PROC. U.S. HYDRO. CONF,, NEW ORLEANS, LA, 26-28 MARCH, 2013

Distribution-Free, Variable Resolution Depth
Estimation with Composite Uncertainty

B. R. Calder

Abstract—Recent algorithms for processing hydrographic data
have treated the problem of achievable resolution by constructing
grids of fixed resolution, a composite grid of variable resolu-
tion, recursive sub-division in a quad-tree, or by relying on a
comprehensive TIN of the original points. These algorithms all
impose some artificial structure on the data to allow for efficient
computation, however, which this paper attempts to address.

A scheme is outlined which provides a robust estimate of
depth and associated uncertainty that makes as few assumptions
as possible. Using a non-uniform spectral analysis, it estimates
the spatial scales at which the data are consistent so it can
estimate within the Nyquist limit for the underlying surface.
Kernel density techniques estimate the most likely depth, and
density partitioning estimates the observational and modeling
uncertainty. After correcting for potential biases the uncer-
tainty is augmented using a modified Hare-Godin-Mayer system
integration uncertainty and a sound speed profile variability
due to Beaudoin et al. The result is a robust, distribution-
free, continuously variable-resolution estimate of depth with an
associated uncertainty.

This algorithm is illustrated by estimating the depth (and
uncertainty) of Challenger Deep, and the paper then provides
some perspectives on efficiency, extensibility and adaptability of
this algorithm in the hydrographic context.

Index Terms—Bathymetric Estimation, Variable Resolution,
Data Density Estimation, Data-driven Estimation, Distribution-
Free Depth Estimation, Lomb-Scargle Periodogram, Bias Esti-
mation

I. INTRODUCTION

S a general principle, the depth estimation problem can

be stated as: obtain the best estimate of depth possible
given the observations in an area, plus its uncertainty, but do
so in a manner than makes as few assumptions about the
data as possible. Most of the research on this area in the
last decade has revolved around computer-assisted methods
of estimating plausible depths from raw data, with the goal
of doing the majority of the processing required without user
interaction, while maintaining operator interaction to assess
the results of the algorithm, typically on the small subset
of data that really needs attention. All of the methods that
have been developed, however, make numerous assumptions
about the data’s properties, and induce a strong structure in
the data that the data itself does not have. For example, the
CUBE algorithm [1] assumes that the data is locally constant
and independent, and, at least in most implementations, that
a locally uniform grid of depth estimates may be used to
represent the depths. None of these are strictly true. The
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CHRT algorithm [2] relaxes the constant grid requirement in
favor of a piecewise defined composite grid, but still assumes
independence and a locally constant data form. The CHARM
algorithm [3] assumes that the data points can be modeled in
a given area by a low order polynomial surface (which avoids
a local constancy assumption) but still assumes independence
(and uniform uncertainty), and induces a quad-tree structure
[4] over the data. The method of Arge et al.[5] avoids the use
of a gridded structure by constructing a segmented TIN of all
of the data, but makes assumptions about data properties in
order to segment the TINs being constructed. Other methods,
such as kriging [6] have been attempted, which require strong
statistical assumptions about the second order properties of the
data [7].

For those methods that estimate an uncertainty associated
with the declaration of depth, there is an additional difficulty
in which uncertainty to report. The most common method is
to report some estimate of the sample variance of the data
used in the estimate (in the reference implementation of CUBE,
for example, the uncertainty reported is a sequential estimate
of standard deviation derived from the observations used to
construct the depth hypothesis being reported; definitions vary
between implementations). This method reflects the apparent
‘noise’ in the observations that a user would estimate by
visual inspection and is easy to compute and explain, but more
correctly reflects the repeatability of measurements than their
uncertainty. (This is, of course, what is required for processing
at this level, although perhaps not what the end-user expects to
see.) What uncertainty should be reported, however, is a matter
of the question that the end-user is likely to ask. For example,
in the case of an interpretation of the data for geological
purposes, or for initial processing, a measure of relative
uncertainty (i.e., the repeatability) is acceptable. Any common-
mode uncertainty, such as a datum uncertainty, would not be
reflected in such a value, however, possibly leading to an
under-estimate of the potential uncertainty being reported. If
the end-user is more interested in the absolute uncertainty (i.e.,
the probability of being within a given vertical distance of the
unique true depth in the area, as measured by an independent
instrument), then an uncertainty value that reflected all final
vertical correctors that are not averaged down by repeated
measures might be more appropriate.

The influence of the data processing method on the depth
and uncertainty declared is not well studied. As an obvious
example, consider the case of ‘perfect’ data (i.e., data without
outliers or systematic blunders) over which a depth estimate
must be computed. Assuming that some region about any
given point in the area of interest will have to be considered
for source observations with which to construct an estimate



of depth (whether that is by selecting an observation, or
computing a suitably weighted average of the observations),
it is clear that the choice of the region, or even simply the
size of the region, could have a considerable effect on the
depth estimate constructed. With more complex algorithms it
is less obvious what the effects are likely to be, but the fact of
a modeling uncertainty remains: the choice of algorithm, and
how well it conforms to the underlying truth of the bathymetric
structure of the real world, is important.

This paper proposes a method to estimate the depth of the
ocean which makes as few assumptions as possible about the
data, and that allows the expression of both a relative and
absolute uncertainty. The key idea is to allow the data to
define the local structure at which to process by computing
an estimate of the spatial spectral density of the data (from
the raw observations) in the region of analysis, and using it to
determine at what resolution the estimate can be constructed.
This avoids having to estimate a resolution a priori, and makes
the representation of continuously variable resolution, and data
adaptive. The method then uses a non-parametric estimate
of the distribution of depths in the data-adaptive region to
estimate the most likely depth (hence avoiding outliers), and
an analysis of the modes of the distribution to determine the
combined observational and modeling uncertainty for the data
used. Finally, the method uses a modified version of the Hare-
Godin-Mayer uncertainty model [8] to provide an estimate
of the systemic uncertainty associated with the observations
used to construct the depth estimate (the model is adjusted to
avoid the effects of observational uncertainty, and that of sound
speed variability in the water column), and an estimate of the
sound speed variability-induced uncertainty in the area using
the method of Beaudoin et al. [9] to complete the uncertainty
estimate. Constructed in this manner, the analysis provides a
data-adaptive estimate of depth, the relative uncertainty due
to the observables, and an estimate of the absolute uncertainty
of the depth reported, corrected for potential bias effects and
taking into account the distribution of the observations given
the limited number that are typically available in data-adaptive
approaches.

The paper is organized as follows. The methods used in
the implementation of the proposed algorithm are outlined
in section II. An example of the use of the method to
determine the depth and uncertainty of the deepest part of the
world ocean in the Challenger Deep section of the Marianas
Trench is given in section IIl. The algorithm has a number
of advantages, but some concomitant difficulties; these are
outlined in the discussion in section IV. Finally, we attempt
to set the algorithm and its potential in perspective in the
conclusions of section V.

II. METHODS
A. Resolution Determination

Determining the resolution at which to work is a key ques-
tion in any depth estimation algorithm. Previous approaches
have included implicit estimation based on data density [2],
[10], and observation of model fit degeneration [3]. Most fun-
damentally, however, the resolution at which the depths should
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be estimated is that at which all observable features of the
spatial structure of the region can be represented. In particular,
the method should sample at the Nyquist frequency for the
observations so as to avoid aliasing; the difficulty, of course,
is that the spatial spectrum of the area is unknown before
processing starts. (Note that this is the Nyquist frequency for
the observations, not for the seafloor itself. The Nyquist rate
for the observations can be significantly lower than that for the
seafloor due to the limited angular resolution of the observing
instrument, along-track data density, etc.)

The spatial spectrum is readily estimated using Fourier
techniques given a regularly spaced sample set, but in the
case of raw data the samples are semi-randomly distributed
(i.e., according to the acquisition geometry) and any attempt to
generate a regular set, e.g., by interpolation or gridding, would
result in an induced structure. The method here therefore uses
the Lomb-Scargle periodogram [11], which is a particular
example of the more general non-uniform Fourier analysis
techniques [12]-[14], which are also sometimes described as
Least-Squares Spectra [15]. In one dimension, the Lomb-
Scargle periodogram is defined as
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This formulation is different from the conventional non-
uniformly sampled periodogram,
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but is equivalent to the conventional periodogram if the
sampling is uniform, has simpler statistical properties, and is
equivalent to the least-squares solution of sinusoid fitting to
data.

The interpretation of the Lomb-Scargle periodogram is the
same as for a conventional periodogram, except that there is
no strong definition for the highest frequency which can be
represented. (This is due to the non-uniform nature of the input
points.) Here, the periodogram is constructed at the analysis
point where the depth is required, and an assessment is made
as to the maximum frequency with significant energy as a
means to determine the sampling rate (or analysis region size)
at which to work for the remainder of the estimation proce-
dure. In practice, although it would be possible to construct
a two dimensional periodogram to assist in determining the
maximum significant frequency, the algorithm assumes that the
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spectrum is locally isotropic, and therefore that constructing a
spectrum in the cardinal directions is sufficient.

The only implementation difficulty is that the computation
of (1) can be quite slow since it cannot benefit from the
normal Fast Fourier Transform (FFT). Fast algorithms for
computing non-uniform Fourier transforms exist, however, and
the method here uses the code from [16], which relies on a
conventional FFT library from [17].

B. Optimal Depth Estimation

As described above, the method by which the observations
are combined in order to construct the depth estimate can
have a significant effect on the depth estimate obtained. Under
the assumption that the size of the analysis region is adapted
to the spectral structure of the data at the point of interest
(i.e., according to the spectral analysis described previously),
however, then the data should show (absent any outliers) a
consistent distribution about the depth of interest. In this case,
a kernel density estimate of the probability density function
of depth may be constructed. For the set of data points
X ={Z;} = {(P},7,)}, the kernel density estimate is

1
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is the estimation kernel, and N(3,r) is the set of observations
in the neighborhood of estimation point 5 € R2, which is
taken to be a closed ball B(S,7),r > 0 of radius r about 5.
The kernel smoothing bandwidth u is chosen as the optimal
value with respect to asymptotic square integrated mean error
(ASIME, [18]) under the assumption that the distribution of
data is Gaussian. Note, however, that there is no requirement
that the distribution is Gaussian (this only affects the claim to
optimality of the bandwidth estimation), and in practice it is
expected that the distribution will be distinctly non-Gaussian,
and possibly multi-modal, due to the presence of outliers in
the dataset and the potential for the bathymetry to have some
features that are of higher frequencies than might be expected
from the periodogram.

The estimate p(z;§,r) is a potentially multi-modal distri-
bution. A mode is readily identifiable as a zero of the first
differential of the estimate, so long as the zero is concave
down, as determined by the second derivative. Concave up
zeros are valleys between the modes, and therefore an analysis
of the first and second derivatives of the estimate allows the
algorithm to identify the position of all of the modes, and the
boundaries between them. Let Z be the set of depths associated
with the modes, let the domain of support of the distribution
be D = [min;{z;} — 3u, max;{z;} +3ul, and let V be the set
of depths associated with the valleys between the modes (i.e.,
v; € V is the valley between mode ¢ and mode ¢+ 1, appending
v = inf D and v, = sup D to provide outer limit markers for
the domain of definition). Then, the domain can be partitioned
into non-overlapping regions D(z;) = [v;_1,v;),1 < i < |Z]

so that | J, ., D(z;) = D, and the most likely mode can be
selected simply as

j = argmaXp(Zﬁg’ T)) 1 S ) S ‘Z‘ (6)
i

C. Uncertainty Estimation

1) Observation Uncertainty: With the definitions above,
the observations associated with the i mode as simply the
set M, = {&# € N(3,r) : (&), € D(z;)}, and therefore the
variability of the observations that support the mode is simply
the sample variance about the mode value,
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This value takes into account the fundamental observational
uncertainty of the data, and any modeling uncertainty induced
by local slopes, etc.

2) Bias Reduction: In the presence of biases, the sample
estimate of variance can over-estimate the magnitude of the
variability. For example, if there are two or more passes in an
area, a small vertical offset between them due to difficulties in
establishing a water-level model would result in an increased
estimate of variability. In general, biases are difficult to assess,
since there is no means to know in which direction the offset
was applied. It is possible, however, to estimate the magnitude
of the variability increase, at least in simple cases. Consider the
simplest case of two passes over the data, and for simplicity of
expression, consider observations resolved into the coordinate
frame of the echosounder. A plausible model for the depth
observed in beam n is

z(n) = 20 + p(20,6;,¢) + €(20,65) ¥

where z( is the true depth, 6; is the mean beam angle relative
to the swath at the analysis site, ¢ is the vector of sound
speeds in the water column, 6,, is the beam angle associated
with the observation, and €(zo, 0,,) ~ N (0,0%(20,6,)) is the
stochastic component representing measurement uncertainty
of the sonar. For two passes over the region of interest,
the observations will contain a mixture of points from each
pass, with different weights, and therefore the probability
density function, estimated through the kernel density, will be
a mixture distribution, p(z) = w1p1(z) + wapa(z). Ignoring
outliers, the expected depth is simply

E[z] = wiE[21] + woE[29] 9)
:Z0+w16p(91792)+p(2:0a927€) (10)
= 29 — w26p(01,02) + p(20,061,¢) (1)

(where 0p(01,02) := p(z0,61,8) — p(z0,02,¢)) with corre-
sponding variance
V[e] = El(2 — 1)?]
=wio? + (1 —w)os

+ w1 (1 — wy)dp°(61,02) (12)

so that the weighted blend of variance, and a truncated version
of the bias, may be constructed. (This may be estimated



through the sample variance v; for each mode where a bias
might occur.) Normally, separating out the terms of this
expression would be impossible since the membership of the
observations is typically not know. Here, however, all of the
observations are labelled with their acquisition line number,
and therefore it is clear that E[dp(61,02)] = E[p(20, 61,¢)] —
]E[p(Zo,ag,a] = mi — My (Where m; = Ni_l Z](Zb(n))]
is the sample mean of the soundings from line ¢ associated
with the mode in question), with weights w; := N;/ . N;.
Since 0? and o3 can be computed separately, an estimate
of dp?(01,02) can be extracted, given a sample estimate of
the overall variance of the weighted dataset, and the sample
variance adjusted accordingly.

3) Systemic Uncertainty: The uncertainty associated with
a depth estimate depends strongly on the survey system in
addition to the measurement uncertainty of the echosounder
itself. Unknown variability in the patch test alignment esti-
mates, measurement uncertainty in the horizontal and vertical
offsets between the components of the system, etc., cause
extra uncertainties when propagated into the position and
depth estimates of each observation. The most commonly used
model for this is due to Hare et al.[8], [19], which is adopted
here. However, since the algorithm estimates the measurement
uncertainty of the observations (i.e., the uncertainty due to
the echosounder itself) and that due to sound speed variability
(see below) separately, the model was adjusted to ignore those
components. In implementation, the algorithm is run for the
known configuration of the survey system (as recorded in the
survey metadata) at the most likely mode depth, z;, and the
results corresponding to the most common beam in M; are
selected to provide the vertical uncertainty due to the survey
system integration.

4) Refraction Uncertainty: Possibly one of the most sig-
nificant uncertainties in the absolute uncertainty of a depth
estimate is that induced by unobserved spatio-temporal vari-
ability of the sound speed field in the ocean. This is typically
significantly undersampled in space and time (although very
accurate samples can be made at a particular point), and
therefore the corrections used for any given observation are
typically at the wrong place, at the wrong time. Here, the
algorithm uses the method of Beaudoin ef al. [9] to estimate
the variability that might be induced for a given depth and
observation angle (relative to the echosounder), given the
observations of sound speed profile that were made during
the survey (again, as recorded in the survey metadata). In
implementation, the analysis is done for all depths and angles,
and an ‘uncertainty wedge’ is generated. Once the depth
estimate is established at any analysis point, a simple lookup is
conducted, using the angle corresponding to the most common
beam in M;, to establish the refraction uncertainty.

5) Combined and Expanded Uncertainty: The algorithm
assumes that the uncertainties due to measurement uncertainty,
systemic uncertainty and refraction uncertainty are essentially
independent, and therefore the combined uncertainty of the
depth estimate is simply

2 _ 2 2 2
o, =0,,+to;, +o,

(13)
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where o2, is the measurement uncertainty, o2 is the systemic
uncertainty, and o2 is the refraction uncertainty. Since setting
the analysis radius by the methods described here often means
that few samples are present from which to estimate the depth,
it cannot be assumed that a sufficient number of samples are
present to make the Gaussian approximation for confidence
intervals associated with the depth estimate. The measurement
uncertainty has v,, = |M;| — 1 degrees of freedom, and
we assume that both the systemic uncertainty and refraction
uncertainty are effectively of infinite degrees of freedom. The
adjusted degrees of freedom for the combined uncertainty may
therefore be computed using the Welch-Satterthwaite formula

[20] as
Vy =VUp, <;§>2 (14)
and the expanded uncertainty for a 95% CI is therefore
U, =T(0.05,v.)\/02 (15)

where T'(«,v,) is the critical value function for Student’s T-
distribution.

1II. EXAMPLE

A. Background and Data

The data used in this example was collected as part of the
U.S. Extended Continental Shelf project [21], and in particular
to map the Mariana Trench and the surrounding area [22], [23].
The data collection, conducted in two phases using the USNS
Sumner, was carried out in 2010 using a 1° x 1° Kongsberg
EM122 multibeam echosounder, operating in dual-ping mode
so as to generate 864 potential observations in two pings per
sounding cycle. The remainder of the survey system consisted
of an Applanix POS/MV 320 V.4 with global differential
correctors; sound speed profiles were provided by expendable
bathythermograph probes launched at least every six hours,
and more often if required, during the survey.

Coincidentally to the primary mapping mission, the second
leg of the cruise took the ship over what is generally accepted
to be the deepest part of the world ocean, the Challenger Deep.
For no other reason than that it is believed to be the deepest
part of the ocean, this area has been visited many times [24],
with the primary question being just how deep the area is.
The data from this second cruise is used here to illustrate the
proposed algorithm.

The data in the vicinity of Challenger Deep consists
of 2,051,371 observations from eight survey lines. The
data were converted from raw Kongsberg datagrams into
CARIS/HIPS, clipped to an approximate bounding box of
[11.2606, 11.4453]°N x [141.9761, 142.8753]°E, and then out-
put as a simple text file for further processing. Position, depth,
source line, ping and beam identifiers were retained. The
data were then projected to Universal Transverse Mercator
projection (zone 54N) with respect to WGS-84, loaded into
MATLAB and processed with custom scripts.
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B. Configuration

The survey system recorded offsets from the motion sensor
to the transducer of (18.34,0.58, —4.08) m, and patch-test
offsets of (0.39,0.95,—0.15)° in roll, pitch and heading.
We estimated the uncertainty of the offsets at Smm, the
positioning accuracy at 2m, the latency of the attitude and
positioning information at 5 ms, the measurement uncertainty
of attitude at 0.02°, heave at 0.05 m or 5%, and vertical offsets
at 0.1 m for draft, dynamic draft and loading. (All values are
standard deviations except positioning, which is 1d;nys).

In order to speed up processing, the algorithm was first
applied in a coarse search with 500m resolution and an
analysis radius of 500 m. This identified a most likely location
of the deepest region around [11.356760,11.303109]°N x
[142.133747,142.280569]°E, at which point the proposed
algorithm was used to estimate the resolution, depth and
uncertainty as described below.

C. Resolution Estimation

A spectral analysis was conducted in the east-west direction
about the middle of the focussed region, Figure 1, and about
the north-south, Figure 2. In both cases there is clear evidence
of very long wavelengths (second panel in each), but little
evidence of anything except noise below approximately 500 m
wavelength. This suggests that wavelengths under 500 m cor-
respond to measurement uncertainty, and the analysis region
radius was set to 250 m.

D. Observed Data

The remainder of the algorithm was then conducted for the
region of interest with an analysis radius of 250 m. The results,
Figure 3, show that there is a relatively even distribution
of data in the region (as estimated through the number of
degrees of freedom in the estimates of depth reported), that
the uncertainty is typically on the order of 25m (95%), and
that it is not adversely affected by the bathymetry.

The array of depth estimates in the focussed region were
used to find the location of the deepest estimate, for which
the details of the algorithm are shown in Figure 4. Here, there
are ten observations from two lines forming the sample, which
is (just) unimodal but strongly asymmetric (top left panel); the
kernel bandwidth was estimated as 19.1 m. The algorithm cor-
rectly detected the primary peak as the mode, making the deep-
est depth estimate 10,984 m, and estimating the uncertainty at
25m (95%) on 9 d.f., including a systemic uncertainty of 4.2 m
(95%) estimated for beam 250 (the most common beam in the
estimates), and a refraction uncertainty of 3.1 m (95%) based
on the same beam angle. The position was estimated from
the centroid of the observations at (623,875.0, 1,252,789.5) m,
which corresponds to 11.329903°N, 142.199305°E.

IV. DISCUSSION

The method proposed has several advantages over the
available alternatives. First, it makes fewer assumptions about
the statistical properties of the data, and adapts to the data
resolution that is achievable in practice. This makes it less
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Fig. 4. Details of the algorithm’s estimation process at the location of the
deepest depth in the Challenger Deep. The kernel density estimate (top left)
has a bandwidth of 19.1 m, which the single mode is supported by ten samples
(9 d.f.) from two lines. Note the distribution of observations (top right panel),
color coded by line, and the estimated position (black square) derived from
the centroids.

likely to induce structure in the data, and less likely to generate
misleading results due to weakly supported assumptions such
as independence and Gaussian distributions. Second, it will
provide estimates of depth that are as high a resolution as can
be supported by the data, which is always preferred. Third,
the algorithm is commutative, in the sense that the ordering of
the data does not affect the estimation process. This makes the
algorithm significantly easier to use, and makes it more robust
against outliers (since they are always taken in the context
of all of the data, rather than being dealt with on limited
information). Finally, the uncertainty model presented here
avoids any theoretical model of the echosounder measurement
uncertainty, and correctly represents the absolute uncertainty
of the depth estimate provided, taking into account the re-
fraction and systemic uncertainties that are not removed by
the presence of more data. (The relative uncertainty is still
available, of course.) This makes the uncertainty reported a
much more realistic answer to the typical end-user question
of the chances of a repeated measurement that they might
make falling within the bounds predicted by the estimate.

There are concomitant disadvantages. Generating estimates
that are as high resolution as possible automatically implies
that the algorithm will have to work with limited amounts
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of data. This means that the algorithm has to be much more
careful to track the degrees of freedom associated with the
estimates, for example, and must also use the appropriate
small-sample distributions when computing expanded uncer-
tainties. In a certain sense it might also be considered to
make the algorithm slightly less robust than other alternatives,
since estimates must be constructed from smaller amounts of
data and are therefore more susceptible to outliers. Although
a formal comparison has not been done in this instance, it
is reasonable to assume that the reduction in robustness is
not likely to be significant, however: most other techniques,
presented with a similar lack of data, would likely misbehave
also.

Secondly, the algorithm is inherently a post-processing
methodology. That is, the algorithm requires all of the data
to be available before the processing can begin, and therefore
cannot be used as described to process data as it is being
collected. It would of course be possible to simply recompute
all of the algorithm steps when new data is added, but this
would be very inefficient. It is possible that at least the kernel
density estimate could be computed incrementally, at least
approximately, and the algorithm could be adapted to either
assume an analysis resolution or to update this on a regular
basis as more data was being collected. The practicalities of
these modifications are, however, unknown.

Finally, the spectral estimation component of the algorithm

is relatively slow to compute. Although there are a number
of fast algorithms to assist in approximate solutions to the
problem, the cost of doing a non-uniform transform is high,
and doing so for each analysis point would be prohibitively so.
It is possible that the algorithm could make some assumptions
about how quickly the resolution is likely to change within an
area, and do fewer analyses, but this would start to induce a
structure in the data that is not supported. Since the algorithm
does not require the whole spectrum, however, just the section
where the energy is dropping off, it is possible that it might be
adapted to compute only part of the spectrum, which would
lead to significant speed improvements. This might lead to
instabilities, however, if the resolution changed dramatically,
and would require further investigation.

At present, the algorithm is at a prototype stage, and requires
further investigation to determine how to adapt it to higher
resolution, more dense, data. The advantages of the algorithm
are compelling, however. For example, having an estimate of
the probability density function at each location allows for the
possibility of data fusion between locations in order to reliably
identify outlier clusters, and propagate consistency information
through the entire dataset. Analysis of the width of the primary
model should allow for some estimate of modeling uncertainty
to be made, and used to adapt the algorithm. How well these
translate in practice, however, is a subject for much further
study.
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V. CONCLUSIONS

This paper has outlined a method for estimating the depth
of the seafloor from raw data points which avoids many of
the artificial constraints employed by other methods of similar
goal. In particular, it adapts continuously to the resolution that
is best supported by the data, makes few assumptions about the
statistical properties of the data, and provides a robust estimate
of uncertainty that reflects a plausible real-world interpretation
of what uncertainty should mean. The algorithm was illustrated
on some deep-water multibeam echosounder data.

The algorithm has a number of advantages, particularly in
its adaptability, but has limitations in that the core algorithm
component to drive the adaptation is slow to compute. The
extent to which this algorithm may be configured for use in
denser data, therefore, is a subject of future research.
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