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ABSTRACT
The uncertainty of a scalar field is essential structuring information for
any estimation problem. Establishing the uncertainty in a dense
gridded product from sparse or random uncertainty-attributed input
data is not, however, routine. This manuscript develops an equation
that propagates the uncertainty of individual observations, arbitrarily
distributed in R2, to a common estimation location at which they can
be used to determine the composite uncertainty of the output field.
The equation includes the effect of the distance between the observa-
tion and estimation locations, the field and horizontal uncertainty of
the observation, and user-parameters to control the expected variabil-
ity in the field as a function of distance. Two computational versions of
the equation, a lower cost conservative approach and a higher cost
mean-distance approach, are developed and evaluated for computa-
tional cost and resulting accuracy in numerical experiments over simu-
lated bathymetric data. The mean-distance approach is more accurate,
but more costly; suitable numerical approximations are proposed to
control computational costs. A benefit of the work described is flexibil-
ity and enhancement for applications of the model, such as the Com-
bined Uncertainty and Bathymetry Estimator algorithm, which is used
as a demonstration of the difference between the two versions of the
equation.
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Introduction

Consider the following computational task: estimate output interpolation values from input
points in R2 space. In polar coordinates, the interpolated value is bzi D I ifzj rj; uj

� �g.
The operator I if� � �g is an interpolation over the set of input points
fzj rj; uj
� �

: j 2 N ið ÞgD z1 r1; u1ð Þ; :::; zJ rJ ; uJð Þ½ �, where N ið Þ is a local neighborhood, that
yields bzi . Further, let there be azimuthal symmetry so that we can simplify bzi DI jfzj rj

� �g.
The following model of propagation of uncertainty from input data to an interpolated out-
put point is based on that developed for the Combined Uncertainty and Bathymetry Estima-
tor (CUBE) algorithm (Calder and Mayer 2003).
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The objective of the interpolation operator is to propagate uncertainty inherent in an
observation from the location of the observation to the interpolation location. This process
allows the inherent uncertainty of the observation to be used for estimating the composite
uncertainty of the field being estimated. Uncertainty at the observation could be estimated
through a formal propagation of measurement uncertainties, some defined uncertainty esti-
mation protocol, or an empirical estimation process.

Let each measurement mj have horizontal uncertainty sh, j and vertical uncertainty sv, j.
Calder and Mayer (2003) give a model of propagation of uncertainty, (sh, j, sv, j), from the
jth input data point to the ith interpolated output point as

s2
ij D s2

v;j 1C rij C shsh;j

Dg

� �a� �
(1)

where Dg is the output grid spacing, and sh and a are user-parameters that govern the confi-
dence interval desired and growth rate for uncertainty. For the case of bathymetry with a
sloped seafloor, Zambo et al. (2015) (q.v. Bourgeois et al. 2016) add an extra term to account
for extra uncertainty when the seafloor has slope ’i at the interpolation point

sij
2D s2

v;j 1C rij C shsh;j

Dg

� �a� �
C s2

h;jtan
2 ’i (2)

(using the slope at the interpolation point provides smoothed uncertainty estimation for the
slope contribution; see (Zambo et al. 2015; Bourgeois et al. 2016) for further discussion).

It is important to note that, while (1) and (2) were developed for bathymetry, both are
applicable to scalar fields in general. For (2), generalization is achieved by replacing the sec-
ond term with jr bzi j2 since jr bzi jD sHj tan’i (Zambo et al. 2015).

Whatever the eventual use of the predicted uncertainty, the method by which it is generated
should, for consistency, follow some general principles. This paper presents these principles,
provides an analytic basis for (1) and (2), generalizes this propagated uncertainty equation to
scalar fields, and outlines a newer approach that reduces uncertainty compared to the previous
generation of uncertainty modeling (Calder and Mayer 2003; Zambo et al. 2015).

In the remaining part, “Base Equation” section provides principles that enable families of
uncertainty propagation equations to be proposed, and examines some properties of these
functions. “Conservative Approach” section shows how a single equation with three end-
user adjustable parameters emerges from this family; (1) comes from this family with a spe-
cific choice of parameters.

The “Mean-distance Approach” section develops a new version of the model that reduces
the number of user-specified parameters needed from three to two by considering the
expected distance that an observation will be propagated, given its horizontal uncertainty,
rather than the worst-case distance as was used in previous versions. Due to the Rician dis-
tribution of distance (under Gaussian horizontal uncertainty), the expected value has a solu-
tion through Laguerre functions, discussed in “Analytic Expression Using L1/2(x)” section.
“The Evaluation of L1/2(x)” and “Chebyshev Series Fit to 1F1( ¡ 1/2, 1; x)” sections discuss
numerical techniques using the confluent hypergeometric function and Chebyshev polyno-
mials to efficiently compute the expected propagation distance.
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“The Example: Estimating Depth” section provides a numerical example for estimation of
depth and uncertainty using the models developed in “The Mean-distance Approach” sec-
tion. The paper ends with “Discussion” and “Conclusions” sections.

Base equation

Uncertainty is defined here to be standard deviation, denoted s (Taylor and Kuyatt 1994). For
convenience, however, the equations are written in terms of variance, denoted s2. Methods for
predicted uncertainty of scalar fields of interest in this paper follow these general principles:

1. The value of the information in an observation should decay away from its nominal
location; that is, the uncertainty should increase with distance from the nominal obser-
vation location.

2. Information inherent in an observation with higher horizontal uncertainty should be
more diffuse, so that the uncertainty predicted after propagation should be higher than
that for an observation with lower horizontal uncertainty.

3. Propagation should scale with the resolution of analysis so that the distance considered
significant is measured against the grid resolution.

4. Since the uncertainty is being transferred to a point for consideration, the final propagated
uncertainty should have no horizontal component, since the location is precisely defined.
Consequently, the equation must be able to combine the effects of positional and field
uncertainty in the observation into a purely field uncertainty at the reference point.

Many possible equations could be proposed that follow these principles, but one of the
simplest is

s2 D aC bda (3)

where a; b 2 R> 0 are constants, a 2 R�1, and d is the effective distance between the observa-
tion and reference locations. It should be clear from the form of (3) that the distance term bda

with a � 1 satisfies the first general principle, the constant term satisfies the second general
principle, and the whole form satisfies the fourth. The third general principle is induced by con-
sidering appropriate boundary conditions. That is, for consistency, at d D 0, set s2 D s2f where
s2f is the field variance of the observation, and hence, a D s2f. In order to be able to control the
speed of uncertainty increase with distance, assume a secondary boundary condition such that
s2 D ks2f at some suitable distance, such as the grid sample spacing, Dg. Hence

ks2
f D s2

f C bDa
g

) b D s2
f

k¡ 1
Da
g

(4)

Substituting in (3) yields

s2 D s2
f C s2

f k¡ 1ð Þ d
a

Da
g

D s2
f 1C k¡ 1ð Þ d

Dg

� �a� � (5)

Eq. (5) forms the base model for which we propose two methods of computation, which
differ in the way they compute parameter d. The distance d used has to reflect the actual
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distance traveled by the observation to the interpolation point rather than a nominal dis-
tance, d0 between the most likely location of the observation and the interpolation location.
For tractability, it is assumed that the horizontal observation distribution is Gaussian.

Conservative approach

The simplest model to include the effects of sh on d is to assume that d must be greater than
d0 by some factor that is a function of sh. The “conservative” approach is to create this func-
tion so that uncertainty is maximized. Due to positivity of d and sh, if sh > 0, this corre-
sponds to d D d0 C shsh so that (5) becomes

s2D s2
f 1C k¡ 1ð Þ d0 C shsh

Dg

� �a� �
(6)

This equation has the disadvantage of having three adjustable parameters: a, sh, and k. If
k � 2, (6) can be simplified since the uncertainty in the vertical doubles within one effective
sample spacing, irrespective of a, so that

s2 D s2
f 1C d0 C shsh

Dg

� �a� �
(7)

Eq. (7) has the same form as (1), which was developed for the CUBE algorithm (Calder
and Mayer 2003). It has the benefit of simplicity in that the scale factor sh modifies the rate
at which horizontal uncertainty is converted to field uncertainty, and the value of a controls
the shape of the transfer curve (Figure 1). The rate of increase of uncertainty (Figure 2) can
be significant, however, particularly for what might be considered “reasonable” scale factors
corresponding to, e.g., the 95% CI for the observation.

Adjusting the scale factor k can adjust this behavior somewhat, but at the cost of another
parameter which interacts with the others to make it more difficult for the algorithm
designer, or user, to adjust the transfer behavior to match the specific problem being tackled.
This makes the propagation equation difficult to adjust in practice.

Mean-distance approach

Instead of assuming the worst-case transfer distance for all observations, it is possible to com-
pute the expected distance instead. Assuming isotropic Gaussian distribution in the horizontal,
the distance is Rician distributed so that the expected distance can be computed as an analytic
expression via a (generalized) Laguerre function. Implementing this computation is more
expensive than the “conservative” function, but has the benefit of avoiding the sh parameter.

Evaluation of the expected distance must be implemented numerically using the following
stages:

1. Analytic expression using the Laguerre function, L1/2(x), with x D ( ¡ d20/2sh
2); a

numerical solution is required.
2. One-time numerical computation of Ln(x) via the confluent hypergeometric function

(CHGF), 1F1(a, b; x); this computation can be slow and intensive.
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3. Fit of the CHGF using Chebyshev polynomials of the first kind, Tn(x), for a rapid
approximation to the one-time CHGF computation result.

In-depth discussions of these functions can be found in Abramowicz and Stegun (1965); see
also National Institute of Standards and Technology (2015), Olver et al. (2010), and Arfken
et al. (2012, Ch. 18).

Analytic expression using L1/2(x)

For a circularly symmetric Gaussian distribution in R2 with non-zero mean vector, the dis-
tribution of distance from the origin (equivalently, here, the distance the observation travels)
is given by a Rician distribution (Rice 1945)

p d; d0; s
2
h

� �D d
s2
h

I0
d0d
s2
h

� �
exp ¡ d20 C d2

2s2
h

� 	
(8)

where I0(x) is a modified Bessel function of the first kind of order zero, and d0 is the nominal
distance (magnitude of the mean vector). If d0 � 0, this reduces to the Rayleigh distribution,
but in general the mean value is given by

d d0; s
2
h

� �DE d½ �D sh

ffiffiffi
p

2

r
L1=2 xð Þ (9)

Figure 1. Increase in propagated vertical uncertainty as a function of effective distance and control parame-
ter a for (7). Here, sh D 1, Dg D 1.0, and s2f D 1.0 to normalize the graph. The amplification at one grid
spacing is controlled by the form of the equation, while the control parameter manipulates the shape.
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where xD¡d20/(2sh
2) and Ln(x) is a generalized Laguerre function (Abramowicz and Stegun

1965, Ch. 22). Thus, propagated variance is

s2 D s2
f 1C k¡ 1ð Þ d d0; s2

h

� �
Dg

 !a !

D s2
f 1C k¡ 1ð Þ

sh

ffiffiffi
p

2

r
L1=2 xð Þ
Dg

0BB@
1CCA

a0BB@
1CCA

(10)

With (10), the uncertainty model now has only two manually set parameters, k and a, easing
the specification of behavior for users.

Evaluation of L1/2(x)

Computation of L1/2(x) in (9) and (10) is non-trivial (Thompson 1997; Muller 2001; Pearson
et al. 2014) because of the non-integer order of the Laguerre function. Since the present
problem requires frequent numerical evaluation of the Laguerre function L1/2(x), computa-
tional efficiency is essential for implementation.

Modified Bessel function expansion
Through fractional differentiation (Herrmann 2014) of the defining equation for the
Laguerre function (Andrews et al. 1999), it is possible to show (for example by expanding

Figure 2. Increase in propagated field uncertainty as a function of nominal distance between observation
and reference location, and the horizontal uncertainty scale factor, sh, for a unit horizontal uncertainty.
Increasing the scale factor changes the rate of increase of uncertainty, but also offsets the zero-distance
uncertainty, often by very significant amounts.
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both sides as power series, or through a computer-algebra system) that L1/2(x) can be
expressed in terms of modified Bessel functions of the first kind (Andrews et al. 1999) of
zeroth and first order, viz.:

L1=2 xð ÞD exp x=2ð Þ I 0 x=2ð ÞC xI 1 x=2ð Þ¡ xI 0 x=2ð Þð Þ (11)

where for efficiency, the two nominal evaluations of the modified Bessel function of order zero
could be trivially collapsed if required (i.e., computing (1 ¡ x)I0(x/2) C xI1(x/2)). While this
approach has a number of theoretical benefits, most particularly if further manipulation of the for-
mulae were required, evaluation of modified Bessel functions is itself a significant computational
cost, making this approach less attractive wheremany evaluations are required, as here.

Use of 1F1(a, b; x) for Ln(x)
Common procedures for computation of Ln xð Þ; n =2 Z begin by rewriting it in terms of
Kummer’s CHGF (Abramowicz and Stegun 1965; Arfken et al. 2012; Buchholz 1969;
National Institute of Standards and Technology 2015) as

L mð Þ
n xð Þ : D mC n

n

� �
1F1 ¡ n;mC 1; xð Þ (12)

where Kummer’s CHGF is defined by the series

1F1 a; b; xð ÞD 1C a

b
xC a aC 1ð Þ

b bC 1ð Þ
x2

2!
C a aC 1ð Þ aC 2ð Þ

b bC 1ð Þ bC 2ð Þ
x3

3!
C � � �

D
X1
kD 0

að Þk
bð Þk

xk

k!
(13)

and (a)n D a(a C 1)(a C 2)���(a C n ¡ 1) is the Pochhammer symbol (or rising factorial);
(a)0 � 1. With n D 1/2 and m D 0, and hence a D ¡1/2, and b D 1, (12) becomes

L1=2 xð ÞD 1F1 ¡ 1=2; 1; xð Þ (14)

Thus, use of (9) and (14) provides d,

d d0; s
2
h

� �D ffiffiffiffiffiffiffi
2s2

h

q
G

3
2

� �
1F1 ¡ 1

2
; 1; x

� �
(15)

which can be evaluated by direct substitution as

1F1 ¡ 1
2
; 1; x

� �
D

X1
kD 0

¡ 1
2

� �
k

1ð Þk
xk

k!

D
X1
kD 0

¡ 1ð Þk
¡ 1

2

� �
k

xk

k!ð Þ2

(16)
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(since (1)k D k!). Subsequent terms of (16) alternate in sign and analysis of the ratio of terms
(Abramowicz and Stegun 1965; National Institute of Standards and Technology 2015) shows
that the sequences converges, but the terms do not reduce in magnitude as k ! 1 and
therefore the rate of convergence depends on the argument. Practically, therefore, direct
evaluation is only feasible for small values of x9 40–50, even using a double-precision float-
ing-point representation.

Computation of 1F1( ¡ 1/2, 1; x)
In general, there is no optimal computational procedure for 1F1(a, b; x) (Lopez and Ester
2014; Pearson et al. 2014). As discussed in depth in Pearson et al. (2014), differing strategies
exist depending on the values of the two parameters and functional argument. For the pres-
ent case, aD ¡ 1=2;bD 1; x 2 R; x� 0, and hence from (Pearson et al. 2014, Section 3),
for values of x � 10, summation of terms in (16) is efficient. For large arguments (e.g., for x
> 500), Slater’s expansion (Abramowicz and Stegun 1965; National Institute of Standards
and Technology 2015; Slater 1953)

1F1 a; b; zð Þ
G bð Þ D exxa¡b

G að Þ
XS¡ 1

nD 0

b¡að Þn 1¡að Þn
n!

x¡ n

( )
(17)

is effective (National Institute of Standards and Technology 2015, Section 13.29(i)). Practi-
cally, however, evaluation of either (16) or (17) would be prohibitively expensive for large
datasets where the expected distance has to be computed for each observation at least once.
Consequently, a more efficient computational scheme is required.

Chebyshev series fit to 1F1( ¡ 1/2, 1; x)

As recommended in Pearson et al. (2014), an efficient approach to computing 1F1( ¡ 1/2, 1;
x) is to perform a one-time computation using (16) for x < 40 and (17) for x � 40. Then,
approximate the result using a suitable polynomial series,

1F1 a;b; xð Þ �
XN ¡ 1

nD 0

CnPn xð Þ (18)

where Pn(x) is a polynomial function of degree n and the choice of N < 1 reflects the
desired level of approximation.

For the current application, Chebyshev polynomials of the first kind, Tn(x), form a prag-
matic computational solution. Tn(x) provide numerical advantages over alternatives, such as
a power series, for rapid convergence and compact representation (i.e., the sequence can be
computed to user specified accuracy with fewer terms) in the domain [ ¡ 1, 1] (Arfken et al.
2012; Boyd 2001; Press et al. 2007). Within this domain, Chebyshev polynomials are orthog-
onal and have range [ ¡ 1, 1]. For Chebyshev polynomials, the coefficients required for (18)
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are

Cn D 2
J

XJ ¡ 1

jD 0
1F1 a; b; xj
� �

Tn xj
� �

(19)

and xj is the set of domain points used to numerically compute the CHGF.
With appropriate substitutions, then, (10) can be rewritten as,

s2 � s2
f 1C k¡ 1ð Þ

ffiffiffi
p
2

p
sh

Dg

XN ¡ 1

nD 0

CnTn xð Þ
" #a !

(20)

giving a computable form for the propagated uncertainty.
Direct evaluation of (20) is possible, but suffers from significantly higher errors as x ! 0

(Figures 3 and 4). To avoid this, the Chebyshev polynomials can be fitted to the pre-warped
domain x0(g) D xg, 0 < g < 1, which stretches out the region close to x D 0, and results in
having to evaluate significantly fewer coefficients for any given level of approximation
(Figures 5 and 6).

Comparison of implementation methods

A full comparison of the implementation efficiency of the two methods proposed is essen-
tially impossible, since that of (11) depends strongly on the implementation of the standard
library function for the modified Bessel function of the first kind. An informal assessment of

Figure 3. Absolute and relative errors in approximating the CHGF with a Chebyshev polynomial (of 26
coefficients, designed to give absolute accuracy to within 0.01 of the computed CHGF value). The shape
of the CHGF as x! 0 leads to bunching of error ripples around x D 0.
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likely efficiency can be conducted, however, by considering the code generated from trial
implementations. In this regard, modified Bessel function implementations from the GNU
Scientific Library (Galassi et al. 2009) and Numerical Recipes (Press et al. 2007) were com-
pared to an implementation of the mean distance computation coded for the examples
following.

Figure 4. Percentage relative error in distance prediction by approximating the CHGF with a Chebyshev
polynomial (of 26 coefficients, designed to give absolute accuracy to within 0.01 of the computed CHGF
value).

Figure 5. Approximation error in evaluating the CHGF via a Chebyshev polynomial as a function of the
number of coefficients used, with and without domain pre-warping. Pre-warping the evaluation domain
significantly improves the approximation performance.
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The GNU Scientific Library code uses Chebyshev polynomials of various degrees to
evaluate its modified Bessel functions, while the Numeric Recipes code uses a variety
of polynomial ratios. The minimum degree of the Chebyshev approximations in the
GSL was 12 coefficients for each modified Bessel function, the same as that used in
the algorithm developed here. This means that it will take at least twice as long to
evaluate a mean distance based on (11) as (20). An estimate of instruction latency for
the Numerical Recipes implementation was constructed by generating an assembly
listing of the C-code, and evaluating the latencies of the individual instructions. The
estimated latency is approximately twice that of the code developed for this work,
although there might be some variability due to the degree to which the CPU used
has hardware to assist in computation of transcendental functions, particularly the
exponential.

The pre-warped Chebyshev approximation of (20) therefore appears most likely to be the
preferred implementation method. Of course, for maximum performance it would always be
possible to invoke the classical trade-off of speed for memory requirement by pre-computing
a look-up table for the pre-warped form of L1/2(x) and simply applying table look-up with
interpolation. The trade-offs required would have to be evaluated in situ for any specific
implementation.

Example: Estimating depth

A particular example of scalar field estimation is estimation of the depth of the ocean.
Whether conducted for hydrographic mapping, oil and gas exploration, military mapping,
or simply for scientific exploration purposes, the depth of water can be measured or

Figure 6. Percentage relative absolute error in approximating the CHGF with a Chebyshev polynomial (of
12 coefficients with pre-warping coefficient g D 0.2). The pre-warping of the evaluation domain signifi-
cantly reduces the number of coefficients required to achieve a given level of approximation, with con-
comitant improvement in evaluation speed.
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estimated by a variety of technologies ranging from laser time-of-flight measurements (Light
Detection and Ranging, or lidar) for shallow water to satellite altimetry for the deep oceans.
In many cases, however, acoustic means are used to estimate the depth of water using
active-source time-of-flight reflectometry, or sonar (Sound Navigation and Ranging). What-
ever the source of observations, the goal of the data processing algorithm is the same: esti-
mate the depth from the randomly scattered observations, ideally dealing with outliers and
noise points, and by preference estimating an uncertainty associated with the declaration of
depth.

Mechanics of the CUBE algorithm

The CUBE algorithm (Calder and Mayer 2003) for which (7) was originally designed
is a particular example of such a depth estimation algorithm. The algorithm operates
on the principle of estimating the depth at a specific point (“estimation node”) with
respect to an arbitrarily defined, but fixed, coordinate frame. Each observation is
qualified with a horizontal and vertical uncertainty, and this uncertainty is used both
to determine which estimation nodes should receive the information on depth inher-
ent in the observation, and how to weigh that information in assessing the depth
estimate.

In order to accommodate outliers and noise points, CUBE continually monitors observa-
tions being added to the developing depth estimate, using the assessed uncertainty to identify
when a new observation is inconsistent with the current depth estimate. Such inconsistent
observations are segregated into an alternative hypothesis on depth, essentially forming an
unsupervised clustering algorithm for the observations propagated to the estimation node.
At any point (although most often after all of the observations have been used), the user can
request the “most likely” reconstruction currently known, at which point the algorithm
attempts to select one of the (potentially many) hypotheses that is most likely to be the true
seafloor, qualifying this selection by a number of metrics that attempt to communicate the
status of the reconstruction. “Most likely” is defined by a variety of rules that attempt to
avoid mis-selection of noise hypotheses; the default, and most common, selection is to select
the hypothesis with the most observations assimilated.

A core component of the CUBE algorithm is the method by which observations are prop-
agated from their nominal location to the location of the surrounding estimation nodes
(which are most often, although not necessarily, arranged in a uniform resolution grid), and
how this affects the estimated uncertainty of the observation. Clearly, therefore, how to select
the distance in (5) can affect the results of CUBE processing. The example here explores that
difference in a set of three depth estimation scenarios.

Example depth estimation scenarios

In order to simplify the example, the CUBE algorithm was limited to considering estimation in
a 1D line rather than a 2D grid; node spacing of 0.25 m was used for all examples (this is
essentially arbitrary, but appropriate for a modern multibeam echosounder in shallow water),
and a domain of 10.0 m total length was constructed. Three scenarios were considered:

1. A flat seafloor at 10.0 m nominal depth. This depth is arbitrary, but mid-range for
high-resolution survey data used for hydrographic purposes.
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2. The same flat seafloor, with a 1.0 m vertical step half-way through the domain.
3. The same flat seafloor, with a 1.0 m wide, 1.0 m high square object imposed half-way

through the domain. A 1.0 m cube is a common target for object detection tests in
hydrographic surveying because of its reference in IHO survey specifications (Interna-
tional Hydrographic Bureau 2008).

The CUBE algorithm parameters not affected by choice of propagation equation were
consistent over all test scenarios, and were set to the recommended algorithm defaults1. For
both propagation algorithms, k D 2.0 and a D 2.0 were selected (corresponding to CUBE
default settings); for the conservative algorithm, sH D 1.96 was selected (also the CUBE
default), while for the mean distance algorithm a total of 12 Chebyshev parameters were
retained with pre-warping factor g D 0.2. This provides centimetric accuracy in the approxi-
mation of mean distance (Figure 5–6).

Synthetic data were generated as IID Gaussian variates using the IHO S.44 (International

Hydrographic Bureau 2008) uncertainty model of an expanded uncertainty of U D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 C bzð Þ2

q
at 95% CI (for depth z) assuming Gaussian statistics. Vertical uncertainties were set to
0.25 m fixed and 0.75% depth-dependent; horizontal uncertainties were set to 0.4 m fixed
and 1% depth-dependent. These values are typical of SBAS-aided2 GNSS-controlled3 hydro-
graphic survey systems in shallow water. In all cases 100 observations uniformly distributed
across the computational domain were used.

Results

As might be expected, in the simplest case of a flat seafloor, Figure 7, the two propaga-
tion equations lead to similar CUBE behaviors, with a single hypothesis being formed
from all of the data presented at each node, and the uncertainty bounds predicted cov-
ering the true depth in each case. There are very small differences between the values
generated by the estimation algorithm in each case, which are barely visible on the
scale of Figure 7. This is due to the different uncertainties generated by the two propa-
gation equations affecting the weighting of the observations in the estimation portion
of the algorithm. As is clearly evident, however, the differences are statistically insignifi-
cant with respect to the uncertainty bounds predicted, and can be ignored for all prac-
tical purposes in this “ideal” case. Note that the bounds are at 95% CI according to the
number of soundings used in the estimate of the hypothesis, based on the sample esti-
mate of the variance of the data. Since there is only a single hypothesis, the hypothesis
selection uncertainty is reported as 0.0, equivalent to the statement “the odds against
the right hypothesis being other than reported are 5:1 or more.”

A significant difference is, however, observed in the behavior of the algorithm when con-
sidered over the stepped seafloor of Figure 8. Here, the higher propagated uncertainty from
the conservative propagation equation means that observations from both sides of the step
appear to be consistent in depth within their (propagated) uncertainty bounds, and are

1Capture distance 5.0% for depth, IHO S.44 5ed Order 1A survey for maximum observation propagation distance, median pre-
filter queue of one sample, estimate offset threshold of 4.0, Bayes factor threshold of 0.135, sequential monitoring threshold
of five samples, and prior (most observations assimilated) hypothesis selection.

2Satellite-Based Augmentation System, a system for providing GNSS correctors by satellite transponder, rather than having a
local correction system.

3Global Navigation Satellite System, or colloquially “GPS” (Global Positioning System), most often the U.S.-based NavStar.
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therefore combined by CUBE into a single hypothesis. Therefore, no second hypothesis is
formed to segregate the two observation populations, and the algorithm effectively computes
a moving average over the step, although the uncertainty bounds are still consistent with the
true depth. In contrast, the reduced uncertainty provided by the mean distance propagation
equation allows CUBE to correctly detect that there are two populations, and successfully
segregate them, selecting the correct hypothesis to significantly improve the reconstruction,
Figure 9. Note also that CUBE is able to more correctly indicate the hypothesis selection
uncertainty in the step region for the mean distance propagation equation, showing that
there is potentially significant confusion about which hypothesis should be selected in this
region. In contrast, the higher propagated uncertainty generated by the conservative propa-
gation equation convinces CUBE to form just one hypothesis, which by definition has to be
“best.” Avoiding over-confidence like this is a key to better user feedback on algorithm per-
formance, which aids and accelerates user interaction time.

Finding and accurately representing small objects is a key issue for depth estimation algo-
rithms, particularly when used for hydrographic purposes in shallow water. Figure 10 shows
the reconstruction of a typically-sized target object, a 1.0 m cube, and readily highlights the
distinct difference in behavior of the CUBE algorithm with the two uncertainty propagation
equations. As for the step example, the more plausible uncertainty estimates generated by
the mean distance algorithm mean that the CUBE algorithm can more readily distinguish
between the two observation populations corresponding to the top of the object and the sur-
rounding seafloor, resulting in more consistent generation of hypotheses, and therefore

Figure 7. Example estimation with CUBE using the conservative (blue) and mean distance (green) uncer-
tainty propagation equations over a flat seafloor of depth 10.0 m. The algorithms behave equivalently,
although small differences in estimate, and associated uncertainty, can be seen due to the differences in
the propagated uncertainty.
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better reconstruction of the shape of the object and much tighter sample uncertainty bounds
since the two populations are less likely to be conflated within one hypothesis.

The reconstruction of the right-hand edge of the object (at xD 5:5m) is not ideal when
using the mean distance propagation equation, and the reported uncertainty bounds do not
include the true depth. Here, the CUBE algorithm has generated two hypotheses, Figure 11,
but has selected the wrong hypothesis for “best” reconstruction. The other hypothesis does
however match the true depth within its uncertainty bounds. In practice, in this situation,
the user’s task is to confirm that the algorithm has selected the correct hypothesis, and this
configuration of hypotheses would be cause for an intervention in the algorithm’s recon-
struction behaviors.

This selection confusion is caused by the two hypotheses here, both having exactly the
same number of observations incorporated. In this case, with the default hypothesis selection
rules, which is selected as “best” is essentially arbitrary (due to the algorithm’s implementa-
tion, the one that is spawned last is selected). However, the better uncertainty bounds at least
allow CUBE to indicate this by declaring a hypothesis selection uncertainty of 4.0, which is
equivalent to saying “the next-best choice is just as good as the hypothesis being reported
here, and therefore this reconstruction should be viewed with suspicion.” The conservative
propagation equation, by contrast, only generates a single hypothesis, which it confidently,
although mistakenly, marked as of low selection uncertainty. The uncertainty bounds do
cover the true value of depth, so this is not a disaster, but it would fail to alert the user to a
potential difficulty that might demand further attention.

Figure 8. Example estimation with CUBE using the conservative (blue) and mean distance (green) uncer-
tainty propagation equations over a seafloor that steps from 10.0 to 9.0 m half-way through the domain.
Higher propagated uncertainty from the conservative algorithm convinces CUBE to form only one hypoth-
esis in the transition region, leading to poor (although statistically correct) reconstruction.
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These simple examples demonstrate that the choice of propagation equation, and to some
extent the parameters for that equation, can have a significant effect on the depth recon-
struction achieved, even using the same core depth estimation algorithm. The computational
cost of these propagation equations are different, however, which is another factor in decid-
ing which equation to use. In these tests, the average assimilation time across all examples
on a particular system4 for 100 samples with the conservative propagation equation was
approximately 65ms, while the assimilation time for the mean distance equation on average
was 104ms, leading to an average additional cost of approximately 61% of the original run-
time to implement the mean distance equation. Further tests with more samples suggest that
the costs remain approximately 60–65%. Not all of this extra runtime is due to the mean dis-
tance computation, however: when new hypotheses are formed, there is a non-trivial
overhead time due to memory management. Consequently, this is expected to be a worst-
case estimate for the extra computational cost involved.

Figure 9. Example of depth hypotheses generated with CUBE using the conservative (blue) and mean dis-
tance (green) uncertainty propagation equations over a seafloor that steps from 10.0 to 9.0 m half-way
through the domain. Note that for visualization purposes the hypotheses for the conservative and mean
distance propagation equations are displaced slightly to left and right, respectively, of the position of the
estimation node, as indicated by the true depth marker. More realistic propagated uncertainty from the
mean distance propagation equation results in secondary hypotheses being formed in the step transition
region, leading to better reconstruction, albeit with caveats in the form of the hypothesis selection uncer-
tainty in that area.

4Apple iMac with Intel Core i7 at 4 GHz, 32 GB RAM, running OS X 10.11.6, running unoptimized code from XCode 7.3.1.
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Discussion

Using (7) and (20), the propagation equation can be set at two different information content
levels. The tradeoffs are computational complexity, number of free parameters, and disconti-
nuity detection sensitivity. Practitioners should decide which version of the propagation
equation to use for their application on a case-by-case basis. They must weigh whether the
extra computational cost is worth the information gained with the mean-distance approach
versus the less-expensive conservative approach.

The conservative approach of (7) has the advantages of lower computational cost; the esti-
mator is a simple algebraic equation. This equation, however, requires specification of three
parameters. The mean-distance approach containing the Laguerre function requires two
parameters instead of three. The computational cost, however, is higher than the conserva-
tive approach. The estimator requires nontrivial numerical evaluation of the CHGF and
Chebyshev series fitting.

For applications that require sensitive discontinuity detection, the mean-distance
approach provides higher sensitivity than the conservative approach. Within the CUBE algo-
rithm, this version of the propagated uncertainty equation provides more candidate depths
for hypothesis resolution. This behavior may be desired, for example, in a shipping area
where navigation safety concerns are high. Although the conservative approach smooths
over smaller discontinuities, it will still detect larger ones. For use with applications like

Figure 10. Example estimation with CUBE using the conservative (blue) and mean distance (green) uncer-
tainty propagation equations over a seafloor containing a 1.0 m wide, 1.0 m high object half-way through
the domain. With the conservative propagation equation, higher propagated uncertainties lead to limited
hypothesis generation and poor object reconstruction. With the mean distance algorithm, lower propa-
gated uncertainties make the different populations of observations more evident, leading to more fre-
quent hypothesis generation and therefore better reconstruction.
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CURVE, where uncertainty is being estimated for fast interpolation algorithms, the conser-
vative approach provides smoothing behavior and an uncertainty estimate that an end-user
may find satisfactory for their interpolation task at lowered computational cost.

The lowest uncertainty estimate for s2 is driven by the term sf and the amount of data
obtained for a single node. As discussed in Bourgeois et al. (2016), the conservative form is
at a minimum for d0 D 0. This minimum also holds for the mean distance approach by
inspection of (10) and monotonic behavior of (13).

As with any parametric equation, choice of parameters for either (7) or (20) can be prob-
lematic and problem specific, making generic guidance difficult. In applications, setting a D
2.0 appears to be most common, corresponding to some notion of squared distance weight-
ing in estimation. For the original CUBE algorithm, setting sH � 2.0 was a default choice,
reflecting in a general sense a couple of standard deviations “worst case” extra distance due
to the horizontal uncertainty, but this appears to generate too rapid an increase in uncer-
tainty with distance, and many field users set sH significantly lower in order to avoid this; in
practice, using the mean distance algorithm is probably a better choice if this is significant to
a particular problem. The uncertainty scale factor k controls the rate at which the horizontal
uncertainty and propagation distance affect the propagated vertical uncertainty; setting k D
2.0 gives the default CUBE behavior, although since this results in the uncertainty doubling
after one grid spacing, this may be too much for many applications. Values in the open range
(1, 2) are therefore recommended as an initial starting point for experimentation.

Figure 11. Example of depth hypotheses generated with CUBE using the conservative (blue) and mean
distance (green) uncertainty propagation equations over a seafloor that steps from 10.0 to 9.0 m half-way
through the domain. The results using the mean distance propagation equation are generally better, but
the node at xD 5:5m has two hypotheses that the algorithm had difficulty distinguishing at reconstruc-
tion time, as highlighted by the hypothesis selection uncertainty value of 4.0.
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Conclusion

This paper considered the modeling of propagated uncertainty in a scalar field. The model
provides an uncertainty estimate for an interpolation point estimated from the positional
and field values of the observations. The uncertainty in the observation is magnified when
used for the computation of the interpolated output point, increasing as the distance
between the input and output positions lengthen. Following four principles, we provided a
formal equation for this model of uncertainty in (5).

We provided two approaches for evaluation of (5). The conservative approach, (6), pro-
vides a simple algebraic expression that requires specification of three parameters. The
mean-distance approach, (10), requires non-trival numerical computation of the Laguerre
function, L1/2(x). The higher computational cost provides the benefit of only two-parameter
selection and lowered estimation of s2. We provided a computational methodology using
Chebyshev polynomial fitting to a one-time computation of (10) to address the computa-
tional cost, which is expressed in (20).

From our numerical experiments, we concluded that the use of (20) enables enhanced sen-
sitivity to rapidly changing field values compared to (5) due to lowering of the propagated
s2. This capability is important for use in the Combined Uncertainty Bathymetry Estimation
(CUBE) application (Calder and Mayer 2003) where the best estimation of water depth for
navigation safety is crucial. As demonstrated in the numerical experiments, the mean-distance
approach provides closer reconstruction of the field than the conservative approach. The con-
servative approach demonstrated a smoothing behavior in the reconstructed field, but correctly
captures the inaccuracy within a higher estimate of output variance.

As elaborated in the “Discussion” section, these approaches have their tradeoffs. Selection
depends upon the objectives of end-user. An overall benefit of this work is new computa-
tional flexibilities and enhancements for practitioners of this propagated uncertainty model
in differing applications.
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