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ABSTRACT 

HORIZONTAL CALIBRATION OF VESSEL LEVER ARMS USING 

 NON-TRADITIONAL SURVEY METHODS 

 

by 

Casey O’Heran 

University of New Hampshire, April 17, 2020 

Knowledge of offset vectors from sonars, mounted on vessels, to systems such as Inertial 

Measurement Units (IMUs) and Global Navigation Satellite Systems (GNSS) is crucial for 

accurate ocean mapping applications. Traditional survey methods, such as employing laser 

scanners or total stations, are used to determine professional vessel offset distances 

reliably. However, for vessels of opportunity that are collecting volunteer bathymetric data, 

it is beneficial to consider survey methods that are less time consuming, less expensive, 

and which do not involve bringing the vessel into a dry dock. Thus, this thesis explores 

three alternative methods that meet this criterion for horizontally calibrating vessels  

 

With the development of Unmanned Aircraft Systems (UASs) in the field of mapping, 

more cost-effective and quicker surveys can be conducted. For standard mapping 

applications, the tradeoff in using UASs compared to traditional surveying instruments is 

that there is an increase in errors. To investigate the potential of using UASs to accurately 

calibrate horizontal vessel offsets, UASs were utilized to calibrate a vessel with both 

Structure from Motion (SfM) photogrammetry and aerial lidar while the vessel was 



 xxv 

moored. Estimates of the horizontal deviations from ground truth, for both methods, were 

obtained by comparing the horizontal distances between targets on a vessel, acquired by 

the UAS methods, to ground-truth measurements of offset distances from survey-grade 

laser scanning of the vessel. In addition to the UAS methods, a seafloor reference technique 

that involves collecting single-beam echo sounder (SBES) data over a known bathymetric 

feature to estimate horizontal offsets of a vessel, was investigated.  

 

Errors for the seafloor reference method were on the meter level and therefore may only 

be relevant for larger offsets such as on larger ships. In contrast, UAS methods were able 

to achieve horizontal deviations on the order of centimeters with the use of Ground Control 

Points (GCPs). 
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CHAPTER 1 

1 INTRODUCTION 

 1.1   Crowd Sourced Bathymetry 

Ocean mapping can be described as the technique of surveying underneath the surface of 

the water to estimate the topography of the ocean floor. Modern technologies such as 

satellites and aircraft equipped with electromagnetic energy sensors (e.g., passive/active 

light and radar) and oceanographic vessels equipped with echo sounders, have become 

popular to map the seabed (Hillman, 2019). However, direct measurement of depth with 

active remote sensing techniques (e.g., bathymetric lidar) is only possible to depths of 

several tens of meters, even in the clearest waters. (Mayer et al., 2018). This has left the 

majority of the ocean unmapped, resulting in the implementation of vessels equipped with 

echo sounders as the dominant source of high-resolution seabed data.  

 

Utilizing echo sounders to map the ocean is crucial to understanding ocean processes, as 

much of what happens on Earth (e.g., weather, human activity, and geomorphic processes) 

is controlled by the 71% ocean coverage on the surface (Weatherall et al., 2015). 

Commonly, acoustical mapping of the seafloor occurs by securing single-beam and/or 

multibeam echo sounders to a mount or hull of a vessel. Single-beam echo sounders 

(SBES) send out a series of acoustic pulses to the seabed where they are reflected and 

returned to the echo sounder for a series of depth measurements; multibeam echo sounders 

(MBES) send out an acoustic pulse in a swath coverage, obtaining multiple seabed depth 
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measurements at a time (SeaBeam, 2000). Single-beam systems are generally less 

expensive and take less time to process than multibeam systems. However, multibeam 

systems achieve a significantly higher amount of seafloor coverage over a shorter time 

span. Each type of echo sounding system has its benefits and limitations, but both types 

possess the ability to contribute to seafloor mapping efforts. Even with these systems, under 

18% of the oceans have been mapped by echo sounders (Mayer et al., 2018). Since there 

is much of the seafloor left to the mapped, the Seabed 2030 initiative was created in June 

2016 with the goal of mapping the entire seafloor at depth-dependent resolutions by 2030 

(Mayer et al., 2018). Successfully executing this initiative requires cooperation from public 

and private entities across the world that are associated with ocean mapping operations. 

However, with the immense amount of seafloor remaining unmapped it is reasonable to 

believe that further assistance in completing this initiative could come from voluntary 

sources (Robertson, 2016).  

 

Data collected by a group of voluntary participants for the purpose of contributing to a 

collective goal is known as crowd sourcing. Similarly, crowdsourced bathymetry (CSB) is 

the voluntary collection of depths measured by vessels equipped with standard navigation 

systems undergoing routine maritime activities (Luma-ang, 2017 and IHO, 2020). Data 

such as these can be provided by a CSB mariner for public consumption. The International 

Hydrographic Organization’s (IHO) Data Centre for Digital Bathymetry (DCDB) is a 

system that holds worldwide bathymetric data and now accepts CSB contributions (IHO, 

2020). Before the CSB data is transmitted to the DCDB, it must go through trusted nodes, 

entities serving as liaisons between CSB mariners and the DCDB (IHO, 2020). The 
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network of trusted nodes offers a variety of support services to mariners, but the support 

does not guarantee the CSB data can be trusted. As Dodge and Kitchin (2013) suggest, the 

integrity of crowd sourced geospatial data can be called into question due to the potential 

inexperience of the crowd in relation to the complexity in collecting high quality geospatial 

data. Ensuring high quality geospatial data is being collected by the crowd requires 

knowledge that the crowd possesses the proper equipment setup and are performing the 

procedures necessary to collect trusted geospatial data. CSB is not exempt from this 

concept due to the complex nature of ocean mapping operations. Achieving accurate CSB 

data requires reassurance that operations are being conducted in a manner conducive for 

producing trusted bathymetric data.  

 

Obtaining accurate seafloor mapping data commences with integrating the vessel’s echo 

sounder(s) with other equipment on board, such as Global Navigation Satellite System 

(GNSS) receiver(s), and an Inertial Measurement Unit (IMU). Vectors indicating the 

coordinate differences between such pieces of equipment, lever arms (Hughes Clarke, 

2003), must be known and are crucial in producing accurate estimations of the horizontal 

and vertical locations of soundings that are reflected from the seafloor. For professional 

mapping vessels, static surveys are performed in external coordinate systems to establish 

locations of the sensors and other markers on board the vessel; these measurements can 

then be used to establish the Ship’s Reference Frame (SRF) (Hughes Clarke, 2003). The 

SRF organizes the locations of the sensors with respect to an origin designated as the 

reference point on the vessel. Instruments utilized to conduct SRF calibration surveys often 

involve traditional survey instruments such as total stations or laser scanners. Costs 
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associated with such instruments and high quality of survey can be significant. In addition, 

time spent on such a survey can be lengthy due to the process requiring the vessel to be 

placed in a dry dock. However, vessels designated for high-quality ocean mapping 

operations require such services to generate the desired accurate locations and depths of 

the seafloor derived from acoustic soundings. 

 

It is unreasonable to expect voluntary CSB participants to pay a considerable amount of 

money and spend a substantial amount of time to have their vessel statically surveyed in a 

dry dock. This problem has resulted in most CSB vessels not possessing an SRF or accurate 

knowledge of the vessel’s lever arm vectors. Without known lever arm vectors the sonar 

and other sensors cannot be properly integrated with each other, which could lead to 

unreliable CSB data. Methods outside the traditional static survey techniques must be 

explored to procure higher quality CSB data at reasonable cost.  

 

Techniques aimed at making CSB data more trustworthy must be capable of obtaining both 

vertical and horizontal offset distances between a vessel’s GNSS antenna and its sonar in 

a time/cost efficient manner. Additionally, it is important to set a standard of how accurate 

calibration methods should be for CSB applications. Most ocean mapping applications 

require centimeter level or better lever arm accuracies. On most CSB vessels the offsets 

are not known, but if the offsets were to be calibrated it is probably more realistic to expect 

CSB lever arms with errors of 1-30 cm. A Trusted Community Bathymetry (TCB) system 

that integrates a GNSS antenna with a single-beam sonar to autonomously compute the 

vertical offset, falls within this error range (Calder et al., 2020).  Soundings with an 
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estimated vertical uncertainty of 0.16 m (one sigma) with respect to the ellipsoid were 

demonstrated using the TCB system (Calder et al., 2020). This hardware has the potential 

to significantly improve the vertical accuracies of CSB data, but it does not yet possess the 

ability to accurately define the horizontal offsets between the GNSS antenna and sonar. 

Until a solution to this issue is proposed, soundings produced utilizing the TCB system 

will not be georeferenced to the soundings’ true horizontal location. The value and 

reliability of CSB data could increase if data is collected with proper vertical and horizontal 

sensor offsets. Consequently, this thesis focuses its research on examining and creating 

Standard Operating Procedures (SOPs) for non-traditional survey techniques to calibrate 

horizontal sensor offsets on vessels, as there already exists practical alternative vertical 

vessel calibration methods. 

 

 1.2   Proposed Methods 

 1.2.1   UAS Methods 

Development of Unmanned Aircraft Systems (UASs) for civilian based remote sensing 

applications has increased extensively over the last decade, leading to UASs achieving 

spatial mapping resolutions of 1-20 cm (Nebiker et al., 2008). Two sensors are commonly 

employed when conducting UAS based remote sensing operations: cameras and lidar units. 

Cameras can be equipped to UASs where a collection of two-dimensional (2D) images are 

captured and processed by mathematical photogrammetric Structure from Motion (SfM) 

and multi-view stereo (MVS) algorithms, generating a 3D model of the surveyed area 

(Sanz-Ablanedo et al., 2018). This technology supports the ability to perform high 

resolution geospatial mapping with low-cost consumer grade UASs. Lidar based UAS 
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operations, however, are costlier and intricate to set up when compared to UAS SfM 

photogrammetry. As shown by Simpson (2018), UAS lidar advantages include fast 

collection, surface characterization, penetration of vegetation, vertical feature mapping, 

and capability of global accuracy. Both UAS sensors have demonstrated that they can 

quickly and efficiently map objects. 

 

The characteristics of UAS mapping make it a potential candidate for meeting the desire 

to quickly and cost effectively survey a vessel’s horizontal lever arms. However, if a UAS 

survey of a vessel were to be performed in the traditional manner by placing the vessel in 

a dry dock, the survey would still be costly and take a substantial amount of time. 

Conducting a UAS vessel calibration survey without placing the vessel in a dry dock would 

tremendously reduce the time and cost required to perform the survey, making such a 

service a viable option for CSB operators. Thus, this research proposes conducting UAS 

surveys of a vessel while it remains in water. This concept implies that the vessel would 

not be completely static while being mapped by a UAS. Therefore, this research 

investigates the implementation of UASs to perform horizontal lever arm calibrations of 

moored vessels, along with the exploration of factors that contribute to the uncertainty 

associated with such a survey. As this research could lead to a professional service 

available to CSB vessels, it was important to design the protocol methods in ways that 

would offer practical horizontal vessel calibration guidance to the CSB community.  

 

In this investigation two separate methods are considered: SfM photogrammetry from a 

low-cost consumer grade UAS and lidar from a higher cost industrial grade UAS. Common 
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low-cost UASs can perform simple high-resolution photogrammetry surveys without 

survey grade GNSS capabilities. However, UAS lidar requires expensive industrial grade 

UASs equipped with survey grade GNSS receivers. Applying both methods independently 

to determine the lever arms on a single vessel allows a complete assessment of accuracy 

and cost between these methods, similar to that done by Simpson (2018), but for the 

application of mapping a slightly moving object. Since the focus of this research is on 

making accurate measurements between points on a vessel, it may not be necessary to 

georeference or conduct the surveys with Real Time Kinematic (RTK) GNSS enabled 

UASs to achieve accurate lever arm vectors. UASs with non-RTK GNSS receivers could 

possibly generate properly scaled models without accurately georeferencing the object, 

however, georeferencing has the potential to increase the accuracy of the survey. Hence, it 

is important to investigate whether it is necessary to georeference a vessel when conducting 

a horizontal lever arm calibration. As a result, two UAS SfM photogrammetry methods are 

proposed: processing with and without Ground Control Points (GCPs). GCPs are known 

three-dimensional (3D) coordinates within the area of survey that are utilized to 

georeference the model in post-processing. Indirect georeferencing, assigning known 

coordinates to targets present in the photographs (Sanz-Ablanedo et al., 2018), was the 

chosen georeferencing method as it was the easiest to conduct given the implementation of 

a consumer grade UAS. This branching workflow demonstrates whether this type of survey 

could be performed without laying ground control and how accurate the survey could be 

by georeferencing the model with GCPs. Information such as this is critical for the 

implementation of UAS SfM vessel calibration surveys. In summary, this thesis 
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investigates implementing UAS lidar in addition to UAS SfM photogrammetry, with and 

without utilizing GCPs, to horizontally calibrate vessel lever arms.  

 

 1.2.2   Echo Sounding Method  

An additional vessel calibration source can come from the utilization of SBES. There 

currently exists a set of MBES calibration procedures that involve collecting pairs of survey 

lines over a defined bathymetric area and cross comparing the lines to estimate offsets. 

This protocol is known as the patch test and it ascertains the roll, pitch, and heading 

misalignment angles associated with MBES (Herlihy, 1989). Patch tests are essential to 

collecting accurate multibeam bathymetry data. Similar to patch tests, it would be 

beneficial for vessels to possess a means of acquiring their horizontal lever arms through 

an equivalent SBES based calibration. A method by which to do this would involve 

mapping a distinct bathymetric feature that has already been mapped accurately with a 

MBES. The exact feature would be observed with an echo sounder, simultaneously setting 

the lever arm offsets to zero, thus producing the 3D feature in a location hypothetically 

offset by the lever arm vectors, Figure 1. Utilizing the known feature location from the 

multibeam data, the observed data would be calibrated by estimating the lever arm 

distances until the observed and known features visually align. This process could 

potentially be done with two pairs of lines instead of the three necessary for a patch test. 

Given that most CSB vessels utilize SBES, this research investigates the procedure 

described above while using a single-beam system.   
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 1.2.3   Summary  

In total, three distinct methods for calibrating horizontal vessel lever arms are proposed 

and investigated in this thesis. Proposed methods include UAS SfM photogrammetry, UAS 

lidar, and a single-beam seafloor reference technique. All three methods have been 

extensively tested for the purpose of crafting SOPs, creating recommendations for future 

work, accuracy assessment, and method comparison.  

Figure 1: Cod Rock, a bathymetric feature in the Piscataqua River, New Hampshire. A 

reference MBES surface is overlaid with horizontally displaced single-beam data (white). 
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CHAPTER 2 

2 METHODS 

 2.1   Introduction 

 2.1.1   Vessel 

The vessel selected for all three proposed calibration methods was the R/V Gulf Surveyor, 

Figure 2. This vessel was chosen because it is owned by the Center for Coastal and Ocean 

Mapping (CCOM), has previously surveyed-in monuments within its own established 

reference frame, and is fully equipped to conduct ocean mapping operations. Having a pre-

calibrated vessel for any succeeding lever arm survey enables a direct comparison of 

measurements taken from the ground-truth survey to measurements obtained from the three 

proposed methods. Doucet Survey Inc. performed the original ground truth survey of the 

R/V Gulf Surveyor in 2016, Figures 3 and 4. With the vessel in a dry dock, a Leica P40 

laser scanner was used to perform 40 high definition laser scan setups of the vessel.  All 

scans were registered and a designated point inside the cabin was chosen to represent the 

origin of the Ship’s Reference Frame (SRF). More points within the scans were then chosen 

to help establish the axes of the SRF, with the x-axis being positive towards the bow, the 

y-axis positive towards starboard side, and the z-axis positive downward.  In total, 14 

monuments were established on the vessel with known 3D coordinates within the SRF. 3D 

uncertainties for the associated monuments fell under three millimeters (Doucet Survey 

INC, 2016). The quality of this calibration survey meets the standards required for high 
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quality ocean mapping applications, making this vessel and its associated survey suitable 

ground truth data to compare against the proposed calibration methods.  

 

 

 

 

 

 

 

 

 

 

 

 Figure 3: Laser scan survey of the R/V Gulf Surveyor performed by Doucet Survey Inc. 

(Doucet Survey INC, 2016) 

Figure 2: The Center for Coastal and Ocean Mapping’s (CCOM) 14.6 meter long 

hydrographic research vessel, the R/V Gulf Surveyor. (CCOM/JHC, 2019) 
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 2.1.2   Experiment Site: UAS Surveys 

For all UAS flights, the R/V Gulf Surveyor was docked at its home location at the 

University of New Hampshire (UNH) pier on New Castle Island, New Hampshire, as 

shown in Figure 5. This location was chosen because the vessel did not have to be moved 

from its usual docked location. Consequently, the UAS flights were conducted in an open 

area above the vessel and GCPs had to be established on the pier. Additionally, the pier is 

in a class G airspace, meaning no permission was needed to fly UASs. However, given the 

pier’s association to UNH and its proximity to a United States Coast Guard station, 

permission from the UNH Police Chief was obtained to fly at the pier.  

 

 

Figure 4: SRF coordinates (m) of markers on the R/V Gulf Surveyor derived from the 

ground truth laser scan survey (Doucet Survey Inc, 2016). 
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 2.1.3   Experiment Sites: Seafloor Reference Method 

Implementation of the single-beam echo sounding method occurred in the Piscataqua 

River, adjacent to the UNH pier where the UAS methods were developed, Figure 6. 

Features with significant bathymetric changes were required to properly test the echo 

sounding method. Thus, Cod Rock and Henderson Point were selected because of their 

recorded bathymetric changes shown in previous surveys of the river, Figures 7 and 8. Both 

locations allowed for enough maneuverability within the river. This enabled the vessel to 

perform the required survey experiments on the features.  

Figure 5: A map of New Castle, New Hampshire with the red rectangle identifying the 

site of survey at the UNH pier. 
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Figure 7: Cod Rock, a feature within the Piscataqua River chosen to implement the echo 

sounding method. 

Figure 6: Locations within the Piscataqua River where the echo sounding method was 

tested. The red rectangles show the two locations in which the method was implemented. 
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 2.1.4   Timeline of Experiments 

UAS data collection was completed on five separate days: one in the spring and four in the 

summer/fall of 2019. Single-beam collection occurred in the span of two days in January 

of 2020. See Table 1 for a detailed breakdown of all field experiments performed for this 

project along with the associated data that was collected on each date.  

 

 

 

 

 

Figure 8: Henderson Point, a feature within the Piscataqua River chosen to implement the 

echo sounding method. 
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 2.2   Ground Control Network: UAS Surveys 

 2.2.1   Ground Control Point Data Collection 

A control network was established to accurately georeference the aerial lidar and SfM 

photogrammetry data, thus placing the vessel in its actual location in the world within a 

specific reference frame. Utilizing a ground control network enables a comparison between 

errors associated with the UAS models of the vessel created with and without ground 

control. On the first day of UAS data collection, a temporary control network was 

established using AeroPoints, Figure 9, which are single frequency GNSS receivers 

capable of 5 cm vertical and 2 cm horizontal Root Mean Square (RMS) accuracies (ARE, 

2019). Ten AeroPoints, provided by ARE, were secured to the pier structure adjacent to 

the R/V Gulf Surveyor in a zig-zag pattern, Figure 10. The AeroPoints collected GNSS 

observations for approximately five hours. It is important to note for the following that the 

vessel was not located inside the ground control network.  

 

Table 1: Timeline of experiments conducted for this thesis. 
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For the remaining UAS experiments a separate set of GCPs were established due to the 

lack of accessibility and affordability of ARE’s AeroPoints. As seen in Figure 11, ten nylon 

targets were spread out across the pier in a similar zig-zag fashion as the first control 

Figure 9: AeroPoint target utilized as a GCP for the April 17, 2019 UAS survey. 

Figure 10: Layout of the AeroPoint control network for the April 17, 2019 UAS surveys. 
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network. The targets were affixed to the pier by placing gorilla tape on all four edges of 

the target. GNSS observations of the GCPs were taken with a Trimble 5700 receiver with 

a Zephyr geodetic antenna. Each target was statically occupied for ten minutes, Figure 12.  

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Layout of the second ground control network using nylon targets. 

Figure 12: The second ground control network being surveyed in with Trimble GNSS 

equipment. 
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 2.2.2   Ground Control Point Processing 

The first set of GCPs were delivered by ARE in the North American Datum of 1983 

(NAD83 (2011)), geodetic coordinates. This was due to ARE’s typical file delivery format. 

Using the National Geodetic Survey (NGS) Horizontal Time-Dependent Positioning 

(HTDP) tool (NGS, 2020), the GCP coordinates were transformed into the World Geodetic 

System of 1984 (WGS84 (G1762)), which is aligned to the International Terrestrial 

Reference Frame (ITRF) of 2008 (ITRF2008). Since the SfM camera locations were output 

in WGS84, it was logical to convert the GCPs to that datum. The transformed coordinates 

were output in degrees of geodetic latitude and longitude with altitude in meters. Standard 

deviations for the first set of GCPs were derived by ARE and can be seen in Table 2.  

 

 

 

 

 

 

 

 

 

With the second set of GCPs the raw observations were downloaded using Trimble’s data 

transfer software and converted to the RINEX 2.11 file format using Trimble’s Convert to 

Table 2: Standard deviations associated with the GCPs of the April 17, 2019 control 

network. 
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RINEX utility. The RINEX files were post-processed using RTKlib, and a Continuously 

Operating Reference Station (CORS), named NHUN, was used as the base station for post 

processing the GNSS data. NHUN, located on UNH’s campus, was the closest available 

GNSS base station to the site of the UAS surveys, making it a logical choice as the base 

station for post processing the observed GNSS data. Similar to the first set of GCPs, the 

second set of GCPs were output in WGS84 (G1762), with coordinates being in degrees of 

geodetic latitude and longitude with altitude in meters.  Standard deviations for the second 

set of GCPs were calculated in RTKlib and can be seen in Table 3. 

 

 

 2.2.3   Vessel Targets 

In addition to the established control networks on the pier, a set of targets were secured to 

the R/V Gulf Surveyor prior to each UAS experiment. For the purpose of identifying the 

square monuments with known SRF coordinates on the vessel from the aircraft, targets 

with holes in the middle of the target were placed over the center of each visible monument, 

Figure 13. This enabled the possibility for accurate measurements from monument to 

Table 3: Standard deviations associated with the GCPs of the second ground control 

network. 
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monument within the lidar and SfM photogrammetry models. As a result, this allowed error 

estimates to be made by comparing the ground truth distances between monuments on the 

vessel to the observed distances. Three cut out targets were placed on the vessel as there 

were only three square monuments that could be seen from the aircraft. Two additional 

SRF points could be seen from the aircraft in the form of the starboard and port GNSS 

antennas. Figure 14 displays the locations of the five known SRF points that could be 

identified from above. 

 

 

 

Figure 13: Modified paper target placed over a monument on board the R/V Gulf 

Surveyor. Cutout targets were utilized to accurately place the targets over the exact center 

point of each monument. 
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Along with the three cut out targets, 12 unmodified targets were placed around the vessel’s 

main and top decks, Figure 15. As a secondary source of error estimation, measurements 

between the modified and unmodified vessel targets were taken with fiberglass tape. While 

taking measurements, the tape was held level with the surface of the deck and the ends 

centered on the middle of the targets. The vessel targets were secured to the vessel with 

gorilla tape before the flights were flown, 17 total measurements were made before or after 

the flights, and once the flights concluded for the day the targets were removed. A more 

durable target was considered, but given the potential moisture build up on deck overnight, 

it was not clear whether a more durable target would stay attached to the deck long term. 

Thus, paper targets were used and this process was repeated for each day of 

experimentation, resulting in the locations of the unmodified targets changing on the meter 

level each time as they were not placed in the same location after each iteration of 

experiments.  

Figure 14: Locations of the SRF monuments on the R/V Gulf Surveyor utilized as a 

primary source of error estimation. 
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 2.3   Auxiliary Data: UAS Surveys 

 2.3.1   Auxiliary Data Collection 

Since the proposed UAS methods involve mapping a vessel while it is in the water, the 

vessel is not a completely fixed object while it is being mapped. Hence, it is important to 

observe and quantify the impact a vessel’s motion has on the accuracies of such a survey. 

As potential contributing factors, changes in water level height and changes in the vessel’s 

attitude during the time of flight were recorded. Water level data for every UAS experiment 

day was retrieved from the National Oceanic and Atmospheric Association (NOAA) Tides 

and Currents website; due to its close proximity to the survey area, the Fort Point tidal 

station was used. However, this data does not demonstrate how much small-scale 

movement the vessel undergoes. 

 

Figure 15: Shown are vessel targets utilized as a secondary source of error estimation. 

Unmodified vessel targets are in green and modified vessel targets shown in purple. 
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To investigate further the effect a vessel’s local horizontal and vertical motion has on UAS 

vessel calibration surveys, Motion Reference Unit (MRU) data was recorded on the R/V 

Gulf Surveyor on each day of experiment. The vessel’s installed POS MV 320 v.5, which 

includes an Inertial Measurement Unit and two GNSS antennas, was used to record motion 

data of the vessel while the flights took place. Estimated accuracies for typical operating 

circumstances of the POS MV 320 can be seen in Figure 16. The POS MV 320’s current 

presence on board the vessel and high degree of accuracy made it a viable source for 

collecting attitude data. Logging of the MRU data began approximately one hour before 

the commencement of flights for the day, with a logging frequency of 100 Hz for the April 

17, 2019 experiment and 200 Hz for all other UAS experiment days. MRU data concluded 

logging approximately 15 minutes after flights for each experiment day ended. The attitude 

data was collected in relatively static conditions compared to typical ocean mapping 

operations, but the potential inertial drift that could have been experienced due to these 

conditions was most likely kept in check by the MRU’s GNSS antennas.  

 

 

 

 2.3.2   Auxiliary Data Processing 

Figure 16: Accuracies of the POS MV 320 (Applanix Corp., 2013). 
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Both auxiliary datasets were processed to assess what was happening to the vessel in the 

water while it was being mapped by the UAS sensors. A visual test of the tidal plots was 

performed to confirm what stage in the tidal cycle the surveys were performed. Differences 

in water level heights between the times at which the UAS surveys started and ended were 

taken, indicating how much the water level changed between flights. Having these data 

helps in understanding the impact tidal cycles have on the operational procedures of UAS 

vessel calibration surveys. 

 

To understand the effects of the vessel’s change in attitude, the MRU data were analyzed. 

Recorded roll, pitch, heading, heave, and their timestamps were extracted from the POS 

MV data files. Time series plots of the vessel’s roll, pitch, and heading over the course of 

the UAS surveys were then generated. 

 

An additional purpose in processing MRU data was to quantify the uncertainties introduced 

into the UAS vessel calibration surveys by analyzing how many pixels and how much 

distance the vessel moved due to the attitude changes induced by local water disturbances. 

To do this, a code was implemented to estimate the vessel’s movement at a defined point 

in the SRF using the changes in the attitude values as the angles of rotation. Figure 17 lays 

out the computational steps utilized to determine how much the vessel shifted in a defined 

time interval from its starting orientation at the commencement of each flight.  
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Distance/pixel shift time intervals for this code were set to one second to look at the short 

time-scale effects of the motion, and 15 seconds. The attitude time series and distance/pixel 

shift plots for all UAS datasets helped demonstrate how local vessel motion impacts UAS 

vessel calibration surveys. This code has been preserved and made available for future use 

through a Bitbucket repository (Contact info@ccom.unh.edu for more information).  

 

 2.4   UAS Structure from Motion 

 2.4.1   Structure from Motion Data Collection 

UAS photogrammetry is the collection of aerial photographs obtained from an aircraft, 

which are then put through photogrammetric algorithms to construct a 3D point cloud of 

the photographed scene. From the photogrammetric point cloud an orthomosaic (a 

composite image formed from multiple photos of the same scene) can be used to perform 

measurements of the surveyed object. Five separate days of UAS SfM experiments were 

conducted to explore the practicality of performing horizontal vessel calibrations using 

Figure 17:  Computational procedure utilized to analyze the vessel’s motion during UAS 

flights. 
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UAS photogrammetry. For this study, it was desired to evaluate the performance of a low-

cost consumer grade UAS that has the capability of mapping an object at a high resolution. 

The DJI Phantom 4 Pro is a UAS that can be purchased off the shelf for around $2,000 

(2019 US dollars), is equipped with an IMU and consumer grade GNSS, has the ability to 

be in the air for up to 30 minutes, and includes a 20-megapixel camera with properties 

shown in Table 4  (DJI, 2020). Due to its low cost, quality camera resolution, and 

reasonable battery life, the Phantom 4 Pro was selected for the SfM photogrammetry 

mapping missions of the R/V Gulf Surveyor, Figure 18. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: The non-RTK/PPK version of the DJI Phantom 4 Pro UAS (DJI, 2020). 

Table 4: Phantom 4 Pro camera properties (DJI, 2020). 
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When carrying out UAS mapping missions a flight plan must be designed to fit the 

application of the end product. In this instance, we chose the deliverables to be clean point 

clouds and orthomosaics of the vessel that allow for horizontal measurements to be taken 

from multiple points on the orthomosaic or point cloud. Producing detailed 3D features 

from nadir imagery requires images to be collected in flight paths that are perpendicular to 

each other. As a result of this, a 3D grid mission in both along and across track directions 

with respect to the vessel were selected in Pix4D Capture as the primary form of UAS SfM 

data. Since high detail is desired for this type of survey, the amount of overlap between 

flight lines (side lap) and overlap between photos along a survey line (end lap) were both 

set to the maximum value of 90 percent. Along with overlap, the UAS’s flying height helps 

determine the amount of detail captured in an image. Based on the area of the survey site 

along with investigating the effect flying height has on the accuracy of UAS SfM vessel 

calibration surveys, both 31 and 21 meter above ground level (AGL) flying heights were 

utilized, resulting in Ground Sampling Distances (GSD) under 0.85 cm/pixel. Figures 19 

and 20 show the 3D grid missions with the respective survey properties flown at 31 and 21 

meters above the RV Gulf Surveyor.  
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Figure 19: 3D grid pattern flown at 31 m over the UNH pier.  

Figure 20: 3D grid pattern flown at 21 m over the UNH pier. 
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Even though 3D grid missions with nadir camera orientations are recommended when 

creating 3D surfaces from imagery, vertical detail of 3D objects can be lacking when 

employing this method. With an oblique camera orientation, images are collected with a 

camera intentionally tilted away from nadir, making it more effective at collecting detail 

on vertical features. Since the R/V Gulf Surveyor has vertical planes, circular orbits with a 

45 camera angle (low oblique angle) were flown around the R/V Gulf Surveyor at 31 and 

21 meters AGL to provide supplementary information to the 3D grid datasets, Figures 21 

and 22. Additionally, oblique oriented elliptical flight paths following the along and across 

track directions of the vessel were flown at 31 meters. However, it is important to note that, 

for this application, horizontal calibrations of vessel lever arms are performed by taking 

horizontal measurements on planar surfaces of the vessel within the orthomosaic. 

Acquiring detailed information of the vertical features on the vessel is not crucial to the 

end goal, making it non-imperative to collect oblique imagery. A vertical vessel calibration 

survey using UAS SfM photogrammetry, however, would necessitate oblique imagery.  

 

 

 

 

 

 

 

 

 

Figure 21: 31m circular orbit with oblique camera orientation flown over the UNH pier. 
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To obtain consistent datasets on which to compare, the SfM experiment days consisted of 

similar workflows, in addition to conducting experiments in mostly similar environmental 

conditions. Before each day of SfM data collection, all sensors on board the Phantom 4 Pro 

were calibrated: vision, IMU, and compass. Due to the UNH pier’s metal framework, the 

UAS had to be launched either away from the pier, or on an elevated platform in order to 

avoid compass interference. Additionally, the set of camera properties shown in Table 5 

were chosen and utilized over the span of all UAS SfM experiment days. As mentioned in 

chapter 2.3.1, low and high tide at the pier determined when the flights would occur 

because it was hypothesized that the significant vertical displacement the vessel could 

undergo during the survey as it moves with the tide could impact its quality. Given this 

hypothesis and the semidiurnal nature of the tides at the survey site, operating at low or 

high tide ensured at least two hours of proper flight time.  

Figure 22: 21m circular orbit with oblique camera orientation flown over the UNH pier. 
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For the purpose of limiting uncertainties induced by vessel motion into the UAS surveys, 

the vessel was tied down tight by adding extra mooring lines. In addition to the normal 

mooring lines used to tie the vessel to the pier, extra mooring lines were utilized to secure 

the vessel as tight as possible in hope of limiting the amount of horizontal motion the vessel 

could experience. On these days, two nadir grid missions and two oblique circular 

missions, flown at 31 and 21 meters AGL respectively, were carried out to survey the R/V 

Gulf Surveyor.  

 

In an effort to investigate the effect vessel motion induced by local water disturbances has 

on accuracies of UAS vessel calibration surveys, UAS SfM photogrammetry flights were 

also performed with the vessel tied down loosely. The first experiment of this type was 

limited to just one 3D grid mission at 31 meters AGL due to weather constraints. However, 

the second experiment of its kind comprised of two 3D grid missions at 31 meters AGL 

with the vessel loosely tied down, and one 3D grid mission at 31 meters AGL with the 

vessel tied down tight.  

 

Table 5: Camera properties established for the UAS SfM photogrammetry surveys. 
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The common workflow for the UAS SfM missions commenced with preparing the vessel 

to be surveyed. This procedure included laying the vessel targets, measuring the distances 

between vessel targets with fiberglass tape, ensuring GCPs were set, starting MRU logging, 

and securing the vessel to the dock with the desired number of mooring lines. These 

preparation procedures were followed by adjusting the camera settings of the UAS, 

performing UAS calibrations, and executing the desired flight missions. Upon completion 

of flights for the day, the vessel targets were removed and MRU logging ended.  

 

 2.4.2   Structure from Motion Data Processing 

All SfM datasets were put through trials of data processing procedures in Agisoft 

Metashape, which was used to implement the SfM algorithm, reconstruct 3D scenes from 

collections of 2D images, and produce the following final deliverables: 3D point clouds, 

3D surfaces, Digital Elevation Models (DEMs), and orthomosaics (Agisoft LLC, 2019). 

Many datasets and combinations of datasets were processed to gain a greater understanding 

of the limitations of UAS SfM photogrammetry for the application. In addition, the 

processing procedures enabled a further investigation of how uncertainties were being 

propagated into the final deliverables.  

 

For the purposes of this project, Agisoft Metashape’s auto calibration tool was used to 

calibrate the camera. Calibration parameters included focal length (f), principal point 

coordinates (cx and cy), radial distortion coefficients (k1, k2, and k3), and tangential 

distortion coefficients (p1 and p2). Without an accurate camera calibration, an error 

phenomenon called the “doomed dome” can occur (James et al., 2014), which can 
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introduce significant vertical errors into the final DEM. James and Robson (2014) 

demonstrate that if self-calibration software is required, having a flight plan with oblique 

imagery can significantly limit this error. Additionally, they found that control points can 

help detect doming errors. Both ground control and oblique imagery were available for use 

in limiting the vertical doming errors through the camera calibration. However, with the 

application of this survey being to perform accurate horizontal measurements, possessing 

an extremely accurate camera calibration is not as pertinent as it would be if the main goal 

were to conduct accurate vertical measurements. Consequently, each unique section of data 

that was processed, no matter the flight properties or inclusion of GCPs, received its own 

camera calibration based on the data that was present within the individual section.  

 

The general workflow that was employed followed the one outlined by the Agisoft 

Metashape version 1.5 manual, which starts with recommending the generation of a sparse 

point cloud by aligning cameras. This step matches common points between images, 

locates the position where each photograph was taken, and fine tunes the camera calibration 

and locations (Agisoft LLC, 2019). A dense point cloud can then be built from the 

estimated camera positions using an MVS algorithm, followed by deriving a mesh and 

DEM. Lastly, the orthomosaic can then be computed from either the 3D mesh or DEM. 

With the unusual task of modelling a slightly moving object, it was necessary to experiment 

with various processing parameters within the workflow. 

 

As a result of the unusual conditions of the survey a few application-specific issues were 

encountered in processing. With the combination of location, design of the flight pattern, 
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and flying height, many images of murky water were collected. The software does not 

register these photos as they possess an insufficient number of matchable points needed for 

the SfM algorithm, justifying their removal in the filtering process. Additionally, an 

abundance of noise around the vessel at water level height was generated during the dense 

point cloud build due to the combination of water movement and lack of water clarity 

during the flights. This required careful manual cleaning of the dense point cloud.  

 

When texturizing the meshes and orthomosaics built from the dense point clouds, 

disconnecting distortions occurred when implementing the mosaic blending method, 

Figure 23. However, a simpler approach to texturizing, the average blending method, 

which takes the weighted average pixels over all relevant photographs (Agisoft LLC, 

2019), resulted in smooth orthomosaic and mesh textures, Figures 24 and 25. 

Consequently, the average texturizing method was utilized for almost all datasets.  

 

 

Figure 23: Orthomosaic of the R/V Gulf Surveyor created from photogrammetry data 

collected on August 22, 2019, texturized with the mosaic blending method. The red 

rectangles represent distortions. 
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Figure 24: Orthomosaic of the R/V Gulf Surveyor created from photogrammetry data 

collected on August 22, 2019, texturized with the average blending method. 

Figure 25: Mesh model of the R/V Gulf Surveyor created from photogrammetry data 

collected on August 22, 2019, texturized with the average blending method. 
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The final two steps in processing the UAS SfM data were generating the DEMs and 

orthomosaisc. DEMs were derived from either the dense point cloud or mesh in WGS84 

(G1762) Universal Transverse Mercator (UTM) zone 19 North with interpolation enabled, 

Figure 26. Orthomosaics were created with DEMs or meshes as the base data and also were 

output in WGS84 UTM 19N. In preparing the models for accuracy assessment, polylines 

were drawn on the orthomosaic, marking the Euclidian distances between the centers of 

vessel targets, Figure 27. These measurements were taken in Agisoft Metashape and were 

primed to be directly compared to their ground truth counterparts. Every apparently minor 

processing detail had an important role in getting to the finished deliverables. Table 6 

displays a detailed breakdown of the specific parameters utilized to process the UAS SfM 

photogrammetry data.  

 

 

 

 

Figure 26: DEM of the R/V Gulf Surveyor and UNH pier made from photographs taken 

on April 17, 2019. The blue flags represent the GCPs utilized to georeference the model. 
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Table 6: UAS SfM processing stages and settings. 

Figure 27: Orthomosaic of R/V Gulf Surveyor made from photographs taken on April 17, 

2019. Purple polylines represent primary measurements, and green polylines represent 

secondary measurements. 
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For all experiment days, 3D grid flight data were processed separately. All 31- and 21-

meter 3D grid flights were processed individually to produce models made solely from a 

single 3D grid flight. Subsequently, each individual 3D grid dataset was processed with 

and without GCPs. The datasets processed with GCPs were done three times, once using 

the maximum number of GCPs in the coverage area (8-10), once with four, and once with 

three GCPs. Constructing models with more than the minimal amount of GCPs 

demonstrates the obtainable accuracies with a varying number of GCPs. Knowing, for 

example, if having three GCPs when calibrating a vessel with UAS SfM photogrammetry 

is as good as having 10 GCPs in terms of accuracy, could potentially cut down the time 

and cost of the survey.  

 

Processing sections were also performed by combining multiple datasets to investigate 

whether combined flights affected the final accuracies of the model. For the first UAS 

experiment, the 31-meter grid flight was combined with the along and across track ellipses 

separately. An attempt was made at combining two 3D grids for the first experiment day, 

which resulted in a generation of two point clouds. 31-meter grid flights were also 

combined with a 21-meter oblique orbit for all individual experiment days in which an 

oblique orbit was flown.   

 

Another section of processing included masking two individual flight datasets:  a 21-meter 

grid flown on the first UAS experiment day and a 31-meter grid flown on the second UAS 

experiment day. Masking in Agisoft Metashape entails drawing a perimeter around the 



 40 

area/object the user wants the software to include in the SfM algorithm, thus excluding the 

3D content outside the defined boundary. This procedure was performed for every photo 

that contained any visual information of the R/V Gulf Surveyor. Masking to this extent 

allowed the software to execute its SfM algorithm solely based on the 3D location of the 

vessel. Without masking, it is theorized that the software, using this project as an example, 

anchors to the fixed land content of the pier. This could be problematic if the motion of the 

vessel exceeds a certain threshold over the duration of the mapping mission. As a result, 

major errors could be introduced into areas in the model that are of the vessel. Hence, 

masking of the vessel was carried out to determine if it limits the potential errors induced 

from this phenomenon. However, masking out content outside the R/V Gulf Surveyor 

meant that GCPs could not be used to georeference the model as the GCPs located on the 

pier were excluded in the masking process.  

 

In total, over 30 sections of data were processed to produce dozens of point clouds, 3D 

meshes, DEMs, and orthomosaics. The processing procedures enabled sufficient data 

analysis to be performed. Shown in Table 7 are all models produced, along with what data 

was used to generate them.   
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Table 7: All models generated from the UAS processing workflow. 
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 2.5   UAS Lidar 

 2.5.1   UAS Lidar Data Collection 

Since UAS lidar configurations are expensive and complicated to set up, an engineering 

firm called ARE was hired to complete a UAS lidar survey of the R/V Gulf Surveyor on 

April 17, 2019. ARE deployed a DJI Matrice 600 Pro to conduct the aerial lidar survey of 

the vessel. The DJI Matrice 600 Pro is an industrial grade UAS, equipped with three GNSS 

antennas with triple modular redundancy algorithms, an IMU with a dampening system, 

RTK positioning compatibility, and a mounting bracket (DJI, 2020). Attached to the 

Matrice 600 Pro was a Riegl miniVUX scanning system, capable of collecting 100,000 

points per second, Figure 28. For non-vegetated areas, this system is capable of achieving 

nominal absolute accuracies of approximately 2-3 cm horizontal Root Mean Square Error 

(RMSE) and 4-6 cm RMSEz (ARE, 2019). To provide accurate Post Processed Kinematic 

(PPK) GNSS corrections to the Matrice 600 Pro trajectory, a CHC X900R static GNSS 

base station was set up on NGS control point AB2631, located just southwest of the survey 

site, as shown in Figure 29. Static GNSS observations on the control point began 

approximately half an hour before the lidar survey was conducted and concluded half an 

hour after the lidar mission ended. In addition to the base station, the ten AeroPoints, 

discussed in chapter 2.2.1 were present for the lidar survey to act as check points to the 

final georeferenced lidar model derived from the PPK UAS trajectory.  
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Calibration of the sensors on board the Matrice 600 Pro involved performing figure eight 

loops in the air close to the survey site. The flight pattern consisted of three lines parallel 

to the R/V Gulf Surveyor’s along track direction, in addition to three lines parallel to the 

Figure 28: A DJI Matric 600 Pro being prepared to conduct a lidar survey at the UNH 

pier on April 17, 2019. 

Figure 29: Location of the NGS control point utilized to conduct GNSS observations for 

post processing the DJI Matrice 600 Pro trajectory (NGS, 2020). 
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vessel’s across track orientation. This 3D grid pattern was repeated for multiple flying 

heights: 46-, 31-, and 16-meters AGL. To acquire minute detail on the vessel, one final 

pass was flown at 10-meters AGL parallel to the ship’s across track direction. For the three 

passes following the ship along track direction, one line followed the centerline of the 

vessel, while the remaining two were offset from the centerline pass to capture detail on 

the sides of the vessel. Along track line lengths spanned the entire length of the pier, while 

lengths of the across track lines ranged from the North side of the pier to land directly 

South of the pier, Figure 29. Survey passes were flown at speeds between two and three 

meters per second resulting in approximately 120 points per meter squared directly 

underneath the aircraft’s flight path over a single pass. In total, the survey took 

approximately 19 minutes to conduct, tallying 19 passes. Table 8 displays a detailed 

breakdown of the lidar flight pattern. It is hypothesized that the absolute accuracy from a 

single lidar pass is consistent over the few seconds it took to fly a single line. However, 

this hypothesis is less likely to be true across multiple passes due to the amount of motion 

the vessel could experience over the course of the Lidar survey (ARE, 2019).  
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 2.5.2   UAS Lidar Data Processing 

Initial processing of the lidar and associated GNSS observations were performed by ARE. 

Novatel Inertial Explorer v8.70 was used to perform the post processing of the aircraft 

trajectory, while a different program was used to process/clean the lidar data. Scan angles 

for the lidar data were left at ± 90 degrees from the nadir beam so that the lower altitude 

passes would enable data returns from higher angles. The lidar datasets were produced to 

meet the American Society of Photogrammetry and Remote Sensing (ASPRS) “Positional 

Accuracy Standards for Digital Geospatial Data” (2015) for a 2.5 (cm) RMSEx / RMSEy 

Horizontal Accuracy Class, which is equivalent  to a Positional Horizontal Accuracy equal 

to ±6.1 cm at a 95% confidence level (ARE, 2019).  Additionally, these datasets were 

produced to achieve ASPRS Positional Accuracy Standards for Digital Geospatial Data 

Table 8: A breakdown of the lidar flight pattern performed by ARE (ARE, 2019). 
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(2015) for a 5 cm RMSEz Vertical Accuracy Class equating to a Non-vegetated Vertical 

Accuracy (NVA) equal to ±9.8cm at 95% confidence level and a Vegetated Vertical 

Accuracy (VVA)  equal to ±15cm at the 95th percentile. ARE’s RMSEz calculations 

against the nine AeroPoints in the coverage area demonstrate an RMSEz value of 1.006 

cm (ARE, 2019). Final deliverables received from ARE included the trajectory results, 

lidar LAS files, and a report summarizing the survey. The LAS files were provided in the 

State Plane Coordinate System of 1983 (SPCS83) (NAD83 (NSRS2007)), New Hampshire 

zone, FIPS 2800, with units of US survey feet (sft) and orthometric heights in NAVD88 

(Geoid12B) US survey feet. 

 

To further analyze the accuracy of the lidar dataset, the LAS files were brought into Global 

Mapper. Similar to the UAS SfM data, the method chosen to assess the accuracy of the 

UAS Lidar survey was to compare it to the ground truth survey. Comparing the UAS lidar 

model of the R/V Gulf Surveyor to its ground truth laser scan survey began with accurately 

identifying monument locations in the observed point cloud. The original LAS files did not 

contain true color values, and non-RGB point clouds make it extremely difficult to 

accurately identify minute features within the point cloud. Images taken from the lidar 

equipped UAS for the purpose of colorizing the point cloud were not requested to be in the 

original deliverable package from ARE. Therefore, images collected from the UAS SfM 

flights, which were conducted after the conclusion of the lidar survey, were utilized to 

colorize the LAS files. It is important to note that for this type of survey it would be ideal 

to collect imagery and lidar data simultaneously on board the same platform/aircraft. For a 

UAS vessel calibration survey, the object of interest is slightly moving, so if the lidar and 
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imagery are collected at separate times the vessel could experience different changes in 

orientation between the two types of data collection, causing potential for errors to be 

introduced in the colorization of the point cloud. This phenomenon will affect the 

uncertainty of the lidar model. 

 

Inside Global Mapper, a GeoTIFF of an orthomosaic derived from the April 17, 2019 31-

meter AGL flight processed with three GCPs, was overlaid onto the lidar point cloud. Both 

the orthomosaic and lidar data were set to reference NAD83 (NSRS2007) / SPCS83, New 

Hampshire US survey feet (sft) as this was the datum that the final deliverables from ARE 

were referenced to. The 2D viewer was used to verify that the orthomosaic lined up with 

the location of the lidar data. A tool called “Apply Color to Lidar Points” was selected to 

colorize the lidar data using the overlaid orthomosaic, Figure 30. After colorization, the 3D 

viewer was used to verify that the color from the orthomosaic was properly transferred to 

the respective positions on the lidar point cloud. To prepare the lidar model for accuracy 

assessment, polylines were drawn in the 2D viewer between the centers of the vessel 

targets, Figure 31.  
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Figure 30: The true color lidar point cloud of the R/V Gulf Surveyor in Global Mapper. 

Figure 31: 2D view of the true color lidar point cloud with primary (purple) and 

secondary polylines (green). 
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 2.6   Horizontal Error Estimation: UAS Surveys 

 2.6.1   General Error Estimation 

General horizontal deviation estimates for the UAS lidar and SfM models were calculated 

by taking the distances between vessel targets in the observed models and subtracting them 

from the respective ground truth lengths, Figure 32. In doing this, only the total baseline 

lengths between targets were compared since the observed measurements were originally 

output to either WGS84 or NAD83 for the SfM and lidar data respectively, and not the 

defined SRF. Comparisons between the ground truth and observed models were broken up 

into primary and secondary forms. Primary comparisons involved the differences between 

the ground truth laser scanned monument distances and the observed UAS lidar/SfM 

monument distances. Secondary comparisons were between the ground truth fiberglass 

tape measurements of vessel targets and the observed UAS lidar/SfM vessel target 

distances. The laser scan survey took priority as the primary ground truth source due to its 

higher accuracy measurements compared to the fiberglass tape distances, which have a 

slightly higher uncertainty per measurement. Consequently, primary comparisons most 

likely represent the best-estimated horizontal deviations from the ground truth. 
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Acquisition of primary and secondary observed measurements were taken from the final 

deliverables of the observed models. For the lidar model, distances were taken from the 

polygonal chains, defined as polylines in Global Mapper, between vessel targets in the 2D 

viewer of Global Mapper. However, necessary measurements for the UAS SfM models 

came from the polylines marking the distances between vessel targets in the orthomosaics. 

In total, there were 10 primary baselines and 17 secondary baselines for each observed 

model. Recorded Euclidean distances from all models were brought into a code as baseline 

lengths for horizontal error estimation. Differences between the observed 

primary/secondary components and their ground truth counterparts were computed along 

with the average differences for each component set. Each processed model possesses one 

set of primary differences and one set of secondary differences. A sample standard 

deviation was computed for each respective set of differences followed by the calculation 

of standard errors, (1) and (2). 

 

Figure 32: General workflow implemented to estimate the horizontal deviations from 

ground truth of the UAS surveys. 
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𝜎 =  √∑(𝑋−𝑋)2

𝑛−1
                                                        (1) 

𝑆𝐸 =  
𝜎

√𝑛
                                                            (2) 

From nine and 16 degrees of freedom the 95 percent coverage factors were found for both 

primary/secondary sets: 2.262 and 2.120. The expanded uncertainty for each model was 

calculated by multiplying the respective standard error by the proper coverage factors, (3).  

𝑈 = 𝑆𝐸 ∙ 𝐶𝐹                                                        (3) 

To compute the uncertainty in placing the center point of the targets, a derivative of 

Pythagorean’s Theorem was taken and put through (4), with further simplification leading 

to the target placement uncertainty equation, (5).  

𝜎2 =   [(
𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑∆𝑥
)

2

𝜎∆𝑥
2] +  [(

𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑∆𝑦
)

2

𝜎∆𝑦
2]                          (4) 

𝜎2 = 2𝜎𝑝
2

                                                          (5) 

Two sets of plots were created to visualize the estimated horizontal deviations from the 

ground truth based on the primary and secondary components of each model. The mean 

differences between the sets of ground truth and observed distances along with the 

expanded uncertainties of the sets were plotted. These plots provide useful information on 

the general deviation patterns occurring from specific datasets utilized to generate the 

finished models. 
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Initial deviation estimates provide a general indicator in quantifying what the horizontal 

deviations of the UAS surveys are; however, more can be learned about the deviation 

estimates by employing an additional procedure. Without the observed target coordinates 

being in the same coordinate system as the ground truth monuments, Cartesian components 

of the baselines cannot be compared, thus directionality of the deviations cannot be 

determined. Therefore, steps were taken to transform observed coordinates into the SRF 

and perform this type of analysis.  

  

 2.6.2   Error Estimation Using Ship’s Reference Frame (SRF) Coordinates 

Similar to the ground truth survey of the R/V Gulf Surveyor, typical practices for calibrating 

a vessel with traditional survey techniques entails establishing an SRF for the designated 

vessel. Hence, as a part of the exploration into the proposed UAS approaches, it is essential 

to outline the necessary procedure for establishing SRFs when implementing UASs to 

calibrate vessels. In this case the collected datasets that resided in either WGS84 or NAD83 

were transformed to the R/V Gulf Surveyor’s already established SRF. An affine 

transformation from projected coordinates (e.g. WGS84 UTM 19N for the SfM data and 

from NAD83 (NSRS2007) / SPCS83, New Hampshire for the lidar data) was performed 

utilizing the SRF monuments as reference markers. Knowing the distances between 

monuments on the R/V Gulf Surveyor helped in translating the coordinates in reference to 

the correct SRF origin. However, if a UAS is being used to establish a new SRF for a 

vessel, an origin that could be seen in the point cloud would simply be selected. A detailed 

breakdown of the transformation procedure to the SRF can be seen in Figure 33. Executing 
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the transformations into the SRF enabled explicit comparisons between the ground truth 

and observed SRF coordinates. 

 

 

Determination of the observed horizontal SRF coordinate accuracies were performed by 

explicitly comparing the observed to the ground truth SRF coordinates. The Euclidian 

distances between monuments, Cartesian deviation vectors, and deviation magnitudes for 

each baseline were calculated. Consequently, the deviation vectors for each baseline were 

output with respect to the SRF. By referencing the deviations in the SRF, directionality of 

the deviations could be visualized, thus demonstrating any directional deviation biases. The 

deviation magnitudes were also output in reference to the SRF and are similar values to 

those obtained in the general horizontal deviation estimation process, except that the 

deviation magnitudes are positive. Possessing the individual Cartesian baseline lengths not 

Figure 33: Diagram showing the stages required to transform vessel monuments from 

geographic to SRF coordinates. 
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only helps in analyzing the directionality of the deviations, but it provides additional 

information necessary to investigate the scales of each observed baseline. 

 

Exploring the scale of each baseline reveals useful information pertaining to how the scale 

changes throughout the observed models. Absolute scales, Sx and Sy, for each Cartesian 

baseline were obtained from (6) and (7).  

𝑆𝑥 = |
𝐿𝑥 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐿𝑥 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
|                                              (6) 

 

𝑆𝑦 = |
𝐿𝑦 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝐿𝑦 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
|                                             (7) 

As a result, a scale value under one represents under scaling and values above one represent 

over scaling. Possessing Cartesian deviations and scales of SRF baselines enables thorough 

analysis of what is occurring in the observed models. 

 

 2.7   Seafloor Reference Methods 

 2.7.1   Seafloor Reference Data Collection 

Similar to the UAS methods, multiple pieces of equipment were employed to determine 

the capabilities of different SBES systems to calibrate horizontal vessel lever arms. Two 

independent systems, one survey and one consumer grade, were set up on the R/V Gulf 

Surveyor to test the single-beam seafloor reference method. The survey grade setup 

integrated an Echotrac CV200 SBES with a POS MV 320 MRU. RTK positioning was 

performed throughout the survey by utilizing the Massachusetts CORS network. For the 
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consumer grade setup, the TCB system demonstrated in Calder et al. (2020) was utilized. 

The TCB system is comprised of a SeaID GNSS data logger connected to a Harxon GNSS 

antenna. In this instance, the SeaID logger was integrated with a Garmin SBES with both 

GNSS and depth data being recorded on the SeaID data logger. HYPACK was used to 

record positioning data from the POS MV 320 and depths from the CV200, and as a 

secondary collector of the Garmin single-beam data. Offsets of each echo sounder in the 

SRF were input in HYPACK in a way that enabled them to be turned on and off for 

processing purposes. Having the horizontal offsets originally defined as zero would 

theoretically place the surveyed feature at distances approximately equal to the vessel’s 

horizontal offsets, enabling the vessel’s horizontal offsets to be estimated.  

 

Sufficient survey lines over a distinct feature were necessary to properly test the 

capabilities of the proposed SBES seafloor reference method. Capturing a feature’s vertical 

relief from multiple angles with a SBES is crucial because if there is a horizontal offset 

between the observed and true data, a vertical feature will show the horizontal 

displacements between the two datasets, unlike flat terrain. A survey line perpendicular to 

the vertical relief of a feature potentially shows the vessel’s x-axis, along track, offset. 

However, determining the y-axis, across track, offset is more difficult making running just 

one line likely insufficient. Hence, two y-offset calibration lines that intersect the defined 

edge of a feature at approximately 45° angles were performed. The three proposed survey 

lines were all performed in two opposing directions at under six knots and were 

implemented for two distinct features in the Piscataqua River previously mapped with a 

MBES, Figures 34 and 35. Sound speed profiles were taken at each survey site with a 
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Teledyne Odom-DigibarPro, while water level predictions for Fort Point, New Hampshire 

were retrieved from the NOAA Tides and Currents tidal prediction website. Draft 

measurements of the vessel were estimated based upon previous measurements.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Survey lines performed over Cod Rock in the Piscataqua River with black 

lines representing the y-axis offset calibration and the white line representing the x-axis 

offset calibration. 
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 2.7.2   Seafloor Reference Data Processing 

All single-beam datasets were post processed in the HYPACK single-beam editor. Noisy 

data were removed and sound speed, heave, and water level correctors were applied. 

Additionally, all horizontal and vertical offsets to the single-beam transducers were set to 

zero in the corrector process, hypothetically placing the seabed data horizontally displaced 

from its actual locations by the true horizontal offsets. Course over ground (°), heading (°), 

northing (m), easting (m), and corrected depth (m) were exported for each point in each 

line. 

 

Figure 35: Survey lines performed over Henderson Point in the Piscataqua River with 

black lines representing the y-axis offset calibration and the white line representing the x-

axis offset calibration. 
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Having reference data to compare to the observed seabed measurements is crucial to the 

execution of the single-beam seafloor reference method. In this case, the selected ground 

truth data came from the NOAA Survey H11014. This survey was performed in 2000 by 

the NOAA Ship Whiting, with a Reson 8101, at a frequency of 240 kHz (NOAA NCEI, 

2020). The features selected from this survey were of a highly stable nature, ensuring 

repeatability of the results. A CARIS HIPS project containing the corrected sounding data 

from this survey was used to generate individual gridded surfaces for Cod Rock and 

Henderson Point at a one-meter resolution. To visually compare the reference surfaces to 

the observed single-beam points, all relevant files were brought into Fledermaus. Before 

attempting estimation of the horizontal vessel offsets, it was important to resolve any 

vertical displacements between the datasets. The offset tool in Fledermaus was utilized to 

obtain the vertical offsets between the two datasets. The vertical offsets were then applied 

to the respective observed single-beam datasets to vertically align the data with the 

reference surfaces, thus leaving just horizontal offsets between the datasets, Figure 36. 

 

 

Figure 36: The Henderson Point reference surface overlaid with the horizontally 

displaced observed single-beam data (white). 
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The reference surfaces were interpolated, enabling direct comparison to 3D coordinates of 

the observed single-beam points. Figure 37 shows the procedure implemented to estimate 

horizontal vessel offsets from the seafloor reference technique. A grid search optimization, 

an algorithm that methodically evaluates combinations of estimated parameters in a grid 

format (Paul, 2018), was created to estimate the offsets. In the algorithm, the horizontally 

shifted single-beam profiles were compared to the respective reference surface by taking 

the sum of the squares of the residuals of elevations between the two datasets, with the 

most closely matching shifted profile indicating the estimated horizontal offsets between 

the two datasets. The x and y shifts corresponding to the lowest sum of the squares of the 

residuals value were selected from the grid search algorithm as the estimated horizontal 

vessel offsets. This procedure was done on just the CV200 single-beam data.  

 

 

Figure 37: Procedure used to estimate horizontal vessel offsets for the seafloor reference 

method. 
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Errors in lever arm approximations were obtained by comparing the ground truth SRF lever 

arms of the single-beam transducer, (x,y) = (2.345, 1.294) m, to the estimated offsets. 

Estimated offsets were subtracted from their ground truth distances to determine the 

accuracies associated with the lever arm approximations.  
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CHAPTER 3 

3 RESULTS 

 3.1   Horizontal Error Estimates: UAS Surveys 

 3.1.1   Vessel Motion Analysis 

Initial flights were conducted during a period of high tidal change, resulting in feature 

duplication within the point cloud when combining two separate photogrammetry flights, 

Figure 38. This discovery indicates a vertical displacement threshold Agisoft Metashape 

can withstand before generating multiples of the same feature. To further investigate this 

phenomenon, water level plots were inspected to help determine how much vertical 

displacement the vessel experienced over the course of the UAS surveys. Figure 39 

demonstrates that the UAS surveys were conducted when the tide was shifting from high 

to slack tide on the first day of experimentation. The amount of water level change between 

the end of each flight was approximately 70 cm, matching the vertical offset between the 

two point clouds. To eliminate this phenomenon, all other surveys were conducted within 

a two-hour window of high or low tide, limiting the vertical displacement of the vessel to 

under 10 cm over the course of all surveys for each day.   
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Figure 39: NOAA water level plot at Fort Point, New Hampshire during the April 17, 

2019 UAS survey (NOAA, 2020). The red box represents the approximate time of the 

surveys. 

Figure 38: Point cloud generated from two 3D grid flights collected on April 17, 2019 
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Similar to the vertical displacement discovery, it was noticed after conducting a flight with 

a loose vessel configuration that visual distortions were present in the resulting 

orthomosaic, Figure 40. However, orthomosaics generated from tight vessel configurations 

resulted in smooth, sharp composite images, Figure 41. Given that the distortions were 

appearing in loose vessel setups; it was suspected that the local vessel motion may have 

been causing the blurriness in the orthomosaics. To further investigate this phenomenon, 

the MRU data collected on board the vessel while the UAS surveys were being conducted, 

were analyzed. 

 

 

 

Figure 40:  Orthomosaic generated from data collected with the R/V Gulf Surveyor 

loosely tied down on August 21, 2019.  
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When looking at an attitude time series plot of the vessel during one tie down setup, Figure 

42, it is difficult to discern which attitude properties significantly change when moving 

from a loose to tight vessel tie down setup. However, Figure 43 demonstrates that heading 

experiences the most change out of the three measurements when transitioning from a loose 

to tight vessel tie down system. Further analysis of the heading change demonstrates that 

there is a significant difference between each tie down configuration. Figure 44 displays a 

15-second interval heading change range of -0.6° to 0.6° for a tight vessel setup, while 

Figure 45 shows a -1° to 1° heading change range for a loose vessel configuration. Both 

ranges remain generally consistent for all other respective datasets, Appendix A. These 

figures demonstrate the degrees of attitude motion, but they do not quantify how much 

distance the vessel moved during the surveys.  

 

Figure 41: Orthomosaic generated from data collected with the R/V Gulf Surveyor tightly 

tied down on August 23, 2019.  
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Figure 42: Roll, pitch, and heading time series of the R/V Gulf Surveyor tightly tied down 

on August 23, 2019. 

Figure 43: Roll, pitch, and heading time series of the R/V Gulf Surveyor loosely and 

tightly tied down on November 7, 2019. The red rectangle represents the time in which 

the vessel was tied down tight. 



 66 

 

 

 

Figure 44: Heading plots of the R/V Gulf Surveyor tightly tied down on August 23, 2019. 

Figure 45: Heading plots of the R/V Gulf Surveyor loosely and tightly tied down on 

November 7, 2019. 
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The pixel shift code discussed in chapter 2.3.2 was created to quantify how much the local 

vessel motion impacted the quality of the UAS surveys. Recorded attitude changes of the 

vessel were used in this code to compute how much the vessel moved over a defined time 

interval. The code generated plots displaying how much the vessel shifted in distance and 

pixels at a defined 3D (X, Y, Z) point, [7.164, 0, -0.439] m, in the SRF. This point was 

chosen due to it being a ground truth SRF monument.  

 

Based on the flight plan properties for the SfM flights, approximately 10 photographs were 

taken every 15 seconds. Figure 46 shows that during a tightly tied down vessel 

configuration the distance shifts every 15 seconds were under 7 cm, which are consistent 

with other analogous datasets, Appendix A. A similar value can be seen when the vessel 

was tied down tight for a different survey between 0815 to 0835 EST in Figure 47. 

However, in the remaining time spans where the vessel was tied down loosely within the 

same survey, distance shifts were between 5 cm and 20 cm, consistent with all other 

datasets collected under similar conditions, Appendix A. This means a loose vessel setup 

resulted in 3D distance displacements between 5 cm and 20 cm over 10 photographs. Given 

the discovery that heading was the most contributing factor to the vessel’s attitude change, 

it was logical to conclude that changes in the vessel’s heading caused this significant 

movement. In addition, it can be concluded that heading change is responsible for inducing 

the blurriness in the orthomosaics produced from loosely tied down vessel configurations.  
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Figure 46: Pixel and distance shifts the tightly tied down R/V Gulf Surveyor experienced 

during the August 23, 2019 UAS surveys.  

Figure 47: Pixel and distance shifts the R/V Gulf Surveyor experienced during the 

November 7, 2019 UAS surveys. The red rectangle represents the time in which the 

vessel was tied down tight. 
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 3.1.2   Error Analysis 

Figure 48 displays the estimated horizontal deviations for all processed datasets in which 

the primary ground truth data was utilized. From this figure it can be seen that the SfM 

models without GCPs consistently result in decimeter level and sometimes centimeter level 

deviation ranges. SfM models processed with GCPs experience deviation ranges on the 

centimeter level. Both average distance differences and deviation ranges, in most cases, 

lessen when GCPs are implemented. These observations demonstrate that GCPs will result 

in consistent UAS survey qualities for this application, while non-GCP models can 

produce, at times, inconsistent results. Logically, this is due to the lesser quality of the UAS 

GNSS receiver compared to the survey grade quality GCP observations. Higher quality 

GNSS observations could result in more reliable scaling of the models, which is exhibited 

in the primary deviation estimations in this thesis. In addition, the deviations indicate no 

significant change between different flying heights and when going from implementing the 

maximum number to three or four GCPs.  
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The last two sections of data in Figure 48 represent loosely tied down vessel configurations, 

unless otherwise specified. These models mostly possess higher deviation ranges compared 

to their tight vessel configuration counterparts. This phenomenon is caused by the heading 

change of the vessel while being tied down loosely. When GCPs are implemented in this 

scenario the deviation ranges shrink significantly. Additionally, the lidar survey resulted in 

similar centimeter level deviation ranges as the SfM datasets. Inconsistent effects on 

deviation ranges without GCPs were experienced when combining oblique orbits with 

nadir grids. The two masked datasets resulted in opposing effects: lowering of deviation 

range for a tight vessel configuration and increasing of deviation range for a loose vessel 

Figure 48: General deviation estimates for all UAS surveys utilizing the primary source 

data as ground truth. 
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configuration. Analogous result patterns are experienced for deviation estimates achieved 

when comparing observed measurements to secondary ground truth data, Figure 49.  

 

 

Diagrams such as Figures 50 and 51 demonstrate the size and direction of the deviations 

when utilizing primary ground truth data. These plots demonstrate a tendency for the 

deviations to point towards the starboard side of the vessel where the pier is located.  It is 

logical to believe this is happening for the GCP tight vessel datasets because the control 

network is located on the pier, to the starboard side of the vessel. Similar datasets without 

GCPs show analogous, but not as dominant directional biases, suggesting a slight deviation 

bias towards fixed content in the form of the pier. These tendencies appear consistent 

Figure 49: General deviation estimates for all UAS surveys utilizing the secondary source 

data as ground truth. 
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throughout all datasets with tight configurations, Appendix B, but not with loose setups. 

Figures 52 and 53 not only show larger errors than tight vessel configurations, but also 

suggest a more randomly distributed deviation direction pattern when implementing GCPs. 

Results from the motion analysis indicate that the vessel motion is responsible for these 

occurrences. A similar random deviation directionality can be seen in a masked dataset, 

Figure 54. When masking, data was processed solely by focusing on the geospatial content 

of the vessel and not incorporating the fixed pier data, explaining why the deviations are 

not directionally biased towards the pier. However, this does not explain the random 

directional deviations associated with datasets where the vessel was tied down loosely. The 

motion analysis suggests the induced motion of the vessel is responsible for this 

phenomenon.  

 

 

 

 

Figure 50: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 31 

m grid dataset flown on August 22, 2019. Errors are scaled by a factor of 30.  
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Figure 51: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 31 

m grid GCP dataset flown on August 22, 2019. Errors are scaled by a factor of 30. 

Figure 52: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 31 

m grid dataset flown on August 21, 2019. Errors are scaled by a factor of 30. 
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Figure 53: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 31 

m grid GCP dataset flown on August 21, 2019. Errors are scaled by a factor of 30. 

Figure 54: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 31 

m grid GCP, masked dataset flown on August 21, 2019. Errors are scaled by a factor of 

30. 
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Figure 55 demonstrates a dataset that went from almost all baselines being under scaled 

without GCPs to the baselines being more evenly distributed in Cartesian scaling with 

GCPs. This demonstrates the value of having GCPs to better scale the vessel 

measurements. A dataset collected with a loose vessel configuration experienced similar 

scaling re-distribution when including GCPs, Figure 56. Absolute scales across all UAS 

datasets can be seen in Appendix B. 

 

 

 

Figure 55: Absolute scales of SRF baselines observed from a 21 m grid flown on April 

17, 2019 without GCPs (left) and with GCPs (right). 
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 3.2   Horizontal Error Estimates: Seafloor Reference Method 

The results from the single-beam seafloor reference method produced inconsistent results. 

Figures 57 and 58 demonstrate how varied the resulting lever arm approximations can be 

for the same line performed in opposing directions and over multiple days. Given the 

feature and that the line of focus is an x calibration line, it is expected that the estimated y 

offset be very small, while the estimated x offset be very close to its true value. However, 

the x estimations are in most cases rarely accurate or precise, analogous to trends seen in 

other x designated calibration lines, Appendix C.  

 

Figure 56: Absolute scales of SRF baselines observed from a 21 m grid flown on August 

21, 2019 without GCPs (left) and with GCPs (right). 
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Figure 57: Estimation of x and y vessel offsets using an x calibration line at Henderson 

Point on January 9, 2020, with the color bar representing sum of the squares of the 

residuals values between ground truth and observed elevations. Lines 1-1 and 1-2 are the 

same line performed in opposing directions. 
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Similar to the performance of the x calibration lines, y calibration lines resulted in varied 

y offset estimations, Figures 59 and 60. The y lever arm approximations do not appear to 

be accurate for the same line executed in opposing directions, the same line executed over 

Figure 58: Estimation of x and y vessel offsets using an x calibration line at Henderson 

Point on January 10, 2020, with the color bar representing sum of the squares of the 

residuals values between ground truth and observed elevations. Lines 1-1 and 1-2 are the 

same line performed in opposing directions. 
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multiple days, or between the two different features. Additionally, the y calibration lines 

generate predictions of the x offset that sometimes are closer to the true offset than the 

estimations stemming from the x calibration lines. These phenomena appear consistent 

across all other observed single-beam datasets, Appendix C. The implementation of this 

method leads to x and y offset estimations commonly between zero and 2.5 m. This is a 

wide range of distance, especially with the ground truth SRF Cartesian offsets in this 

instance being only (x,y) = (2.345, 1.294) m. 
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Figure 59: Estimation of x and y vessel offsets using a y calibration line at Cod Rock on 

January 9, 2020, with the color bar representing sum of the squares of the residuals 

values between ground truth and observed elevations. Lines 16-1 and 16-2 are the same 

line performed in opposing directions. 
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Figure 60: Estimation of x and y vessel offsets using a y calibration line at Cod Rock on 

January 10, 2020, with the color bar representing sum of the squares of the residuals 

values between ground truth and observed elevations. Lines 16-1 and 16-2 are the same 

line performed in opposing directions. 
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CHAPTER 4 

4 DISCUSSION 

 4.1   Comparison of Methods 

 4.1.1  Comparison of Errors 

The results achieved from the UAS methods have much lower uncertainty and are more 

consistent than those of the single-beam seafloor reference method. UAS SfM 

photogrammetry datasets experienced decimeter level and occasionally centimeter level 

deviation estimates without ground control. Implementation of ground control for the UAS 

SfM photogrammetry datasets lead to consistent centimeter level results, even with just 

three or four GCPs. UAS lidar also experienced a deviation on the centimeter level. 

However, the single-beam seafloor reference method was more unpredictable with x and y 

lever arm estimates commonly ranging from zero to 2.5 m.  

  

 4.1.2   Limitations and Benefits 

The UAS methods discussed here present a choice between SfM photogrammetry and lidar, 

with some overlapping and separate factors to consider. Table 9 highlights the tradeoffs 

between using UAS SfM photogrammetry and lidar for vessel calibrations. It can be seen 

that the lowest cost UAS survey is SfM photogrammetry without ground control. Both time 

and cost will inherently increase when a UAS SfM survey is performed with GCPs. 

However, even with taking the time to survey in GCPs, the UAS SfM photogrammetry 

method could still cost less than a UAS lidar survey. Additionally, if GCPs are desired it 
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would be best to secure them to a pier or stable feature(s) near an open area where the 

vessel can safely be tied down and mapped by a UAS. It is important to note that the time 

it takes to execute this type of survey will depend on the size and shape of the vessel. 

 

 

Cost effectiveness will be a significant factor in CSB providers deciding which UAS 

method to use for this application. Consumer grade photogrammetry UASs cost much less 

than industrial grade UASs implemented for aerial lidar. UAS lidar also requires an 

expensive lidar system to be mounted onto the UAS, a calibration of the offsets between 

the UAS sensors, and can be complex to operate. This thesis demonstrates that UAS SfM 

photogrammetry with GCPs can obtain similar and at times slightly better accuracies than 

UAS lidar, meaning UAS SfM photogrammetry can be used to produce a comparable 

quality survey as UAS lidar at a much lower cost. However, if operators of vessels want to 

calibrate horizontal lever arms without paying to have their vessel surveyed, the manual 

single-beam seafloor reference method could be employed and the data sent to a trusted 

node for processing. 

 

 
Table 9: An illustration showing the tradeoffs between the two investigated UAS 

methods for horizontally calibrating vessels. 
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The seafloor reference method provides an advantageous alternative technique to the 

proposed UAS methods as it does not require any additional equipment outside of typical 

ocean mapping operations and it directly calibrates the horizontal lever arms. However, 

basic requirements must be met before the calibration can proceed. There must be a local 

bathymetric feature that holds a significant amount of elevation change. In addition, the 

feature must have previously been mapped with a MBES and must be extremely stable in 

appearance, ensuring that the results are repeatable. Unfortunately, this could potentially 

limit the implementation of this method as some vessels may not have the luxury of 

transiting near a feature such as this. Even with the existence of such a feature, CSB vessels 

must go over the feature in ways that enable proper data comparisons to the reference 

surface for offset estimations.  

 

An additional limitation to the single-beam seafloor reference method is the quality of 

offset estimations obtained from the described lever arm estimation process. Offset 

estimations from this technique ranged from zero to 2.5 m, making the method unreliable 

for vessels with short lever arms, thus limiting the practical implementation of this 

particular methodology. Since the methodology tested in this thesis relies strongly on the 

relationship of the elevation patterns between the single-beam profiles and the reference 

surface, the accuracy of the offset estimation is limited by both the quality/resolution of 

the reference data and the minimum sum of the squares of the residuals algorithm. The 

algorithm’s ability to estimate how strongly the observed and reference elevation patterns 

match each other does not reach the desired level of accuracy or consistency for CSB 

offsets when using the reference data described in this thesis. Recent work by Rondeau and 



 85 

Dion (2020) demonstrate that a workflow, similar to the one laid out in this thesis, was 

utilized to calibrate an x lever arm length of 184 m with a 1 m accuracy. This finding and 

the research in this thesis suggest that this type of calibration may possess a limited 

accuracy for horizontal offset estimation, which in some instances may not meet the desired 

accuracy for CSB surveys. 

 

 4.2   Implementation of Methods 

 4.2.1   Operational Recommendations 

Before workflows of the outlined methods are implemented in the field for practical use, 

there are important recommendations to consider. When performing horizontal vessel 

calibrations with UASs it is best to perform the survey(s) at high or low tide, with the vessel 

tied down as tightly as possible, and during calm environmental conditions. For consistent 

centimeter level accuracies, establishment of a ground control network near the vessel must 

be done. This thesis demonstrates that it is not essential to have the vessel reside within the 

control network to obtain centimeter level accuracies. Thus, simply having the control 

network as close to the vessel as possible will suffice. If large vessel movement is expected, 

it is recommended to utilize GCPs to limit the errors introduced from the motion. However, 

this protocol will not eliminate all induced errors and the errors will become more random 

with higher degrees of motion. If the vessel does not have an established SRF, the workflow 

outlined in this paper should be utilized to establish the SRF, and refer coordinates to it. A 

point in the middle of the vessel that can be seen from the aircraft should be chosen as the 

arbitrary horizontal origin of the vessel if one does not already exist. Additional defined 

features on the vessel that can be seen from the UAS, such as sharp edges, should be 
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assigned coordinates to preserve the SRF. If the echo sounder is not visible from the 

aircraft, a point in which manual measurements to the echo sounder can be made could be 

established. If obtaining significant vertical information of the vessel is desired, it is 

recommended to carry out oblique camera oriented orbits as supplementary data to the 3D 

grid nadir camera orientation flights.  

 

 4.2.2   Future Work 

Discoveries have been made on how the methods developed could be practically 

implemented, but there are opportunities for continuing work with these methods. For this 

project, investigation into alternative horizontal calibration methods for vessels was the 

focus for the three proposed methods. However, each method produces 3D geospatial data 

that could be utilized to calibrate vertical sensor offsets on vessels. Both UAS SfM 

photogrammetry and lidar data collected in the discussed experiments could be utilized to 

explore this idea. Contrary to the UAS horizontal calibration, the vertical calibration would 

most likely be performed by selecting points that define a desired measurement in the point 

cloud or mesh model instead of the orthomosaic, as the orthomosaic is best defined in the 

horizontal plane as opposed to the vertical. By comparing vertical measurements on the 

observed models to ground truth measurements, accuracies for the UAS vertical 

calibrations could be estimated. Existing vessel motion analysis from these experiments 

could be implemented to assess the impacts of vessel motion on the quality of UAS vertical 

calibrations. Additionally, the single-beam seafloor reference workflow described in this 

paper could be utilized to investigate the practicality of performing a vertical offset 
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calibration. These described methods may offer alternatives or checks to traditional vessel 

surveys and the vertical offset calibration implemented in Calder et al. (2020).  

 

In addition to exploring vertical calibrations with the proposed methods, work could be 

attempted to further understand the capabilities of the UAS methods. This work explores 

surveying vessels while they are docked in water with UASs and assesses the resulting 

errors. Even though an SRF transformation is demonstrated, the workflow was not 

implemented to define the exact location of an echo sounder on board a vessel. Directly 

surveying in a location such as this with a UAS may prove to be difficult since most echo 

sounders are secured to the hull of the vessel and would not be visible from the aircraft. 

Consequently, a procedure must be created to obtain an echo sounder location within an 

SRF when implementing UASs to survey vessels. It would also be advantageous to 

continue investigation on how to limit errors of the UAS survey(s) induced by vessel 

motion.  

 

An attempt was made in this research to compensate for the vessel’s motion by applying 

the vessel’s attitude changes to the UAS orientations. A code that took the changes in 

orientation from the vessel’s position at the start of a defined flight, and subtracted them 

from the UAS’s orientations at the time of picture capture, was created. This process 

incorporated exporting the Exchangeable Image File Format (EXIF) information as a text 

file from the relevant images, which included the aircraft’s recorded roll, pitch, and heading 

at the time each image was captured. After the code calculated the new UAS orientations 

based on the changes in the vessel orientations, it updated the EXIF file for the associated 
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UAS images with the new UAS orientations. The new EXIF file and associated images 

were then imported into Agisoft Metashape where the previously described workflow was 

implemented to process the data. A couple of datasets were processed with this method but 

generated inconsistent results with respect to final survey accuracies. More rigorous means 

of factoring in the vessel motion may be required to determine whether factoring in the 

vessel’s change in orientation to the UAS’s recorded orientations is a viable means of 

limiting errors induced by the vessel’s motion during aerial survey operations.  

 

It would be valuable to further explore quality control techniques for the proposed UAS 

methods. For the purposes of this project a ground truth survey existed, enabling error 

estimation of the observed models. When implementing the proposed UAS methods in the 

field, a previous ground truth vessel survey will most likely not exist. Thus, exploration 

into checking the quality of an observed UAS vessel survey in the absence of ground truth 

data would be advantageous. In this thesis, temporary/secondary targets were established 

on the vessel and distances between targets were measured with tape, resulting in rough 

approximation checks. As a more accurate alternative, this may be done by statically 

observing multiple points on the vessel while it is in water over a defined length of time 

with a total station set up on a stationary known point in an external coordinate system. 

The coordinate observations could then be directly compared to the observed UAS based 

vessel coordinates in an external coordinate system. This exploration could prove to be 

useful in quantifying errors of observed UAS vessel models. Similarly, accuracy 

assessment of UAS vessel surveys performed with a vessel residing within a control 

network should be investigated. This work demonstrates that centimeter level accuracies 
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are obtainable with UAS sensors when establishing a control network adjacent to the 

vessel. However, investigating the effects that ensue when a vessel is docked within a 

control network could be valuable in knowing whether the location of the control network 

significantly impacts the UAS surveys. 

 

Given the inconsistent results of the single-beam seafloor reference method, it can be 

concluded that the offset estimation methodology does not meet the standard of vessel 

offset accuracies with the combination of methodology and reference data used in this 

thesis. Based on the results from this thesis, it is suggested that another comparison 

algorithm be tested against higher resolution reference data. This exploration may uncover 

more information on the capabilities of utilizing known multibeam data and observed 

single-beam data to calibrate horizontal lever arms.  
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CHAPTER 5 

5 CONCLUSION 

Through the implementation of all three proposed methods for performing horizontal 

vessel calibrations, discoveries on the limitations and benefits of each method have been 

made. These pathfinder experiments investigated how to deal with the different challenges 

associated with each technique by attempting different collection and processing 

procedures. This experimentation led to the creation of fine-tuned SOPs for each explored 

method. In the future, if users want to employ the discussed methods for horizontally 

calibrating vessels, they can follow the data collection and processing guidelines set forth 

by this thesis.  

 

This thesis also demonstrated that the established SOPs for the UAS methods led to as low 

as centimeter level deviation estimates, while the single-beam seafloor reference SOP 

resulted in much higher, meter level errors. Although there is no set standard for CSB offset 

accuracies, the achieved UAS horizontal deviation estimates exceed accuracy expectations 

of horizontal offsets for CSB applications, unlike the seafloor reference method. In addition 

to CSB use, the UAS methods have potential to be implemented for high quality ocean 

mapping operations, given that their centimeter level accuracy potential could meet offset 

accuracy requirements for these vessels. The procedures and results from this thesis 

demonstrate that there are practical alternatives to traditional land surveying methods for 

accurately calibrating horizontal vessel offsets.  
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         Appendix A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Roll, pitch, and heading time series of the R/V Gulf Surveyor tightly tied 

down on April 17, 2019, with time in EST. 

Figure A.2: Roll, pitch, and heading time series of the R/V Gulf Surveyor loosely tied 

down on August 21, 2019. 
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Figure A.3: Roll, pitch, and heading time series of the R/V Gulf Surveyor tightly tied 

down on August 22, 2019. 

Figure A.4: Heading plots of the R/V Gulf Surveyor tightly tied down on April 17, 2019. 
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Figure A.5: Heading plots of the R/V Gulf Surveyor loosely tied down on August 21, 

2019. 

Figure A.6: Heading plots of the R/V Gulf Surveyor tightly tied down on August 22, 

2019. 
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Figure A.7: Pixel and distance shifts the tightly tied down R/V Gulf Surveyor experienced 

during the April 17, 2019 UAS surveys. 

Figure A.8: Pixel and distance shifts the loosely tied down R/V Gulf Surveyor 

experienced during the August 21, 2019 UAS surveys. 
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Figure A.9: Pixel and distance shifts the tightly tied down R/V Gulf Surveyor experienced 

during the August 22, 2019 UAS surveys. 
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Figure B.1: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 31 

m grid dataset flown on April 17, 2019. Errors are scaled by a factor of 30.  

 

Figure B.2: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 21 

m grid dataset flown on April 17, 2019. Errors are scaled by a factor of 30.  
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Figure B.3: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 31 

m grid dataset with GCPs flown on April 17, 2019. Errors are scaled by a factor of 30.  

 

Figure B.4: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 21 

m grid dataset with GCPs flown on April 17, 2019. Errors are scaled by a factor of 30.  
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Figure B.5: SRF baseline lengths (top), error vectors (left), and polar errors (right) of 

lidar data flown on April 17, 2019. Errors are scaled by a factor of 30.  

 

Figure B.6: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 21 

m grid dataset flown on August 22, 2019. Errors are scaled by a factor of 30.  
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Figure B.7: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 21 

m grid dataset with GCPs flown on August 22, 2019. Errors are scaled by a factor of 30. 

 

Figure B.8: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

31 m grid dataset flown on August 23, 2019. Errors are scaled by a factor of 30. 
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Figure B.9: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 21 

m grid dataset flown on August 23, 2019. Errors are scaled by a factor of 30. 

Figure B.10: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

31 m grid dataset with GCPs flown on August 23, 2019. Errors are scaled by a factor of 

30. 
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Figure B.11: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

21 m grid dataset with GCPs flown on August 23, 2019. Errors are scaled by a factor of 

30. 

Figure B.12: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

31 m grid dataset while the vessel was loosely tied down, flown on November 7, 2019. 

Errors are scaled by a factor of 30. 
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Figure B.14: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

31 m grid dataset while the vessel was loosely tied down, flown on November 7, 2019. 

Errors are scaled by a factor of 30. 

 

Figure B.13: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

31 m grid dataset while the vessel was tied down tight, flown on November 7, 2019. 

Errors are scaled by a factor of 30. 
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Figure B.15: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

31 m grid GCP dataset while the vessel was tied down loose, flown on November 7, 

2019. Errors are scaled by a factor of 30. 

Figure B.16: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

31 m grid GCP dataset while the vessel was tied down loose, flown on November 7, 

2019. Errors are scaled by a factor of 30. 
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Figure B.17: SRF baseline lengths (top), error vectors (left), and polar errors (right) of a 

31 m grid GCP dataset while the vessel was tied down tight, flown on November 7, 2019. 

Errors are scaled by a factor of 30. 

Figure B.18: Absolute scales of SRF baselines observed from a 31 m grid flown on April 

17, 2019 without GCPs (left) and with GCPs (right). 
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Figure B.19: Absolute scales of SRF baselines observed from lidar data flown on April 

17, 2019 (left) and a 31 m grid masked dataset flown on August 21, 2019 (right). 

Figure B.20: Absolute scales of SRF baselines observed from a 31 m grid flown on 

August 22, 2019 without GCPs (left) and with GCPs (right). 
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Figure B.21: Absolute scales of SRF baselines observed from a 21 m grid flown on 

August 22, 2019 without GCPs (left) and with GCPs (right). 

Figure B.22: Absolute scales of SRF baselines observed from a 31 m grid flown on 

August 23, 2019 without GCPs (left) and with GCPs (right). 
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Figure B.23: Absolute scales of SRF baselines observed from a 21 m grid flown on 

August 23, 2019 without GCPs (left) and with GCPs (right). 

Figure B.24: Absolute scales of SRF baselines observed from a 31 m grid flown on 

November 7, 2019 without GCPs (left) and with GCPs (right). 
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Figure B.25: Absolute scales of SRF baselines observed from a 31 m grid flown on 

November 7, 2019 without GCPs (left) and with GCPs (right). 

Figure B.26: Absolute scales of SRF baselines observed from a 31 m grid flown on 

November 7, 2019 without GCPs (left) and with GCPs (right). 
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Figure C.1: Estimation of x and y vessel offsets using a y calibration line at Henderson 

Point on January 9, 2020, with the color bar representing sum of the squares of the 

residuals values between ground truth and observed elevations. Lines 2-1 and 2-2 are the 

same line performed in opposing directions. 
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Figure C.2: Estimation of x and y vessel offsets using a y calibration line at Henderson 

Point on January 10, 2020, with the color bar representing sum of the squares of the 

residuals values between ground truth and observed elevations. Lines 2-1 and 2-2 are the 

same line performed in opposing directions. 
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Figure C.3: Estimation of x and y vessel offsets using a y calibration line at Henderson 

Point on January 9, 2020, with the color bar representing sum of the squares of the 

residuals values between ground truth and observed elevations. Lines 3-1 and 3-2 are the 

same line performed in opposing directions. 
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Figure C.4: Estimation of x and y vessel offsets using a y calibration line at Henderson 

Point on January 10, 2020, with the color bar representing sum of the squares of the 

residuals values between ground truth and observed elevations. Lines 3-1 and 3-2 are the 

same line performed in opposing directions. 
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Figure C.5: Estimation of x and y vessel offsets using a x calibration line at Cod Rock on 

January 9, 2020, with the color bar representing sum of the squares of the residuals 

values between ground truth and observed elevations. Lines 12-1 and 12-2 are the same 

line performed in opposing directions. 
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Figure C.6: Estimation of x and y vessel offsets using a x calibration line at Cod Rock on 

January 10, 2020, with the color bar representing sum of the squares of the residuals 

values between ground truth and observed elevations. Lines 12-1 and 12-2 are the same 

line performed in opposing directions. 
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Figure C.7: Estimation of x and y vessel offsets using a y calibration line at Cod Rock on 

January 9, 2020, with the color bar representing sum of the squares of the residuals 

values between ground truth and observed elevations. Lines 15-1 and 15-2 are the same 

line performed in opposing directions. 
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Figure C.8: Estimation of x and y vessel offsets using a y calibration line at Cod Rock on 

January 10, 2020, with the color bar representing sum of the squares of the residuals 

values between ground truth and observed elevations. Lines 15-1 and 15-2 are the same 

line performed in opposing directions. 


