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Abstract 

It has been previously proposed that understanding the 
mechanisms of contour perception can provide a theory for why 
some flow rendering methods allow for better judgments of 
advection pathways than others. In the present paper we develop 
this theory through a numerical model of the primary visual 
cortex of the brain (Visual Area 1) where contour enhancement is 
understood to occur according to most neurological theories.  We 
apply a two-stage model of contour perception to various visual 
representations of flow fields evaluated by Laidlaw et al [2001]. 
In the first stage, contour enhancement is modeled based on Li’s 
[1998] cortical model. In the second stage, a model of contour 
integration is proposed designed to support the task of advection 
path tracing.  The model yields insights into the relative strengths 
of different flow visualization methods for the task of visualizing 
advection pathways. 

CR Categories: H.1.2 [Models and Principles]: User/Machine 
Systems—Human Factors, human information processing. 

Keywords: Flow visualization, contour perception, visual 
cortex, visualization, perceptual theory. 

1  Introduction 

Many techniques for 2D flow visualization have been developed 
and applied.  These include grids of little arrows, still the most 
common for many applications, equally spaced streamlines [Turk 
and Banks 1996], and line integral convolution (LIC) [Cabral and 
Leedom 1993].  But which is best and why? Laidlaw et al [2001] 
showed that the “which is best” question can be answered by 
means of user studies in which participants are asked to carry out 
tasks such as tracing advection pathways or finding critical points 
in the flow field.  Ware [2008] proposed that the “why” question 
may be answered through the application of recent theories of the 
way contours in the environment are processed in the visual 
cortex of the brain. But Ware only provided a descriptive sketch 
with minimal detail and no formal expression. In the present 
paper, we show, through a numerical simulation of neural 
processing in the cortex, how the theory predicts which methods 
will be best for an advection tracing task. 

 

 

 

 

 

 

 

Our basic rational is as follows:  Tracing an advection pathway 
for a particle dropped in a flow field is a perceptual task that can 
be carried out with the aid of a visual representation of the flow.  
The task requires that an individual attempts to trace a continuous 
contour from some designated starting point in the flow until 
some terminating condition is realized. This terminating condition 
might be the edge of the flow field or the crossing of some 
designated boundary.  If we can produce a neurologically 
plausible model of contour perception then this may be the basis 
of a rigorous theory of flow visualization efficiency. 

The mechanisms of contour perception have been studied by 
psychologists for at least 80 years, starting with the Gestalt 
psychologists. A major breakthrough occurred with the work of 
Hubel and Wiesel [1962; 1968] since which time, neurological 
theories of contour perception have begun to develop.   

In the present paper, we show that a model of neural processing in 
the visual cortex can be used to predict which flow representation 
methods will be better. Our model has two stages. The first is a 
contour enhancement model.  Contour enhancement is achieved 
through lateral connections between nearby local edge detectors. 
This produces a neural map in which continuous contours have an 
enhanced representation.  The model or cortical processing we 
chose to apply is adapted from Li [1998].  The second stage is a 
contour integration model. This represents a higher level cognitive 
process whereby a pathway is traced. 

We apply the model to a set of 2D flow visualization methods that 
were previously evaluated by humans carrying out an advection 
pathway prediction task [Laidlaw et al. 2001]. This allows us to 
carry out a qualitative comparison between the model and how 
humans actually performed. 

Our paper is organized as follows.  First we summarize what is 
known about the cortical processing of contours and introduce 
Li’s model of the cortex.  Next we show how a slightly modified 
version of Li’s model differentially enhances various flow 
rendering methods.  Following this we develop a perceptual 
model of contour tracing and show how it predicts different 
outcomes for an advection path estimation task based on Laidlaw 
et al’s prior work.  Finally we discuss how this work relates to 
other work that has applied perceptual modeling to data 
visualization and suggest other uses of the general method. 

Figure 1. The neural response to 
oriented contours and edges can be 
approximated by means of a Gabor 
function for many V1 neurons. Three 
receptive fields of different sizes are 
shown.  Each is excited when a bright 
horizontal bar falls on the central dark 
bar. Each is inhibited when the bar falls 
on the adjacent regions.  These neurons 
are tuned to orientation. Their response 
pattern weakens as the orientation 
departs from horizontal. 
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Figure 2. Neurons are arranged in V1 in a column 
architecture. Neurons in a particular column respond 
preferentially to different sizes of bar.  Moving across the 
cortex (by a minute amount) yields columns responding to 
edges having different orientations.   

A hypercolumn is a section of cortex that represents a 
complete set of orientations and sizes for a particular 
location in space. 

2  Cortical Processing of Contours 

Visual information passes along the optic nerve from the retina of 
the eye where it is relayed, via a set of synaptic junctions in the 
midbrain lateral geniculate nucleus, to the primary visual cortex at 
the back or the brain (Visual Area 1 or V1).  It has been known 
since the Hubel and Wiesel’s work in the 60’s that the visual 
context contains billions of neurons that are sensitive to oriented 
edges and contours in the light falling on the retinal.  Such 
neurons have localized receptive fields each responding to the 
orientation information contained within the light imaged in a 
small patch of retina. A widely used mathematical model of a V1 
neuron’s receptive field is the Gabor function [Daugman 1985]. 
This is illustrated in Figure 1 and described in detail later.  Hubel 
and Wiesel found that neurons responding to similar orientations 
were clustered together in a structure they called a “hypercolumn” 
which extended from the surface of the visual cortex to the white 
matter. (See Figure 2.) Later researchers discovered that 
orientation selectivity varied laterally across the cortex.  Overall, 
V1 contains a topographic map of the visual field having the 
property that every part of the retinal image is processed in 
parallel for a range of orientation and sizes.   

These orientation selective neurons have provided the basis for all 
subsequent theories of contour and edge detection. There remains 
the problem of how the output of orientation sensitive neurons, 
each responding to different parts of a visual contour, becomes 
combined to represent the whole contour.  Part of the solution 
appears to be a contour enhancement mechanism. Field, Hayes, 
and Hess [1993] examined the human's ability to perceive a 
contour composed of discrete oriented elements. They placed a 
contour composed of separated Gabor patches, among a field of 
randomly orientated Gabor patches.  Contours were detected 
when the patches were smoothly aligned. They were not detected 
when there was misalignment. This work suggests that there is 
some manner of lateral coupling among the visual elements 
involved in perceiving the Gabor patches in the contour. They and 
other researchers have suggested that similarly oriented aligned 
contours mutually excite one another, whereas they inhibit other 
neurons that are nearby.  (Figures 3 and 4). 

 

Figure 3. Neurons whose receptive fields are aligned along 
a continuous contour mutually reinforce each other. They 
inhibit nearby neurons with a similar orientation sensitivity. 

 

 

Figure 4. Each neuron has both excitatory and inhibitory 
regions of influence. 

 

3  Li's Model V1 enhancement 

Based on the observed organization of the neurons in the visual 
cortex by Hubel and Wiesel [1992; 1996], and the experimental 
evidence by Field, Hayes, and Hess [1993], Zhaoping Li [1998] 
constructed a simplified model of the behavior of V1 neurons and 
examined the model's ability to integrate contours across multiple 
V1 neurons.  In Li’s model the cortex is approximated by a set of 
hypercolumns arranged in a hexagonal grid.  Each hexagonal cell 
has 12 orientation selective neuron pairs oriented in 15-degree 
increments. The mapping of the hexagonal grid to the image space 
was such that the hex centers were separated by 10 pixels. One of 
the main simplifications embodied in Li’s model is that it fails to 
incorporate the way the mammalian visual systems scales with 
respect to the fovea. Real neural architectures have much smaller 
receptive fields in near the fovea at the center of vision than at the 
edges of the visual field. 

The neurons in each hex cell were grouped into excitatory and 
inhibitory pairs responding to an edge of a particular orientation at 
that location. Thus there were a total of 24 neurons per cell. The 
firing rates of both the inhibitory and excitatory neurons were 
modeled with real values.  The neuron pairs affected neighboring 
neuron pairs via a transfer function that depended on the 
alignment of the edge selectivity orientations.  Neuron pairs that  
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ere aligned with one another exhibited an excitatory effect on eac     
h other, whereas pairs that were not aligned inhibited each other.  
Finally, Li's model also contains feedback pathways for higher-
level visual areas to influence individual neurons.   

3.1 Gabor Response Functions 

Li’s paper deals with the neural interactions of V1.  It does not, 
however, specify the way the receptive fields of individual 
neurons process an image.  We added this component choosing 
the Gabor model of V1 receptive fields. The response of an 
individual neuron field to part of the image is defined by an 
oriented Gabor function (Figure 1). The Gabor response function 
is defined by the product of a two-dimensional Gaussian function 
with a one-dimensional sinusoid: 
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Where, 

)sin(*)cos(*' θθ yxx +=   and  )cos(*)sin(*' θθ yxy +−=  

x and y are the coordinates of the function center.  Defining the 
sinusoid, λ is the wavelength of the function, θ is the orientation, 
and φ  is the phase.  The Gaussian envelope is defined by the 
standard deviation σ, and γ is its aspect ratio.  In our tests, we 
used φ = 0, causing the Gabor function to respond to lines in the 
center of the receptive field. We used λ = 21 pixels and σ = 7 
pixels, producing a Gabor function where the center maximum 
and the two neighboring minimum are significant, but more 
distance maxima and minima become negligible.  For γ we used a 
value of 1. 

3.3 The Neural Network 

The neural network was implemented as described by Li [1998].  
Here we give a brief description, but for further details the reader 
is referred to Li's work.  The neural network consists of an array 
of neuron pairs.  Each pair contains one excitatory and one 
inhibitory neuron, and encodes the presence of an edge in a 
specific area and orientation in the input image.  The encoding is 
done via the neuron’s voltage potential, which is represented by a 
floating point number.  

The neuron values evolve over time according to the set of 
dynamics described by Li.  These dynamics model the lateral 
connections between nearby neurons up to 10 hex grids away.  
The excitatory neurons receive additional input from the image 
within the receptive field corresponding to the neuron.  With each 
iteration, the voltage potential of the excitatory neuron 
corresponding to location i and orientation θ changes over time 
by: 

The first term describes the voltage decay of the neuron's value 
back to zero with a time constant of xα/1 , for which we use a 
value of 1.  The second term inhibits edges of similar orientation 
mapping to the same receptive field.  This is done by receiving 
inputs from the inhibitory neurons of the same receptive field and 
similar orientations.  This behavior is produced by the ψ function, 
defined by: 

 

 

 

The activation function gy defines the signal produced by an 
inhibitory neuron as a function of voltage potential.  Similarly, the 
function gx defines the signal produced by an excitatory neuron.  
It has effect of clamping the excitatory signal to between 0 and 1.  
These functions are defined by: 

 

 

 

 

 

The third term is an excitatory neuron's feedback to itself.  J0 
defines the strength of this feedback loop, for which we used a 
value of 0.8.  The fourth term produces the edge enhancement; it 
models the excitatory signal to neighboring neurons that lie along 
the orientation direction in the manner depicted by figure 4.  The 
function J defines the strength of the excitatory connection to a 
nearby neuron, and is defined by: 

 

 

 

Where θ1 is the angle from the neuron’s orientation to the line 
connecting the two neurons, θ1 is the angle from the neighboring 
neuron to this line,  β=2|θ1|+2*sin(|θ1+θ2|), and d is the distance 
separating the neuron and its neighbor.  Similarly, the function W 
defines the strength of the inhibitory connections from nearby 
neurons, and is defined by: 

 

 

The fifth term is the input from the receptive field, calculated 
using the Gabor function described in the previous section.  The 
sixth term describes a background signal that all excitatory 
neurons receive, and is set such that average neuron voltage in the 
network remains constant. 

The inhibitory neurons evolve by: 

Here the first term again acts to decay the value of the neuron 
back to zero.  The second term is input from the excitatory neuron 
in the pair.  The third term acts to inhibit edges that are of the 
same direction, but located orthogonally to the edge, in the pattern 
shown in figure 4.  This prevents multiple parallel edges from 
being produced.  The last term is a background signal to all 
inhibitory neurons.  
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4. Contour Integration Algorithm 

Laidlaw et. al. compared the effectiveness of visualization 
techniques by presenting test subjects with the task of estimating 
where a particle placed in the center of a flow field would exit a 
circle.  Six different flow field visualization methods were 
assessed by comparing the difference between the actual exit 
numerically calculated and the estimation of the exit by the 
human subjects.  Laidlaw’s experiment was carried out on 
humans, but in our work we apply this evaluation technique to our 
model of the human visual system and use a contour integration 
algorithm to estimate path of the particle. 

We use the term contour integration to describe the higher level 
process that must exist for people to judge an advection pathway.  
We call it contour integration because the task seems to require 
the user to make a series of judgments, starting at the center, 
whereby the path of a particle dropped in the center is integrated 
in a stepwise pattern to the edge of the field. 

Perception is a combination of top-down and bottom up 
processes.  Bottom up processes are driven by information on the 
retina and are what is simulated by Li’s model.  Top down 
processes are much more varied and are driven in the brain by 
activation from regions in the frontal and temporal cortex that are 
known to be involved in the control of pattern identification and 
attention [Lund 2001]. All of the flow visualizations evaluated by 
Laidlaw et al, except for LIC, contain symbolic information 
regarding the direction of flow along the contour elements (e.g. an 
arrowhead). In a perpetual/cognitive process this would be 
regarded as a top-down influence.  

Contour integration, and hence path finding, is a combination of 
top down and bottom up processes.  Broadly speaking, top down 
processes reflect task demands and the bottom up processes 
reflect environmental information. It our case the bottom up 
information comes from the different types of visualization while 
the top down information is an attempt to model the cognitive 
process of advection pathway tracing. 
 
Algorithm 1: Contour Integration Algorithm 
CurrentHex = center hex 
CurrentDirection = up 
Contour = {CurrentHex} 
while ( CurrentHex is inside circle ) do 

successors = all grid hexes less than 2 away from 
      currentHex and no more than 30 degrees from 
      the direction of the CurrentDirection. 
foreach successor in successors do 

successor score = currentHex edge value 
+ successor edge value, for the  
orientation connecting the two hexes 

end for 
CurrentHex = successor with greatest score 
CurrentDirection = the orientation connecting the  
     new CurrentHex with the previous 
     CurrentHex. 
add CurrentHex to the contour 

end while 

Contour integration was modeled using a greedy pathfinding 
algorithm (Algorithm 1).  The algorithm maintains a context that 
contains a current position and direction.  Initially, the position is 
the center, and the direction set to upward.  This context models 
the higher-order, top-down influence on the algorithm that results 
from knowledge of the meaning of the center dot and the 

directionality indicated by the symbolic information contained by 
the visualization glyphs.  The algorithm traces the contour by 
repeatedly moving the position to a nearby grid hex, in the 
approximate direction of the contour, until the position leaves the 
circle.  The nearby hex is chosen to maximize the edge weights in 
the source and destination hexes, oriented in the direction 
connecting the two hexes. 

5. Results of Contour Enhancement and 
Integration 

Figures 5, 6, 7, 8, 9, and 10 show how the algorithm performed 
with a sample of the original images used by Laidlaw et al in their 
prior study.  For greater clarity we only show a section of each 
image although the application of the algorithm to the whole 
image was computed. In each example the original visualization is 
shown in the lower left.  The top center panel shows the effect of 
the Li algorithm on the image following 3 feedback iterations.  
The small bars show how strongly each neuron responds, with 
redder meaning stronger.  The lower right panel shows the path 
traced out by the contour integration algorithm. 

Regular Small Arrows: In the image containing small arrows on a 
regular grid, we see the bias of the underlying grid upon the 
chosen path.  The chosen path simply travels vertically through 
the arrows on the starting column.  One criticism of the regular 
grid as a flow visualization technique is the tendency for the 
underlying grid to become apparent in the visualization, resulting 
in strong biases in the horizontal, vertical, and 45 degree 
directions.  Here, we see this effect in the contour pathway.  We 
can also see that the responsive fields respond more strongly at 
the heads of the arrows, thus the contour traces up the right side of 
the column where the arrowheads are on the right side, and then 
the contour switches to the left side when the horizontal 
component of the flow is to the left, resulting in the arrowheads 
on the left side. 

Irregular Small Arrows: While the contour is in the correct 
general path, it is strongly influenced by the placement of the 
arrows within the image.  The arrows excite a small number of 
receptive fields, often one or two.  This leaves most of the 
receptive fields without strong excitation.  This results in the 
tendency for the algorithm to be influenced by arrow placement to 
become even more pronounced. 

Irregular Triangles: For the visualization produced using 
irregular triangles, the path extracted is strongly influenced by the 
random arrangement of the triangles.  Humans also have a 
tendency to allow such an arrangement to bias their estimation of 
flow direction, though it can be argued that they can use higher-
level reasoning to correct this. 

LIC: We can see that the LIC image results in the most uniform 
neural excitation of all the visualizations.  Nevertheless, the 
algorithm extracts a plausible contour from the neural grid.  Like 
the other visualizations with a random element to them, the 
contour is influenced by the placement of dark patches within the 
image.  While LIC does not give any visual cues indicating the 
directionality of the flow, there are often other sources for 
determining this information.  In this case, it can be assumed by 
comparing to the other visualizations.  Thus, we continued to 
initialize algorithm’s directionality in the upward direction, 
despite the lack of direct visual cues in this visualization. 
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Figure 5:  Regular grid of arrows. 

 
Figure 6:  A jittered arrow grid. 

 
Figure 7:  Oriented triangles (Kirby et al, 1999) 

 

Regular Large Curved Arrows: This image contains large, curved 
arrows arranged on a regular grid.  As with the regular small 
arrows, the underlying grid causes a bias in the horizontal, 
vertical, and 45 degree directions.  The contour produced on this 
image is strongly influenced by this bias.  Initially, the contour 
follows the regular grid vertically.  When it reaches a point where 
the arrows are oriented at 45 degrees, it departs from the grid and 
follows the flow until it exits the circle.   

Head-to-Tail Arrows: The image with arrows arranged head-to-
tail produced the best contour. As Ware argued theory predicts 
that head to tail placement of arrows should produce best results. 
The model supports this. The evenly spaced streamlines created 
by the Jobard and Lefer algorithm provided the best stimulus for 
coherent chains of excited neurons to develop. The contour 
simply followed a nearby path of arrows until it exited the circle.  
One issue, however, is that since the center point is in actually 
slightly to the side of an arrow path, we know the advection path 
will remain to the side of the arrow path.  Humans correct their 
advection direction estimates based on this knowledge to increase 
the accuracy of their estimations.  To model this would likely 
require modeling higher level reasoning centers of the brain, 
which is out of the scope of this work, but an interesting problem 
nonetheless. 
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Figure 8:  LIC (Cabral and Leedom, 1993) 

 
Figure. 9:  Curved arrows on a grid. (Turk and Banks, 1996) 

 
Figure 10:  Head-to-tail arrows (Turk and Banks, 1996) 

6. Discussion 

It is encouraging that our results agree qualitatively with Laidaw 
et al’s. The head to tail placement using Turk and Banks 
algorithm (Figure 10) gave the best result whereas the regular grid 
of little arrows and LIC methods gave the worst (Figures 5 and 8).  
The model provides strong support for use of head-to-tail 
placement of arrows in 2D flow visualization. This Turk and 
Banks style of visualization produced clear chains of mutually 
reinforcing neurons along the flow path and this representation 
should therefore make the flow pathway easy to find. 

The model we applied is a considerable simplification over what 
actually occurs.  It only uses the simplest model of the simplest 
orientation sensitive neurons, and fails to include cortical 
magnification, among other shortcomings. Real cortical receptive 
fields are not arranged in a rigid hexagonal grid as they are in Li’s 
model.  Furthermore, the neurons of V1 respond to many 
frequencies, however our model only uses one in its present form.  
In addition, besides the so-called ‘simple’ cells modeled by Li, 
other neurons in V1 and V2 called complex and hypercomplex 
cells all have important functions. For example, end-stopped cell 
respond best to a contour that terminates in the receptive field and 
understanding these may be important in showing how the 
direction of flow along a contour can be unambiguously shown. 
Moreover, visual information is processed through several stages 
following the primary cortex, including V3, V4 and the IT cortex. 
Each of these appears to abstract more complex, less localized 
patterns.  Researchers are far from having sufficient information 
to model the operations of these stages all of which may have a 
role in tracing flow pathlines. 
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The problem of simulating perception at a higher more cognitive 
level is even more challenging. We chose not to use existing 
contour integration models (e.g. Elder et al. [2003]) because these 
are general purpose edge finding algorithms and do not take into 
account the specific task of finding advection pathways.  It is 
likely that people adopt different perceptual strategies depending 
on the visualization. For example, with a regular arrow grid 
people are likely to rely less on the contour information available 
in the display, which is weak, and more on strategies, such as 
looking ahead from a particular arrow, mentally interpolating the 
flow direction at the look-ahead point and repeating to the edge of 
the field. Conversely, In the case of the head-to-tail arrows a 
simpler contour following finding strategy will be more 
successful. 

A complete and accurate simulation of the perceptual process for 
even what seems to be a quite simple task is probably decades 
away. Nevertheless, we believe that even simple first order 
simulations of the kind that we report here can provide important 
insights into the reasons why certain methods are better than 
others. Despite the many deficiencies we have outlined having 
such a model is still better than having no model. By 
implementing algorithms loose arguments can be carefully 
examined and properly tested.  

The application of a neural simulation of contour perception has 
the potential to be applied to many visual applications where the 
perception of form and pattern is critical.   We believe that the 
approach can be fruitfully applied to other application domains 
including map design and graph layout.  In both of these instances 
it has frequently been observed that “Gestalt” theories of 
perception may yield insights to the problem (e.g. Ware 2004). 
However, this observation has never been developed into a 
rigorous mathematical model.  The theory of contour integration 
we have outlined here could, with minor modifications, be used as 
a model of the Gestalt concept of continuity and thereby be 
applied to evaluate design alternatives for many common forms of 
charts and diagrams.   
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