter catamaran chartered by the NHC from Tech Marine 
Service, out of Great Yarmouth, UK (Figs. 4a and b). The Genesis is very stable and has 
the ability to transit at speeds of 20 - 30 knots (surveys were conducted at 3 - 6 knots), 
making it an extremely efficient platform for operations. A TSS DMS2-05 dynamic 
motion sensor monitored vessel motion, and a TSS Meridian gyrocompass measured 
heading.  A Trimble AG132 differential GPS receiver using Fugro SeaSTAR corrections 
and local RTCM, determined vessel position with sub-meter accuracy. The Reson SVP-C 
sensor continuously monitored sound speed at the transducer head and a Reson SVP-
14 sound speed profiler established velocity profiles. Offsets between all of the sensors 
were carefully measured and standard hydrographic patch test and calibration procedures 
followed to minimize any integration or alignment errors. 

Figure 4a.   Motor vessel GENESIS used for deployment of 
Reson 8125 multibeam sonar.

Figure 4b.  Reson 8125 and sound speed 
sensor mounted on pole (in non-deployed 
position).

Methodology:
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Sound speed profiles were taken before the start of every new survey, at intervals of 
no longer than three hours, and whenever real-time quality control (QC) indicated a 
potential problem. For the most part, the water-column structure remained remarkably 
constant through the seven days of survey work. The tidal range off Normandy is large 
(on the order of 6 m) and tidal corrections are critical. The Service Hydrographique 
et Oceanographique de la Marine (SHOM) of France, kindly provided predicted tide 
models for each of our work areas.

Since tides controlled entry into port, accurate weather data provided a critical link 
between sea state, personnel safety and the ability to collect quality data.  The U.S. Naval 
European Meteorology and Oceanography Center (NEMOC) in Rota, Spain, provided 
48-hour regional weather forecasts and emergency fax broadcasts.  The harbormaster at 
the port authority of Grandcamp-Maisy posted a local 24-hour forecast and alerted the 
Genesis crew of any hazardous conditions reported by the fishing fleet.

A Reson 6042 data acquisition system was used to digitally acquire data, integrate data 
from the ancillary sensors, and to store raw data files. Data from the 6042 were exported into a 
Triton Extended Format (XTF) for further processing and cleaning with CARIS HIPS, which 
produced cleaned and gridded data.  Interactive Visualization Systems’ Fledermaus software 
was used to produce interactive 3-D visualizations of the targets and their surrounding 
environment. Depending on the complexity of the data set collected, the turn-around time 
from data acquisition to interactive 3-D viewing ranged from minutes to several hours.

Despite the challenges provided by weather, tides, currents, and fine French food and 
wine, the use of a dynamically focused multibeam system in support of the D-Day 
archaeological studies proved to be a tremendous success. Over approximately seven 
days of operation, 35 hours of surveying were carried out, imaging much of the remains 
of the Mulberry harbor off Omaha Beach as well as approximately 40 other distinct 
targets. We will focus here on only a few examples, but a more detailed discussion of the 
results of this work can be found in Malzone, et al. (2002).

Omaha Beach Mulberry Harbor:
As mentioned earlier, one of the greatest challenges facing the Allies was to ensure a 
steady stream of supplies and troops into France before the capture of a major harbor 
facility. The plan called for the establishment of two artificial harbors, one off the Omaha 
Beach and the other off the British sector at Gold Beach (Fig. 5). Ocean tugs towed the 
harbors, constructed of massive (the largest were 60 m long, 17 m wide, and 18 m high, 
displacing 6,044 tons) concrete caissons (code-named Phoenixes), across the Channel 
and sunk them about 3/4 of a mile offshore in about 9 m of water (Fig. 6). Inside the line 
of caissons, floating loading docks, pier heads and metal roadways, created a sheltered 
anchorage leading to the beach. For added protection the Allies sunk a string of obsolete 
warships and merchant ships (known as blockships) along with the caissons.

Results and Discussion:
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Figure 5.  Aerial view of Mulberry Harbor at Gold Beach (Arromanches). Photo from Desquesnes,1993. 

Figure 6.  Phoenix caissons before being installed 
(top), being submerged (bottom right) and in place 

(bottom left). Photo from Ferrand (1997)

Figure 7.  Omaha Beach after the 19-22 June storm.  
Note the many vessels washed on the beach.  The 
remnants of the Mulberry Harbor can be seen at the 
top of the photo – despite the destruction of much of 
the artificial harbor, its effectiveness as a breakwater 
can still be seen. Photo from Desquesnes,(1993)
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On the 19th - 22nd of June a rare, Force 6 -7 storm struck Normandy, washing more 
than 800 vessels onto the beaches (Fig. 7). This storm wreaked havoc on the American 
Mulberry harbor (which was less complete and generally more exposed and vulnerable 
than the British Mulberry which survived the storm). The storm surge destroyed 20 of the 
30 caissons at Omaha Beach forcing the Allies to abandon the American harbor.

Our survey of the remains of the Mulberry harbor focused on an approximately 1.7 
km x 200 m wide area parallel to the beach and an approximately 300 x 200 m area 
perpendicular to the beach (Fig. 8). Surveying was difficult as pieces of some of the 
caissons come within several meters of the surface, even at high tide. Nonetheless, the 
multibeam sonar data presents a clear and unparalleled view of the state of destruction of 
the caissons (ranging from near complete destruction to excellent preservation) as well as 
the effect of the caissons on local sediment transport. The wreckage of one blockship can 
be seen lying almost orthogonal to, and on top of, the line of caissons. Most impressive 
is the ability of the sonar to track the near-vertical walls and remaining steelwork of the 
better-preserved caissons (Fig. 9).

The images presented here are based on multiple, overlapping passes of the targets 
allowing insonification from all sides. The data from these multiple passes have been 
gridded at 25 cm intervals and rendered in 3-D. Given the fact that each grid node 
represents input from multiple passes, any positional uncertainty will be propagated into 
the grid resulting in a defocusing of the image. It is thus surprising that the rendered 

Figure 8.  Surveys conducted off Omaha Beach, Normandy.  The survey of the Mulberry Harbor off Omaha 
Beach is seen in two sections parallel to and about 1 km from the beach; the survey of the DD tanks is seen 
on the eastern edge of the chart approximately 4 km from the beach.
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Figure 9.  Reson 8125 survey of wreckage of Mulberry harbor off Omaha Beach, gridded at 25 cm resolution 
and rendered in 3-D.  Several caissons can be seen (the two in the middle in very good state of preservation) 
as well as the wreckage of one of the blockships that had been deployed to add substance to the wave barrier.   
The distribution of bedforms around the caissons clearly indicates the nature of flow in the region as well as the 
effect of the wreckage on the flow.    Image represents about a 300m x 400m area.  Location of these targets 
can be found on Figure 8.

Figure 10a.  Image of Phoenix caisson constructed from multiple passes over target, gridded at 25 cm and 
rendered in 3-D.
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Figure 10b.  Image of Phoenix caisson constructed from a single pass over target, gridded at 25 cm and 
rendered in 3-D.

images are so remarkably crisp, particularly in the coherent depiction of vertical 
structures. The implication is that the horizontal positioning is highly accurate and 
consistent during the course of multiple passes over the target. When, however, a single 
swath is examined (i.e., no positional uncertainty), a clear improvement in horizontal 
resolution can be seen (Fig. 10a and b).

LCT524:
The remarkable consistency of positional information is clearly evident in the survey of 
a Landing Craft Tank (LCT-524) in about 18 m of water off Utah Beach. The vessel is 
well preserved with a number of recognizable features including the bow ramp, 20-mm 
gun mounts, and debris in the hold. A large scour pit can also be seen on the port side 
indicating strong local current regime (Fig. 11). If we look at the individual soundings 
associated with two crossings of the vertical gunnels of the vessel, color coded by line 
number (Fig. 12), we see that sonar hits on the vertical wall are typically within a few cm 
of each other and never more than 50 cm apart, indicating a high degree of precision in the 
horizontal positioning. We assume that we were able to achieve this degree of precision 
due to the fact that the overlapping lines were collected within a few minutes of each other 
(typically less than 20 minutes) and within this time period the GPS satellite geometry 
remained stable. We did notice occasions where there were sudden (small) offsets in the 
position of vertical targets (resulting in an apparent double hull) and these cases appeared 
to be related to a change in the satellite constellation.
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Figure 12.  Soundings from two separate lines crossing LCT 524.  Color represents the individual lines.  
Note the consistency of position of the soundings on the gunnels from line to line. Grid cells represent 
50 cm distance.

Figure 11. Reson 8125 survey of LCT 524, gridded at 25 cm and rendered in 3-D.  Cross-section represents the 
region from  which soundings were extracted and displayed below.
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DD Tank:
The final example we present is from a survey of several Sherman duplex drive (DD) 
tanks sunk approximately 4 km off of Omaha Beach. The Sherman DD tanks were 
modified into amphibious tanks with the addition of twin propellers and a canvas skirt 
fitted around the hull to provide flotation (Fig.13). The DD tanks were designed to be part 
of the first wave of the invasion, maintaining a low profile while “swimming” to shore 
and then providing covering fire for the first waves of infantry. The seas on 6 June were 
too rough for the fragile flotation mechanism of the DD tanks and of the first wave of 32 
tanks launched approximately 5 km off Omaha Beach, all but 3 sank (Ambrose, 1994). 
Witnessing this disaster, the skippers of the LCT’s carrying other DD tanks brought their 
tanks directly to the beach. 

Figure 14 shows a remarkable image of what is unquestionably a Sherman tank, 
located in approximately 19 m of water and pointed directly toward the beach. Again, the 

Figure 13.  Duplex Drive “DD” tanks used in the Normandy invasion.  These were Sherman tanks with 
propellers and a canvas flotation skirt added.  Image on left is with skirt lowered, on right with skirt raised.  
Note propellers on image on right.  Images from the Lewis Vince, website:     
http://www.vlewis.net/omaha.html
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Figure 14.  Duplex Drive “DD” tanks used in 
the Normandy invasion.  These were Sherman 
tanks with propellers and a canvas flotation 
skirt added.  Image on left is with skirt lowered, 
on right with skirt raised.  Note propellers on 
image on right.  Images from the Lewis Vince, 
website:     http://www.vlewis.net/omaha.html



evidence of scour around the tank is quite clear. While the rendered image (based on data 
gridded at 25 cm) clearly has the characteristic shape of a Sherman tank, it appears that 
the gun barrel is missing. Closer examination, however, reveals that this is not the case 
and points out that in some circumstances, the gridding and rendering (formulation of the 
3-D image) process can remove potentially important detail. If instead of looking at the 
rendered gridded surface, we look at the individual soundings rendered in 3-D, we can 
clearly see four hits of the sounder on the approx. 90mm-wide barrel of the 75mm gun.

Figure 15.  3-D view of 8125 soundings from ‘DD’ tank located approximately 4 km off Omaha Beach.  When 
individual soundings are visualized, the barrel of the 75 mm gun (approximately 9 cm in diameter) can clearly 
be seen – pointing directly toward the beach.

As part of an ongoing investigation of the wrecks and artifacts remaining off the 
American sector D-Day beaches of Normandy, a team from the U.S. Naval Historical 
Center’s Underwater Archaeology Branch, Reson Inc. and the University of New 
Hampshire’s Center for Coastal and Ocean Mapping/Joint Hydrographic Center, carried 
out a series of surveys aimed at exploring the applicability of using a hydrographic- 
quality, high-resolution multibeam sonar for marine archaeological studies. The system 
used for these surveys (the Reson 8125) operates at 455 kHz with dynamically focused 
near field beam-forming that allows 240, 0.5° (at nadir) beams to be formed over a 
120° sector. The short pulse length and very narrow beam widths of this sonar provide 
extremely high-resolution and very reduced sidelobes that allow for the robust tracking 
of complex targets. We surveyed 21 areas in water depths ranging from about 3 - 30 m. 
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Some sites contained individual targets such as landing craft, barges, a destroyer, a 
troop carrier, etc., while others contained multiple smaller targets such as tanks and 
trucks. Of particular interest were the well-preserved caissons and blockships of the 
artificial Mulberry Harbor deployed off Omaha Beach and destroyed by a Force 6 – 7 
storm that started on 19 June 1944.

Unlike traditional marine archaeological search tools (sidescan sonar and 
magnetometers), the multibeam sonar can provide detailed, undistorted, and quantitative 
information on the 3-D geometry of the target being surveyed from a platform that is 
safely above target. Unlike traditional visual or photographic inspection, the multibeam 
sonar insonifies a relatively large area (tens to hundreds of meters) allowing the full 
context of targets to be established quickly. When combined with state-of-the-art 3-D 
visualization techniques that allow the viewing of both rendered surfaces and individual 
points, the data returned provides an unprecedented level of detail including the ability to 
recognize individual components of the wrecks (ramps, gun turrets, hatches, etc.), the state 
of preservation of the wrecks, and the impact of the wrecks on the surrounding seafloor. 
Given these capabilities we suspect that the multibeam sonar will play an increasingly 
important role in future marine archaeological studies.

The work described was a collaborative efforts amongst researchers from the Underwater 
Archaeology Branch of the Naval Historical Center, Reson Inc. and the University of 
New Hampshire’s Center for Coastal and Ocean Mapping/Joint Hydrographic Center. 
Support for the field work came from the Dept. of Defense Legacy Resource Management 
Program and the NOAA Ocean Exploration Program. Support for UNH CCOM/JHC 
participation was provided by NOAA Grant No. NA97OG0241.
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