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Abstract 
For reasons of clarity, a typical node-link diagram statically displayed on paper or a computer screen 

contains fewer than 30 nodes. However, many problems would benefit if far more complex information 

could be diagrammed.  Following Munzner et al [15], we suggest that with interactive diagrams this may be 

possible. We describe an interactive technique whereby a subset of a larger network diagram is highlighted 

by being set into oscillatory motion when a node is selected with a mouse.  The subset is determined by a 

breadth first search of the underlying graph starting from the selected node.  This technique is designed to 

support visual queries on moderately large node-link diagrams containing up to a few thousand nodes.  An 

experimental evaluation was carried out with networks having 32, 100, 320, 1000, and 3200 nodes 

respectively, and with four highlighting techniques:  static highlighting, motion highlighting, static+motion 

highlighting, and none.  The results show that the interactive highlighting methods support rapid visual 

queries of nodes in close topological proximity to one another, even for the largest diagrams tested.  

Without highlighting, error rates were high even for the smallest network that was evaluated. Motion 

highlighting and static highlighting were equally effective. 

A second experiment was carried out to evaluate methods for showing two subsets of a larger network 

simultaneously in such a way that both are clearly distinct.  The specific task was to determine if the two subsets had 

nodes in common.  The results showed that this task could be performed rapidly and with few errors if one subset 

was highlighted using motion and the other was highlighted using a static technique.  We discuss the implications 

for information visualization. 

 
Keywords: Graph visualization, interactive animation, motion coding
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Introduction 
The great majority of node-link diagrams contain fewer than 20 nodes and 30 links between them.  This number 

falls far short of the millions of nodes and links that are contained in large graphs.   Visualization of such large 

graphs in their entirety represents an almost insurmountable challenge. There is a common class of medium-sized 

graphs, however, containing between thirty nodes and a few thousand nodes.  The graph representing all of the 

employees and their email traffic in a large, but not huge, company is an example (see Figure 1).  The graph 

representing all of the parts in an automobile or machine of similar complexity is another. These may be loaded into 

the main memory of a computer and can be rendered in real-time on a screen.  The problem is that this many nodes 

and the links between them cannot be drawn legibly in a static diagram. 

 

 The Constellation system of Munzner et al. [15] used an interactive technique to allow access to medium-sized 

graphs.  To explore a graph, the user moved the mouse cursor over the nodes, this action triggered a local search of 

the graph and caused the links within one or two link radius to be highlighted by becoming brighter, wider and 

moved to the foreground layer.  In this way, nodes in topological proximity could be brought to the attention of the 

user.  In Constellation no attempt was made to draw links so that they did not cross nodes or other links or apply any 

of the layout technique normally applied to produce visual clarity.  When not highlighted, links were drawn faintly 

and transparently over the nodes and there were so many that it was generally impossible to trace them; it was only 

when highlighted that the paths became clear.   

 
Figure 1  A graph containing over 1000 nodes.  Only a subset of the edges are shown.  The graph shows email 

traffic between individuals within a medium-sized corporation. 
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A number of other interactive techniques have been developed specifically to look at tree data [13,14,18,19,20]. In 

the case of Cone Trees, users must rotate a graph in a 3D space in order to explore the graph [19].  In the case of the 

Hyperbolic Tree Browser users must drag parts of the tree to the central region to see maximum detail [14]. 

Nicheworks [25] allowed users to interactively view large graphs but what was shown to the user was a subgraph 

consisting of a tree.   

 

The problem of obtaining information from a visual display such as a graph can be characterized as a process of 

cognitively constructing and executing a series of visual queries [22]. These queries are executed both by means of 

eye movements and by selective tuning of the visual pattern finding mechanism so that the relevant features of the 

display are brought into visual working memory [22, 6].  Considered in this way, the effectiveness of a display can 

be enhanced in a number of ways.  Improving the graphical design can make it easier to visually search for such 

patterns as nodes that are in close topological proximity to other nodes.  Alternatively the visual search can be 

supported by means of an interactive technique, as in Constellation [15] of MEGraph[23].  In MEGraph (for motion 

enhanced graph) clicking on a node causes a breadth-first search of that graph beginning at that node.  The entire 

subgraph within a certain specified topological radius is highlighted by being set into motion. An assumption 

implicit in this technique is that the connections between nodes in close topological proximity to the selected node 

are the ones most likely to be of interest when the diagram of a graph is used as an information display.  We believe 

this assumption to be justified for common applications such as software engineering and social networks [8]. 

 

It is important to make a distinction between a visual query in the sense that we apply it here and the queries of 

Huang et al [12 ].  In their work, queries cause subgraphs of a much larger graph to be loaded and the spring layout 

changed dynamically based on the newly loaded data.  Here we are using the word query in the sense that visual 

thinking involves queries on the visual environment [22]. The uploading involved is the uploading of information 

into the human brain.  In our system, all the data is loaded into computer memory, the layout is only done once, and 

all the data is displayed graphically, although much of it is not “readable”.  The active visual queries we are 

investigating thus involve a manual selection of a graph, an automatic highlighting of a subset of the displayed 

information, and a visual search for information.   

 

Giving a subgraph an oscillatory motion while the rest of the graph remains static should be a very effective way of 

highlighting information.  Research on human perception suggests that effective highlighting of data should be done 

with pre-attentive cues [21].  A pre-attentive visual cue is something that stands out at a glance, no matter how 

complex the surrounding information.  For example, red symbols in a display that is otherwise entirely black and 

white will stand out clearly.  For the most part, only simple visual attributes stand out pre-attentively.  Size, color, 

orientation, and oscillatory motion can all be seen pre-attentively. More complex patterns cannot be seen as easily.  

For example, a visual search for something that is both large and red (in the context of other large, but not red 

objects, and other red, but not large objects) will be difficult and error prone. This coupling of visual cues is called a 
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conjunction search. Motion is unlike most other visual cues in that visual conjunctions of motion and some other 

properties can be rapidly searched [9,10,16,17].    

 

The fact that motion supports conjunction search makes it ideal for revealing subgraphs of larger graphs since it 

should allow a rapid visual search for particular patterns in the subgraph, based on other attributes such as target 

orientation. We have exploited this idea in MEGraph [23].  In MEGraph, rapid interactive querying, by clicking on 

nodes, triggers a breadth first search of the graph and this in turn causes highlighting of the nearby nodes and links 

through oscillatory motion of the subgraph.  The effectiveness of this technique assumes that most visual queries on 

graphs will be for groups of nodes in close topological proximity, but this seems reasonable at least when those 

graphs represent such things as social networks and software architectures.  In the case of social networks 

connections between nodes usually represent accountantships.  In the case of software architectures, nodes in near 

proximity might show which subroutines are used by a particular module. 

 

Previously, in an empirical evaluation of MEGraph, we have shown motion enhancement to be more effective than 

static highlighting techniques with graphs having an average of 50 nodes and 82 edges.  However, two significant 

criticisms could be leveled at our previous study.  The first was that the graphs we used in the experiment were still 

quite small, although somewhat larger than can be seen clearly without an interactive highlighting technique. Yet we 

claimed that the technique should be useful for much larger graphs than this.  The second criticism is that in the 

experiment we did not take the time of interaction into account.  If we are to compare visual queries made by simply 

moving the eyes with queries made with the aid of an interactive technique, it is appropriate  for interaction time to 

be taken into account as part of the cost of obtaining information from the display. 

 

The first of the two studies we report here answers both of these criticisms. The graphs are much larger, containing 

up to 3200 nodes and 3700 edges.  And we also measure the time cost of interaction.  The goal of the second 

experiment was to look at the problem of simultaneously highlighting two subgraphs of a larger graph. 
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Figure 2  A 3200 node network diagram laid out using spring forces. 

 
Figure 3  A part of Figure 2 showing static highlighting. 
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Figure 4  A 320 node graph of the kind used in our study. 

 

Experiment 1: Effectiveness of Motion Highlighting with Medium-
Sized Graphs 
The first experiment we report here was designed to find the relative values of motion highlighting and static 

highlighting on a set of graphs of sizes between 32 and 3200 nodes.  Highlighting was done using breadth first 

search of a graph around a selected node.  We used the simple task of visually searching for red nodes within the 

radius of two edges from the selected nodes.  This is a very specific task, but we believe that the results should be 

representative of results for many similar tasks involving visual search for simple patterns. 

 

Task  
On each trial the subject’s task was to determine if there was a red node within two links of a particular node 

designated by a bold circle drawn around it.  In the highlighting conditions, the subject had to move the mouse over 

the highlighted node, click on it, then visually search the highlighted subset to find out if there was a node satisfying 

the criterion.  The subject then pressed one of two keys on the keyboard -- the ‘M’ key for yes and the ‘N’ key for 

no. These keycaps had ‘yes’ and ‘no’ labels placed on them.  

 

Conditions and Trial Blocks 
Four kinds of highlighting were used. 

1) No Highlighting. 
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2) Static Highlighting 

3) Motion Highlighting 

4) Static and Motion Highlighting combined 

There were four graph sizes used: 32, 100, 320, 1000, and 3200 nodes. The product of highlighting methods and 

graph sizes gave 20 conditions.  The experiment was run as a within subjects design. 

 

The Node-Link diagrams 
One sixth of the nodes were colored red, one sixth were green and one-sixth were blue and the remaining one half 

were gray.  The node diameter was 2 mm when not highlighted and the link width was 2 pixels (approx 0.25 mm).  

 

Static highlighting increased node diameter to 3mm (more than doubling the area) and increased the link width to 4 

pixels (approx 0.5mm). Highlighted links were given a white border by first drawing a 7 pixel width line, followed 

by a centered 3 pixel wide line centered on it.   Figure 2 illustrates a 3200 node diagram and Figure 3 shows part of 

it enlarged to make the highlighting more visible.  Figure 4 illustrates a 320 node diagram. 

 

The graph was generated by the following algorithm: 

For each node in the graph: 

Form a link to  either 1 or 2 other nodes, randomly selected, with a generator biased so that a single 

connection occurred 83.33 % of the time and two connections occurred 16.67% of the time.   

 

The result was a graph with the following statistical properties (empirically determined): 

26 % of the nodes have degree one  

35% of the nodes have degree two  

23% of the nodes have degree three 

10% of the nodes have degree four  

4% of the nodes have five connections 

<1% of the nodes have 6 or more connections 

 

The graph layout was done by spring forces [7] using an iterative approach.  All nodes repelled one another 

according to the inverse of their squared separation.  Connected nodes were attracted to one another with a spring 

force having a constant such that the resting length of the spring was 1.8 cm.  A force proportion to the distance 

from the center cubed was applied to keep the outer fringes of the graph from spreading out of the display area.  This 

was applied independently in x and y directions and is the reason for the compression seen in the edges of the graph 

in Figure 2. To speed up the layout process a spatially defined regular grid containing a linked list of the nodes was 

used to find near neighbors and calculate the repulsion forces between nodes [11]. 
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A Viewsonic VP2290b display was used for the experiment. This is capable of displaying 3840x2400 pixels with 

approximately 81 pixels per cm.  All graphs were displayed at a 20 Hz update rate. Diagrams were drawn in a square 

region having 2200 pixels (27 cm) on a side. 

 

Procedure 
At the start, subjects were given a practice session with a few trials in each of the conditions. This was continued 

until the experimenter felt certain that the subject fully understood the task. Following this, the experiment was run 

using blocks of trials where the same highlighting technique was used within a block.  For each block subjects were 

first shown a single graph having 50 nodes and asked to select a particular highlighted node and respond 

appropriately.  This was intended to re-acquaint them with that particular highlighting technique.  Next they were 

presented with a new graph generated based on one of the size conditions and they had to make a series of 6 

responses (3 with ‘yes’ as a correct response; 3 with ‘no’ as a correct response randomly interspersed).  Following 

this they were presented with a differently sized graph and again made six responses.  This was repeated until they 

had seen all graph sizes under that highlighting condition with the sequence of differently sized graphs randomly 

determined.  Subsequently the subjects were given blocks of trials with each of the other highlighting methods. 

There was a different random ordering of the conditions given to each of the subjects. 

 

This entire process was repeated three times.  This yielded a possible  9 ‘yes’ and  9 ‘no’ correct responses for each 

highlighting/graph size combination yielding a total of  (4x5x(9+9)) = 360 trials for each subject.  The entire 

experiment typically took 45 minutes to an hour. 

 

Subjects 
The 13 subjects were mostly undergraduate students at the University of New Hampshire, paid to participate. One 

was a research assistant in the lab. 

 

Results from Experiment 1 
The error rate results are summarized in Figure 5. The most obvious effect is that all of the interactive highlighting 

conditions resulted in much lower error rates compared with the No Highlighting condition. A three-way ANOVA 

was carried out for the following factors: graph size, highlighting method, target present vs target absent.  There was 

a main effect for highlighting method (F(3,4640) = 366.0, p <.0001 ).   The error rate was lowest with both motion 

and static cues (2.7%) next came the static cue (3.9%) and the motion cue (3.9%). The No Highlighting condition 

had a mean error rate of 34.7%.  A Tukey HSD test applied to the highlighting method revealed only two groups: 

one group containing the high error rate No Highlighting condition and the other consisting of the other three 

conditions. There was also a significant effect of graph size (F(1,4640) = 13.8, p < 0.001) and an interaction between 

these two factors (F(12,4649) = 9.22, p < 0.001).  Most of the source of this interaction is the No Highlighting 

condition.  Subjects performed at close to chance levels when the graphs were 320 nodes and above.  There was also 
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a main effect for target present vs target absent (F(1,4640) = 2.29, p <0.001).  Subjects made more errors overall 

(13.6%) when the target was present, than when the target was absent (9.1%). 

 

0

5

10

15

20

25

30

35

40

45

50

32 100 320 1000 3200

No Highlighting
Motion cue
Static cue
Motion+Static cues

Pe
rc

en
t E

rr
or

Graph Size (nodes)

 
Figure 5  Summary of error rates for different graph sizes and highlighting conditions. 

 
The response time results are summarized in Figure 6.  This shows that there was little variation in response times 

for the first four graph sizes with a marked increase for the largest, 3200 node graph. There were significant effects 

for highlighting method (F(3,4640 ) = 46.6, p < 0.001), graph size (F(4,4640) = 100.8, p < 0.0001), and also an 

interaction between the two (F(12,4640)= 4.322, p < 0.0001).  The nature of this interaction appear to be that 

although the longest response times occurred for the 3200 node graph for all conditions, the time increase was less 

in the No Highlighting condition.  There was also a main effect for target present vs target absent (F(1,4640) = 19.7, 

p <0.0001).   Examining Figures 5 and 6 suggests that conditions with high error rates also had faster responses.  It 

was thought that this might be due to subject giving up early on the more difficult conditions. A t-test showed that, 

on average, mean response time for conditions where the error was greater than 10% was shorter than for conditions 

where the error rate was less than 10% (p< 0.01). 
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Figure 6  Summary of response times for different graphs sizes and highlighting conditions. 

 

Discussion of Experiment 1 
The main practical result from Experiment 1 is that interactive highlighting can make medium sized node-link 

diagrams accessible to queries about the nodes in close topological proximity.  In the no-highlighting conditions the 

error rates were such that even the smallest graphs would not be usable in a practical application.  It should be 

recognized that the task was monotonous and subjects may have cared little about the outcome and thus error rates 

could undoubtedly be reduced given a higher level of motivation.  Nevertheless, it is unlikely that the larger 

diagrams could be used effectively without one of the interactive highlighting techniques.  The shorter response 

times for the No Highlighting conditions were not expected. A possible explanation for this result is that subjects 

developed a presumption through the course of the experiment that when they encountered a No Highlighting 

condition they would not be able to produce a correct response, so they produced a rapid guess as a response.  

 

 Both the static highlighting and the motion highlighting methods proved to be equally effective.  Thus the 

experiment failed to confirm our previous finding that motion highlighting can be more effective than static 

highlighting.  This suggests that the main advantage of motion highlighting can be as an addition highlighting 

technique intended to supplement static highlighting methods, rather than replace them.  Complex data requires 

complex visual codings of data attributes.  It may well be that visual cues useful for highlighting (e.g. node or line 

width) will have already been used.  Thus the main advantage of motion can be that it can provide an additional 

coding channel independent of the already heavily used static coding methods.  Alternatively, motion can provide 

support for highlighting two different subsets of a complex diagram. 

 

Visual Queries 11  



 

Experiment 2: Supporting Visual Queries with Two Highlighted 
Subgraphs 
 

Problem solving with real applications is likely to demand support for considerably more complex queries than 

those demonstrated in Experiment 1 .  For example, it may be useful to select two different subgraphs of a larger 

diagram for the purpose of understanding how they might be related.   In the case of a social network we might wish 

to look at two subnetworks representing two teams working on different projects. Nodes representing individuals 

working on both projects might be of special interest.   The problem of distinctly highlighting two subgraphs of a 

larger graph is the subject of our second study.  To identify a task suitable for empirical assessment we first 

considered that highlighting two subgraphs should (at least) be able to support any of the following queries.  Can it  

be seen that a particular node belongs to: 

(a) Subgraph A, 

(b) the intersection of subgraphs A & B, 

(c) neither A nor B. 

The third category (c) is the hardest to support because it requires a visual conjunction search.  It is necessary to 

clearly perceive the conjunction of  two different highlighting methods. We therefore designed an experiment to 

look at how different design alternatives can support this kind of query and we reduced the task to the simple visual 

query – do highlighted subgraphs A and B intersect (i.e do they have nodes in common)? 

 

We hypothesized that having static highlighting on one subgraph and motion highlighting on the other would be the 

most effective way of supporting the intersection of two subgraphs query.  As discussed in the introduction, pre-

attentive conjunctions can be formed by using motion features in conjunction with static features.  Consider a case in 

which one subgraph was set in motion, while a second subgraph was highlighted by putting borders around the 

nodes and edges.  Finding out if the two subgraphs had nodes in common would involve visually searching for  

nodes that are both moving and have borders around the nodes and edges.  This is a visual conjunction of motion 

and non-motion cues. 

 

We were also interested in the question of whether it was possible to use two different kinds of motion to highlight 

different subgraphs; for example, by highlighting one subgraph with vertical motion and the other with horizontal 

motion.  We also used this experiment to evaluate this possibility.  As part of an iterative design phase we developed 

four different motion patterns attempting to make them clearly distinct from sinusoidal horizontal motion (2 Hz 

sinusoidal) of the first subgraph. Three of them used vertical motion of the second subgraph; the first of these used 

the same frequency (2 Hz); the second  doubled the frequency to 4 Hz; a third used bursts of 8 Hz motion 

interspersed with no motion.  In the fourth motion pattern the nodes sinusoidally grew and shrank in size.  Since 

visual searches for conjunctions for two kinds of motion are not known to occur pre-attentively, we did not expect 

that two motions could easily support our visual search task.  But we though it worth while to try to find pairs of 
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motions that supported rapid conjunctive searches.  If we found them we would have made a discovery of both 

theoretical and practical interest. 

 
Figure 7  A section of a 1000 node graph used in 

Experiment 2.  Condition 7 is illustrated.  The smaller 

highlighted nodes and links show the static highlighting cues 

used for most conditions.  The larger nodes and links are in 

pulse highlighting mode. 

 

Conditions 
All conditions had two different subgraphs highlighted.  These were selected so that they always overlapped 

spatially.   In half the trials the two subgraphs had two or three nodes in common; in half they were disjoint.  Of the 

eight conditions four had static highlighting of one subgraph and motion highlighting of the other.  In the other four 

conditions, subgraphs were highlighted with both static and motion cues, although each had a different motion. 

 

Conditions with one subgraph moving and the other statically highlighted 
Subgraph A moved with the following motions (no static highlighting cues).   

1) Vertical sinusoidal:  2 hz. Amplitude 0.333 cm. 

2) Vertical sinusoidal:  4 Hz. 

3) Vertical burst motion:  8Hz sinusoidal in alternating bursts, 0.5 sec moving 0.5 sec static. 

4) Pulse motion: 1 Hz size changes. This sinusoidally changes the size of the nodes and the width of the links 

by a factor of 2 at a rate of 1 Hz.  This condition is illustrated in Figure 7. 

Subgraph B did not move but was statically highlighted.  
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Conditions with two moving subgraphs 
Subgraph A moved with one of the four motions listed above. Subgraph B moved horizontally with  a sinusoidal 

oscillatory motion at 2 Hz. Both subgraph A and subgraph B were highlighted with additional static cues.  

 

Table 1 Summary of Conditions for Experiment 2 
  Subgraph B 
  Static highlighting for  

subgraph B only.  
Subgraph A has motion 
highlighting but no static 
highlighting 
 

Horizontal motion for 
subgraph B.(both graphs 
move and also use static  
highlighting cues) 

 Vertical 1 5 
Subgraph A Vertical double frequency 2 6 
 Vertical Burst motion 3 7 
 Pulse motion  4 8 

 

Properties of the Graphs 
The graphs were constructed and laid out using the same method employed for Experiment 1.  For 

Experiment 2 graphs always had 1000 nodes.  The two subgraphs were constructed by means of a breadth 

first searches from two randomly selected nodes to a level of 3.  These were used in a trial if the following 

conditions were met: a)  Each subgraph contained at least 8 nodes.  b) Subgraphs overlapped spatially by at 

least 40% (using  as a measure the overlap between bounding boxes of each subgraph as a percentage of the 

area of the bounding box of both subgraphs).  c) For trials with common nodes the two subgraphs had 

either 2 or 3 shared nodes.  The method of construction involved repeatedly creating subgraphs until a pair 

was found that met the criteria. 

 

Other display parameters 
We used a CRT monitor for this experiment because it had better temporal characteristics than the ultra high 

resolution LCD monitor used in the first experiment.   The update rate for all conditions was 60 Hz.  The viewport in 

which all patterns appeared was 27 cm (1100 pixels) square. The nodes were hexagons 0.4 cm across.   The static 

highlighting was bolder than that used for experiment 1.  Each statically highlighted node had a white ring around it 

(0.5 cm in dia) surrounded by a black ring (0.7 cm in diameter).  Links had a line width of 2 pixels (approx 0.5 mm).  

When highlighted they were first drawn with a 7 pixel wide white line then with a 3 pixel wide line (Figure  7 

illustrates). 

  

Task 
On each trial a large graph containing two highlighted subgraphs was presented to the subject.  The subject was 

required to press the  right mouse key, if there were common nodes between the two subgraphs (a ‘yes’ response) 

and the left mouse key if there were no common nodes (a ‘no’ response). In the overlap conditions there are between 

2 and 5 common nodes. 

Visual Queries 14  



 

Subjects 
The 12 subjects were a combination of graduate and undergraduate students.  Most were paid for participating. 

 

Procedure 
Subjects were first given a training session in which they were shown all 8 conditions, and an example with overlap 

and without overlap for each one.  Next conditions were given in a different random order for each subject with 20 

trials presented in each condition.  In half the trials the two highlighted subgraphs had nodes in common (requiring a 

yes response); in half they did not. Once the subjects had run through all of the conditions they were given a rest for 

a few minutes and then they repeated a second set of trials. There were a total of 40 trials per condition. 

 

Results from Experiment 2 
The main results are summarized in Figures 8 and 9 which show error rates and response times respectively.  

As shown in Figure 9 the use of static highlighting for one subgraph and motion cues for the other resulted in 

dramatically reduced error rates ( 2.6% versus 22.5%).  A two-way ANOVA was carried out on errors, where the 8 

conditions listed in Table 1 were one factor and the target present versus target absent was the other factor.  The 

highlighting factor was highly significant (F(7,77) = 32.2; p < 0.0001).  There was no significant main effect for 

target present vs target absent, but there was an interaction (F(7,77) = 4.1; p < 0.01) between the two factors.  An 

examination of Figure 7 shows this to be due to condition c7 where there was a much higher error rate for target 

present conditions.  In this condition there were far fewer yes responses than no responses.  As was the case for 

Experiment 1, there was a relationship between error rates and response times.  Only for this experiment the 

relationship was reversed. Response times were longer for conditions where there were higher errors. 

 

A second ANOVA with response times as the dependent variable revealed a main effect for condition  (F( 7,77) = 

43.2; p < 0.001) and a Tukey HSD test revealed three groups [{c1,c2,c3,c4}<{c8}<{c5,c6,c7,c8}] .  All of the 

conditions that used motion highlighting for one subgraph and static highlighting for the other were in the group 

with the shortest response times (mean 1.64 sec.).   Condition c8 (pulse motion for one subgraph, horizontal motion 

for the other) was the next fastest with a mean response of 3.48 sec. The three remaining conditions formed a third 

group with a mean time of 4.15 sec.  Overall the results strongly support the idea that the conjunction of motion and 

non-motion cues can be rapidly searched visually, and we failed to find pairs of motions that supported rapid visual 

searches. 

 

On average, responses on trials when the two subgraphs contained common nodes (target present) were faster than 

responses when they did not (no target present) ( 2.49 sec vs 3.13 sec (F(1,11)=18.05, p < 0.001).  There was no 

significant interaction between this factor and the display condition.  
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Figure 8  A summary of the error rate results from Experiment 2.  

Grey bars show conditions where there was no target present.  Black 

bars show conditions where there was a target present. 
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Figure 9  A summary of the response time results from 

Experiment 2. See Table 1 for a description of the 

conditions. 
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Discussion of Experiment 2 
The results show that it is possible to independently highlight two subgraphs of a larger graph and clearly perceive 

nodes that belong to both subgraphs if one is highlighted using motion and the other is highlighted using static cues.  

This agrees with the theory that the conjunction of motion and non-motion cues can be searched rapidly.  Our 

attempts to support the same task with two different motion codings were far less effective.  In all the cases using 

motion cues in both subgraphs the error rates were greater than 20%.    The bias towards no responses rather than 

yes responses for condition 7 is intriguing although we have no explanation for it. 

 

Conclusion 
With our first experiment we showed that a technique of interactively highlighting subgraphs can efficiently support 

visual queries on graphs containing up to 3200 nodes.  Motion highlighting proved to be as effective as static 

highlighting and the combination of motion and static highlighting was the most effective.  Although this result 

showed that motion highlighting is an effective technique, we failed to confirm our previous finding that in some 

cases it can be better than static highlighting [23].  This is hardly surprising; a highlighting cue is not all or nothing.  

Even weak highlighting cues will increase the rate of visual search strong cues will make a search faster.  Thus, 

whether or not static highlighting or motion highlighting is more effective is a matter of degree.  Factors such as size 

and degree of contrast will be critical for static cues and factors such amplitude and frequency will be critical for 

motion cues.  We can easily tune either static and motion cues to be the most salient.  These are properties that the 

display designer must consider and the exact settings will depend on the requirements of the application. 

 

The question arises as to the ultimate limitations of interactive graph highlighting in making large graphs accessible 

to visual queries.  Part of the problem is simply space for the nodes.  We used a very high resolution screen for the 

first experiment and it would probably be undesirable to pack nodes much more closely than this (see Figure 1).  

However, only half of the screen area was used suggesting that it might be possible to support interaction with node-

link diagrams having double the size (6400) using the same techniques. In the future, we may expect wall sized 

displays having hundreds of millions of pixels of resolution.   Such displays should make it possible to show 

substantially larger graphs, possibly containing tens or hundreds of thousand of nodes.  However, unless 

highlighting methods are made even more distinctive, visual searches will inevitably take longer.  Figure 5 already 

shows a marked increase in the time to respond with the largest (3200) node graphs and as graph size increased the 

visual search time could be expected to increase further. We already know that motion is an especially effective 

technique for highlighting in peripheral vision [24,2,3].  The motion highlighting methods we have developed are 

likely to become even more beneficial with large high resolution displays.  Research is also needed to determine the 

limits on graph that can be interactively viewed on much smaller and more portable screens. 

 

The main advantage of motion highlighting over static highlighting may be that it adds to the available lexicon of 

graphical techniques for making information available to rapid visual queries.  Experiment 2 showed that motion 

highlighting in addition to static highlighting allows us to support visual queries on two subgraphs of a larger graph.  
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Although we have not tested all combinations of static and motion highlighting, we know from the extensive 

literature on pre-attentive processing that most conjunctions of static cues are not rapidly perceived [21].  However 

there is one conjunction of visual cues that might work, namely using stereoscopic depth in addition to static cues 

instead of motion [17,22].  Unfortunately, displaying stereoscopic depth requires technologies such as frame 

sequential glasses or lenticular screens that have significant drawbacks. 

 

In Experiment 2 we only tested the visual query for nodes in common between two subgraphs. We did this because 

it seemed likely to be the most difficult case to support.  It would be useful to empirically test support for the other 

queries we discussed in the introduction.  It is possible, although we regard it as unlikely, that the motion 

highlighting for one subgraph and static highlighting for the other subgraph, would make it difficult to see whether 

nodes belonged to one subgraph or the other, as opposed to considering only the conjunction. 

 

The results on motion highlighting should apply equally to other visual interfaces besides graph visualization.  There 

may be a broad range of applications where motion highlighting can be used to highlight one attribute of a data set 

and a static technique can be used for another attribute in such a way that each attribute, or the conjunction of 

attributes, can be visually queried.  In the visualization field, one obvious use is the interactive querying of 

scatterplots using techniques such as dynamic queries [1] or brushing [5]. 

 

Finally we wish to comment on the artificiality of the experiments we have coducted. The purpose of this paper has 

been to focus on the particular properties of effective interactive highlighting and to accomplish this we used 

artificial diagrams and a display that leaves out many of the requirements of a real application.  A real application, 

for example would have to have a mechanism for displaying text associated with selected nodes, and allow for 

graphs having a much less homogeneous structure than the ones we artificially constructed. Additional techniques 

for showing the history of interaction would undoubtedly be required also. Still, our experiences with the email 

traffic graph shown in Figure 1 has convinced us that these techniques can be applied to real social network data.  It 

is also possible to enhance the range of interactive highlighting techniques over the simple breadth first search we 

used in this study.  For example, MEGraph contains an option to automatically show shortest paths in the graph 

when two nodes are selected.  Ultimately, we envision a range on interactive queries that could be applied rapidly to 

a graph, incrementally building, or pruning, a selected subgraph depending on the task. 
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