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Abstract—Density-based approaches to extract bathymetry 

from airborne lidar point clouds generally rely on 

histogram/frequency-based disambiguation rules to separate 

noise from signal.  The present work targets the improvement of 

such disambiguation rules by enhancing each pulse with a 

machine learning-based estimate of its p(Bathy) – i.e., its 

probability of truly being bathymetry.  Extreme gradient 

boosting (XGB) is used to assess the strength of bathymetric 

signal in pulse return metadata.  Because lidar point clouds can 

be highly imbalanced between Bathymetry and NotBathymetry, 

three strategies for mitigating the effects of imbalanced samples 

were examined.  Impacts of an imbalanced lidar point cloud were 

successfully mitigated by: 

 Applying an “optimal” decision threshold (ODT) that 

equalizes accuracy for Bathymetry and NotBathymetry to 

p(Bathy) rather than using a conventional probability 

decision threshold (PDT) of 0.50, and 

 Using proportional class weighting to fit the XGB model. 

However, decomposing a confusion matrix by iteratively 

discarding misclassified points and re-fitting an XGB model was 

not successful in improving the strength or detectability of the 

bathymetric signal in the metadata.  The same was true for 

iteratively discarding correctly classified points. 

The bathymetric signal in the metadata was found to be 

sufficiently strong to explore the operational incorporation of 

results into the disambiguation rules of density-based 

bathymertric extraction methods. 

Keywords—extreme gradient boosting, imbalanced samples, 

bathymetric lidar, confusion matrix decomposition, probability 

decision threshold. 

I. INTRODUCTION 

Airborne lidar (“light detection and ranging”) has been an 
established methodology for mapping shallow water 
bathymetry (less than +15m depth) since at least 2005 [1].  
Well-established procedures for acquisition of airborne lidar 
including a recognized data standard [2] exist and are 
constantly being improved.  Similarly, methods and workflows 

for separating noise from signal in lidar point clouds for 
terrestrial and aquatic features have also been described and 
implemented operationally (see, for example, [3]) and are 
similarly constantly evolving. 

Lidar is an active sensor that produces a point cloud from 
returns of laser pulses.  The fundamental difficulty in analyzing 
or processing lidar data is separating the information desired 
from the noise.  In a terrestrial context, this may mean 
producing a digital elevation model (DEM) or describing 
vegetative cover by separating pulse returns that strike the 
ground from those reflected from vegetation.  In bathymetric 
mapping the primary interest is being able to separate the pulse 
returns that are reflected from the ocean floor from those 
reflected from the ocean surface, water column, or other non-
bathymetric feature. 

A strategy that has been successfully operationalized for 
bathymetric mapping is based on the “concentration” or 
“density” of pulse returns.  One example for terrestrial and 
aquatic mapping is the random consensus filter described by 
[4] that is based on the random sample consensus (RANSAC) 
approach described by [5].  A more recent example is specific 
to bathymetry and uses localized uncertainty.  CUBE 
(Combined Uncertainty and Bathymetry Estimator) [6] was 
originally developed for processing acoustic bathymetric data 
by estimating the depth for each node of a grid.  Since recently 
being modified to employ a variable-sized grid the new 
algorithm is known as CHRT (CUBE with Hierarchical 
Resolution Techniques) [7]. 

The density-based approaches cited operate essentially by 
establishing locations of interest (on a spatial grid or other 
spatial sampling framework), and tabulating pulse return depth 
frequency histograms for pulses considered to be part of the 
neighborhood each location.  Because the histograms are 
generally multi-modal, disambiguation rules are applied to 
each points histogram to select the mode that is most likely to 
be the true depth for each location. 

Airborne bathymetric lidar data, however, comprise more 
information than the depth associated with each pulse return.  
Additionally, information is collected about each return; herein 
we term these data (pulse return) “metadata.”  The metadata for 

mailto:klowell@ccom.unh.edu


each pulse return includes information such as scan direction 
(i.e., fore or aft), return number, and intensity.  Furthermore, 
other metadata can be derived from a lidar point cloud as will 
be discussed and demonstrated.   

The central hypothesis of this article is that lidar pulse 
metadata contain a sufficiently strong signal to distinguish 
bathymetric returns from noise.  If this is true, then models 
can be developed that assign to each pulse return an estimated 
probability – p(Bathy) -- of a return being bathymetry.  This 
p(Bathy) can then be used to improve the disambiguation rules 
employed in algorithms like CHRT and RANSAC thereby 
improving their accuracies and decreasing the amount of 
manual editing required. 

Measuring the strength of the bathymetric signal in the 
pulse metadata presents potential difficulties since there is 
currently little understanding how some pulse metadata and 
associated interactions relate to bathymetry.  Hence using 
existing knowledge to formulate a process-based or empirical 
model to measure the strength of the pulse 
metadata/bathymetry relationship is not a viable strategy for 
model development. 

Machine learning1 (ML) is a collective suite of analytical 
techniques that can be used to find hidden or unknown 
relationships in data.  Whereas an a priori bathymetry/pulse 
metadata model structure cannot be formulated, ML has the 
potential to “automatically” develop models that can measure 
the strength of the pulse metadata-bathymetry signal. 

A potential difficulty, however, is that lidar point clouds 
often contain relatively few returns that are truly bathymetry.  
That is, airborne lidar data sets can be highly imbalanced – 
particularly as one approaches the depth limit of the lidar 
sensor.  And because most models are optimized relative to a 
global cost function, model goodness-of-fit metrics may 
indicate a strong relationship between bathymetry and 
metadata even when the model has little practical utility.  For 
airborne bathymetric lidar, clearly it is preferable to develop 
models that are “optimal” for bathymetry rather than being 
globally optimal. 

In this article, we examine the strength of the bathymetric 
signal in lidar metadata using ML with a view to tagging each 
pulse return with a precise p(Bathy) estimate.  This is done 
while also considering that the bathymetric signal may be 
masked due to point cloud imbalance; we consider lidar point 
clouds to be imbalanced if either Bathymetry 2  or 
NotBathymetry pulse returns comprise a relatively large or 
small proportion of the total.  We first fit ML models to 
estimate p(Bathy) based on a suite of pulse metadata variables 
and examine a number of global and bathymetry-focussed 
goodness-of-fit metrics.  We then explore three options for 

                                                           
1 We use “machine learning” as a blanket term that includes 

“deep learning” and “artificial intelligence” techniques that 

are sometimes considered to be distinct from “machine 

learning” techniques.  We make no such distinction. 
2 We adopt the convention that Bathymetry is italicized when 

referring to a data class, and that no space is employed in 

NotBathymetry. 

being able to measure the strength of the bathymetric signal in 
the lidar point cloud and to improve the performance of the ML 
models. 

II. STUDY AREA, DATA, AND PULSE METADATA 

Four 500m-by-500m tiles of lidar data located within about 
12 km of the Key West (Florida, USA) airport were employed 
as a testbed.  These data had been acquired the National 
Oceanographic and Atmospheric Administration (NOAA) in 
April 2016.  Data were collected over multiple flightpaths and 
then subsetted to individual tiles – i.e., each tile contained data 
from multiple flightpaths.  Data were captured using a 
RIEGL™ VQ-880G circular scanning lidar with a 400 field of 
view (200 on either side of the airplane) from a nominal 
altitude of 400m above mean sea level and a nominal speed of 
200 km/h.  NOAA post-processing classified each return as 
Bathymetry or NotBathymetry.  Tiles represent a variety of 
depths and pulse return densities (Table I).  Most importantly, 
they also include a range of sample imbalances with both 
“excessive” Bathymetry (Tile 27285n) and “excessive” 
NotBathymetry (Tile 27075n) in evidence. 

TABLE I.  DESCRIPTIVE INFROMATION ABOUT DATA TILES. 

Tile 
Identifiera 

(Name) 

Depth 
Range 

(m) 

Return density 
(returns/m2) 

Bathymetry 
(%) 

Number 
of Points 
(millions) 

27195n 

(“Shallow”) 
-1 to 1  27.6 6.5 7 

27285n 
(“Deep”) 

-6 to -3  30.4 76.2 8 

27080n 

(“Deeper”) 
-11 to -7  14.8 21.2 4 

27075n 
(“Deepest”) 

-16 to -
13  

13.3 0.4 1 

a. The northern UTM coordinate of the (northern) limit of a tile divided by 100. 

Three types of return metadata were employed; we term 
these return-based, SBET, and lidar edge (Table II). 

Most return-based metadata are part of the LAS data 
standard [2] and are produced during data acquisition.  
However, three -- azim_2_pls, pls_frm_heading, and inciangle 
-- had to be derived by analysis of a combination of the 
geographic coordinates of each pulse return and the SBET 
flightpath data that are described in the following paragraph.  
Return-based metadata describe characteristics of both a pulse 
and its return(s), but also are hypothesized to describe 
environmental characteristics at the moment of data acquisition 
that may impact the information content of pulse returns.  For 
example, the variables azim_2_pls, inciangle, and scan_direct 
may detect a wind that is sufficiently strong to impact ocean 
surface characteristics. 

SBET (“Smoothed Best Estimate of Trajectory”) data 
describe the flightpath of the plane.  They are provided with 
the data acquired by the Applanix Corporation and are based 
on a tightly coupled extended Kalman filter.  In addition to 
providing the location (x, y, z) and yaw, pitch, and roll of the 
airplane every 0.005 seconds, SBET data include standard 
deviations of the x, y, z, yaw, pitch, and roll values.  These are 
associated with individual pulses based on time of acquisition.  
The variables stdXYZ and stdYwPtRl are measures of airplane 



stability and may be indicative of ocean surface characteristics 
that impact the bathymetric information content of individual 
pulse returns. 

TABLE II.  METADATA TYPE, NAME, AND DESCRIPTION. 

Type Namea Definition (range) 

Return-

based 

Numreturns Number of returns from pulse (1 to 6) 

Return_no Return number (1 to 6) 

Single 1 if numreturns=1; else 0 

First_of_many 1 if numreturns > 1 and single =0; else 0 

Last 1 if numreturns = return_no; else 0 

Rel_return_num 
(return_no-1)/(numreturns-1); 0 for 

single=1 (0 to 1.0) 

Azim_2_pls Pulse azimuth (0 to 360) 

Pls_frm_heading 
Difference from airplane heading and 

pulse direction (0 to 90) 

Inciangle 
Nominal scanning angle of 200 corrected 

for yaw pitch and roll 

Scan_direct 
1 if in front of the airplane (fore); -1 if aft 

(-1 to 1) 

SBET 

StdXYZ 
Sum of standard deviations for x, y, and z 

locations (0.022 to 0.030) 

StdYwPtRl 
Sum of standard deviations for yaw, pitch, 

and roll (0.027 to 0.034) 

Lidar-edge 

Absdevia 

Absolute value of orthogonal distance ) in 

m) between point cloud edge and “corner-
to-corner” flightpath (0.001 to 8.3) 

Maxabsdev 
Maximum of absdevia for each flightpath 

on a tile (0.6 to 8.3) 

a. Here and throughout the text we adopt the convention that variable names are italicized. 

Lidar-edge variables are derived from the crenularity of the 
edge of the point cloud.  Like SBET variables, they have the 
potential to describe wind and surface characteristics at the 
time of data acquisition.  These are derived by locating the 
“corner-to-corner” flightpath that describes the straightest 
possible path from one end of the lidar point cloud to the other 
(Fig. 1A).  Edge points along the lidar point cloud are then 
identified (Fig. 1B), and the orthogonal distance of each from 
the corner-to-corner flightpath determined (Fig. 1C).  Values 
for absdevia are associated with individual pulses based on 
time of acquisition.  A single value for maxabsdevia is 
associated with all pulse returns for a given flightpath. 

Fig. 1. Example showing calculation of absdevia. Gray area/points are lidar 

pulse returns.  The dotted box in 1A and 1B is the area of enlargement of 1C.  
A. Corner-to-corner of flightpath (black).  B. Lidar point cloud edge points 

(blue).  C. Orthogonal distance from edgepoint to corner-to-corner flightpath. 

 

 

 

 

 

 

 

III. METHODS/APPROACH 

Regularized logistic regression, multi-layer perceptron 
neural networks, and regularized extreme gradient boosting 

(XGB) were explored for ML model development.  NOAA’s 
Bathymetry/NotBathymetry classification was used as the 
dependent variable and the metadata variables described in 
Table 2 and selected interactions among them were used as 
independent variables.  Because the best-performing models 
were produced by XGB, for brevity, results for the other two 
ML methods are not shown. 

Regularized XGB is a tree-based approach.  Numerous 
separate “shallow/simplistic” decision trees are iteratively 
“grown” with each successive tree giving greater weight to 
those pulse returns having the greatest error.  Once 
convergence is achieved – conceptually the point at which 
additional trees do not change the cost function value – all trees 
grown are combined into a single model using a weighted 
majority vote.  That is, trees that provide the greatest 
improvement to the cost function are weighted most heavily.  
Regularization drives the impact of some variables to zero (0). 

To assess global bathymetric signal strength in the 
metadata, the metrics employed are R2 and global accuracy.  
Because a conventional R2 based on sums of squares is 
inappropriate for a categorical classification model, 
McFadden’s pseudo R2 [8] is employed instead.   

To better assess the impacts of sample imbalance and the 
ability to correctly classify returns for the Bathymetry and 
NotBathymetry classes separately, the true positive and true 
negative rate (TPR and TNR, respectively) expressed as a 
percentage are employed.   

To explain and demonstrate results for all metrics, we 
employ Tile 27075n – the tile with the greatest sample 
imbalance – as an example.   

Figure 2 is the confusion matrix resulting from fitting an 
XGB model for Tile 27075n.  The R2 for this model (not 
shown in Fig. 2) is 0.58 which suggests a reasonable 
bathymetry signal strength given that the total number of 
observations is approximately one million (n=983300).  Global 
accuracy is high (99.6%) but this is due largely to the extreme 
class imbalance – i.e., only 0.4% of the pulse returns are 
Bathymetry.  Essentially, the XGB fitting procedure “learned” 
that classifying almost all (979350/983090 = 99.99%) pulse 
returns as NotBathymetry optimizes the global cost function. 

Fig. 2. Confusion matrix and relevant statistics for an XGB model for Tile 

2707500n. 

 

 

 

 

 

 

 

 

 

 

 



Though analytically sensible, this produces a classification 
that is of little value for our purposes.  The TPR for Bathymetry 
returns makes this apparent.  The TPR answers the question 
“What percent of Bathymetry returns were classified as 
Bathymetry?”  For this model, the TPR is only 4% again 
showing the problem of optimizing a global cost function for 
an imbalanced sample – particularly when it is the minority 
class that is of interest.  In contrast, the TNR is virtually 100% 
again demonstrating that the XGB optimized the global cost 
function by classifying all pulses as the majority class 
NotBathymetry at the cost of incorrectly classifying almost all 
of the minority Bathymetry class.  And, of course, it is the 
minority Bathymetry class that is of greatest interest in 
bathymetric mapping.  Hence despite the high global accuracy, 
the large difference between the TPR and the TNR is indicative 
of a large sample imbalance. 

Three strategies that were explored to overcome the effects 
of such a sample imbalance.  We refer to the first as “Optimum 
Decision Threshold” (ODT). 

A. Optimum Decision Threshold 

XGB models (as well as the other two ML techniques 
examined) do not in reality classify each pulse return as 
Bathymetry or NotBathymetry.  In fact, the XGB model 
estimates p(Bathy) -- the probability that each pulse return is 
Bathymetry.  The confusion matrix in Figure 2 is subsequently 
produced by assigning a pulse return to Bathymetry if its 
p(Bathy) is above a certain probability decision threshold 
(PDT) – conventionally 0.50 for a binary classification.  
However, if a sample is imbalanced, the signal of the minority 
class may be so weak that it makes more sense to use a 
different PDT.  Recognising that effectively the TNR was 
maximized at the expense of the TPR for Tile 27075n, we 
formulated the ODT as being the PDT at which the TNR and 
TPR are equal. 

Fig. 3. A. Receiver operating characteristics (ROC) curve. B. Probability 

decision threshold where TPR (blue) is equal to the TNR (red).  See text for 

explanation of dotted lines and arrows. 

 

 

 

 

 

 

 

 

Figure 3A shows a representative receiver operating 
characteristics (ROC) curve – a commonly used metric for 
evaluating the quality of a binary classification (see, for 
example, [9]).  A ROC curve plots the TPR against the False 
Positive Rate (FPR) over the full range (0 to 1.0) of PDTs.  The 
straight diagonal line represents a random classification; a 
perfect classification results in a ROC curve with a vertical line 
located at 0.0 on the x/FPR axis and a horizontal line located at 

100 on the y/TPR axis.  In this example, the FPR and the TPR 
for the 0.50 PDT are represented by the orange dotted line.  
This produces a FPR of 10% (i.e., a TNR of 90%) and a TPR 
of 50%.  The inflection point on the ROC curve indicated by 
the purple arrow is the point at which the TNR and TPR are 
equal.  The PDT associated with this point – the ODT -- is 
found by plotting the TPR and TNR over the range of possible 
PDTs (0 to 1.0) (Fig. 3B).  In this example, the ODT, is about 
0.30 resulting in a TPR and TNR of about 80% accuracy. 

For Tile 27075n the ODT was 0.02.  That the ODT is small 
and very different from the conventional PDT of 0.50 
reinforces the idea that because of the extreme 
Bathymetry/NotBathymetry imbalance, the bathymetric signal 
is weak.  In fact, it is so weak that any pulse return with a 
p(Bathy) above 0.02 may in reality be Bathymetry.  Confusion 
matrix and relevant statistics for the XGB model for Tile 
27075n using the Optimum Decision Threshold (0.02). 

Fig. 4. Confusion matrix and relevant statistics for the XGB model for Tile 

2707500 using the Optimum Decision Threshold (0.02). 

 

 

 

 

 

 

 

 

 

 

Figure 4 presents the confusion matrix and metrics 
resulting from an ODT of 0.02 for Tile 27075n.  While the 
ODT has decreased the global accuracy compared to the PDT 
of 0.50 (Fig. 2), more importantly, it has improved the TPR 
considerably.  Trade offs for this improvement that are of little 
concern in bathymetric mapping is that the TNR and the global 
accuracy have decreased slightly.  Potentially of greater 
concern is that to achieve a TPR of 96.6% using the ODT, 
33000 pulse returns that are NotBathymetry have been 
classified as Bathymetry.  If the XGB model were to be 
employed as a stand-alone classification, this would mean that 
the User’s Accuracy [10] for Bathymetry would be only 10% -- 
i.e., only 3770 of the 36770 pulse returns identified as 
Bathymetry truly are Bathymetry.  Thus a bathymetric chart 
produced from these 36770 pulse returns may be of dubious 
quality.  However, in the alternative context of this work where 
results are intended to enhance an existing bathymetric 
extraction methodology, the use of the ODT demonstrates that 
despite the Bathymetry/NotBathymetry sampling imbalance, 
the XGB model is clearly able to detect the Bathymetry signal. 

   

 



B. Class Weighting/Resampling 

The second general approach explored for overcoming 
sample imbalance and understanding bathymetric signal 
strength comprises two methods: resampling and weighting.  
The fundamental strategy of both is to overcome the class 
imbalance by “emphasizing” the minority class (or class of 
interest in the model fitting process). 

In resampling, new observations representing the minority 
class are created (i.e., “oversampling”) using the characteristics 
of the minority class observations, and/or observations from 
the majority class are removed (“undersampling”) to create a 
new more balanced data set on which a ML model is fit.  
ADASYN (Adaptive Synthetic Sampling) [11] and SMOTE 
(Synthetic Minority Oversampling Technique) [12] are among 
the resampling strategies that have been described; both were 
explored in this study. 

 In weighting, prediction errors associated with the minority 
class observations are given a greater weight than those of the 
majority class.  This complements the general XGB model-
fitting approach that prioritizes observations having the 
greatest prediction error.  We explored proportional weighting 
for the minority class – whether Bathymetry (e.g., Tile 27075) 
or NotBathymetry (Tile 27285).  In proportional weighting, 
each observation is given a weight based on whether it is 
Bathymetry or NotBathymetry: 

 WBathy or NotBathy  = (T/PBathy or NotBathy)-1)/2 

where W is the weight for the Bathymetry or NotBathymetry 
class, T is the total number of observations, and P is the 
number of observations of the minority or majority class.  This 
proportional weighting has the desirable property that in a 
balanced binary data set, observations from both classes are 
given equal weight. 

Proportional weighting provided better results than ADASYN 
and SMOTE.  Figure 5 shows the confusion matrix for Tile 
27075n produced by a proportionally weighted XGB model 
with the ODT applied.  Weighting has clearly improved the 
XGB model with the TPR and TNR increasing (compare with 
Fig. 4).  Most notably, the number of false positives has fallen 
from 33000 to 26320 – a reduction of 20%.   

Fig. 5. Confusion matrix and relevant statistics for the base XGB model for 

Tile 2707500 using the Optimum Decision Threshold (0.66). 

 

 

 

 

 

 

 

 

 

It is also of interest that the ODT for the weighted model is 
0.66.  That this is closer to the conventional PDT of 0.50 
demonstrates that proportional weighting is a useful strategy 
for improving the bathymetric signal for Tile 27075n. 

C. Confusion Matrix Decomposition 

The final approach to strengthening and detecting the 
bathymetric signal in ML models is iterative resampling of the 
confusion matrix.  In a confusion matrix, the correctly 
classified diagonal elements represent the observations with the 
strongest signal for their respective classes, and the incorrectly 
classified off-diagonal elements represent those with the 
weakest signals.   

The idea behind iterative confusion matrix decomposition 
is that XGB models fit only on observations having the 
strongest or weakest signals will better “distill” the bathymetric 
signal for imbalanced samples, particularly since the majority 
class will initially have the most observations discarded.  Such 
models can then be applied to all observations and the process 
repeated until a “best model” is produced.  In essence, it is 
hoped that at each iteration a large number of highly certain or 
uncertain majority class observations will be removed thus 
increasing the proportion of minority class observations in the 
data set produced and resulting in XGB models fitted from the 
“essence” of the bathymetric signal.  This was explored with a 
maximum of five iterations employed. 

Figure 6 shows the outcome of iteratively removing false 
positives (FPs) and false negatives (FNs) for Tile 27075n.  If 
this decomposition strategy is successful, the FPR (which is 
identical to the FNR because of the application of the ODT to 
the p(Bathy) values) (Fig. 6A) would decrease with each 
iteration and the TPR (identical to the TNR) (Fig. 6B) would 
increase.  This did not occur for Tile 27075n. 

Fig. 6. Accuracy rates for successive model iterations following removal of 

false positives (FPs) and False Negatives (FNs). A. False Positive (& False 

Negative) Rate. B. True Positive (& True Negative) Rate for Tile 27075n 
using the Optimum Decision Threshold (0.02). 

 

 

 

 

 

 

 

 

IV. RESULTS AND DISCUSSION 

Results for Tile 27075n have been presented as a means of 
explaining the analytical methodology.  For robust evaluation 
of methods, however, the range of characteristics – depth, level 
of sampling imbalance, etc. – across all four tiles must be 
examined. 

 

 



Recall that the overall goal of this work is to evaluate the 
strength of the bathymetric signal in the metadata variables 
considered (Table II).  Furthermore, in recognition of the 
sampling imbalance in lidar point clouds, a further goal is to 
find ways of mitigating the impacts of the sampling imbalance 
thereby enabling better detection of the bathymetric signal to 
produce more precise estimates of p(Bathy). 

The R2 (Fig. 7A) and the global accuracy (Fig. 7B) for the 
XGB models suggest that the signal strength for bathymetry in 
the metadata is reasonably strong3.  Nonetheless, the danger of 
relying on such global statistics has been demonstrated and 
discussed.  In particular note that the global accuracy is highest 
for the Shallow (27195n) and the Deepest (27075n) tiles that 
also are the most imbalanced.  The remaining two tiles are 
approximately equally 80/20 imbalanced with NotBathymetry 
comprising 20% of the Deep tile and Bathymetry comprising 
20% of the Deeper tile. 

Fig. 7. (Pseudo) R2 values (left) and global accuracy (right) for XGB models.  

R2 values for the Unweighted model that employs the ODT are the same as 
for the Unweighted model that employs a conventional probability decision 

threshold of 0.50. 

 

 

 

 

 

 

 

Also apparent from Figure 7 is that these global measures 
suggest that an unweighted XGB model that employs a 
conventional PDT of 0.50 performs best.  This is 
understandable given that the cost function employed in XGB 
model fitting targets global optimization based on an implicit 
assumption that all/both classes are equally important.  Hence 
of greater interest than global metrics is how the XGB models 
perform for Bathymetry. 

Figure 8 presents class-specific information for each tile 
and model type.  This demonstrates the ability to mitigate class 
imbalance of both the use of the ODT, and fitting weighted 
XGB models.  For TNR and FPR (Figs. 8A and 8C), the 
unweighted models with a conventional 0.50 PDT perform 
better than or as well as the other models and the use of the 
ODT.  However, the metrics of TNR and FPR are of least 
interest given that they address the classification accuracy of 
NotBathymetry points.  Of greater interest are FNR and TPR 
(Figs. 8B and 8D) that reflect classification accuracy of 
Bathymetry points.  FNR and TPR demonstrate that the use of 

                                                           
3  McFadden’s pseudo R2 value for classificatory models 

cannot be tested for statistical significance.  A “reasonably 

strong” relationship is being inferred from the authors’ 

experience with the conventional R2 metric in consideration of 

the number of observations and the pseudo R2 values. 

the ODT considerably improves detection of Bathymetry, and 
that weighting may provide a further slight improvement. 

Though promising, there are practical implications of these 
results.  A positive outcome is that weighted models and the 
use of the ODT provided better results than unweighted models 
and a 0.50 PDT for Bathymetry-minority tiles, but performed 
similarly for the Bathymetry-majority tile “Deeper”/27285n.  
This means that it should be possible to operationalize results 
with little concern about the level or direction of 
Bathymetry/NotBathymetry imbalance. 

Fig. 8. NotBathymetry (“Negatives”) and Bathymetry (“Positives”) accuracy 

rates for XGB models. 

 

 

 

 

 

 

 

 

 

 

 

A potentially concerning outcome, however, is the higher 
FPR resulting from the use of the ODT for all tiles except the 
Bathymetry-majority “Deep” tile (27285n).  Though the FPRs 
are indicative of classification accuracy for NotBathymetry 
pulse returns, high FPRs are associated with low User’s 
Accuracy with both indicating the percentage of pulse returns 
incorrectly identified as Bathymetry.  The accuracy of maps 
constructed from bathymetric classifications having a high 
FPR/low User’s Accuracy may be low. 

What is considered a “high” FPR or “low” User’s Accuracy 
is dependent, of course, on the ultimate use of the data.  The 
present work targets the improvement of an existing 
bathymetric classification method as distinct from the creation 
of a stand-alone system.  This will be discussed further in the 
final section.  For now, however, we suggest that the FPRs 
associated with the use of the ODT are sufficiently low for 
operationalization of this approach, particularly given the 
considerable improvements in the FNR and TPRs compared to 
the use of the unweighted model and the conventional PDT. 

The final method examined to strengthen the bathymetric 
signal was confusion matrix decomposition; for this analysis, 
the ODT was applied at each iteration.  Figure 9 shows the 
FPR and FNR (which are equal when the ODT is applied) and 
TPR and TNR (also equal when the ODT is applied) for the 
iterative removal of TPs and TNs; Figure 10 presents the same 
information for the iterative removal of FPs and FNs.  Note 
that the repetitive removal of TPs and TNs (Fig. 9) removes so 

 

 



many pulse returns s that it becomes impossible to fit a model 
beyond four iterations. 

If confusion matrix decomposition is a successful strategy 
for increasing bathymetric signal, the FPR/FNR will decrease 
with each iteration and the TPR/TNR will increase.  This did 
not occur for either decomposition considered.  In particular, 
the repeated removal of correctly classified pulse returns (TNs 
and TPs) (Fig. 9) led to poorer accuracies for all tiles.  Thus the 
elimination of the most certain pulse returns did not allow the 
bathymetric signal among the less certain pulse returns to be 
better manifested while also maintaining accuracy for the most 
certain. 

Fig. 9. Accuracy rates for repetitive removal of true positives and true 

negatives. A. FPR & FNR. B. TPR & TNR. 

 

 

 

 

 

 

Fig. 10 Accuracy rates for repetitive removal of false positives and false 

negatives. A. FPR & FNR. B. TPR & TNR. 

 

 

 

 

 

In contrast, the repeated removal of the incorrectly 
classified pulse returns – the FNs and FPs – has little impact on 
accuracy rates (Fig. 10).  This is consistent with the findings 
associated with the removal of TPs and TNs.  That is, 
unsurprisingly in retrospect, the bathymetric signal is most 
evident in the correctly classified pulse returns. 

V. CONCLUSIONS AND OPERATIONAL CONTEXT 

The scientific findings of this work are that: 

 The bathymetric signal in the lidar pulse return metadata 
examined is sufficiently strong to warrant further attention. 

 The ability to detect the bathymetric signal can be enhanced 
by mitigating a Bathymetry/NotBathymetry sample 
imbalance using an optimal decision threshold (ODT) that 
equalizes the TPR and the TNR. 

 Proportional weighting during ML model fitting mitigates 
the impacts of an imbalanced sample to a lesser extent, but 
its effect can be combined with the use of an ODT. 

 Confusion matrix decomposition was not found to be a 
viable strategy for mitigating the effects of an imbalanced 
sample. 

From a practical perspective, we reemphasize that the goal of 
this work is to enhance the ability to detect the  bathymetric 
signal in lidar point clouds rather than create a standalone 
method.  The signal enhancement methods examined provide a 
way to better understand the strength of the bathymetric signal 
in pulse return metadata and also serve as a guide for how best 
to incorporate the results into an existing bathymetry extraction 
methodology. 

In practice, an existing methodology such as CHRT [6] or 
RANSAC [5] would be used in its existing form to provide an 
initial Bathymetry/NotBathymetry classification of each lidar 
pulse return.  A ML model would be fitted to this classification 
and used to estimate the probability of each return being 
bathymetry – i.e., p(Bathy).  This information would then be 
used in the disambiguation rules to produce a second 
classification.  Assuming a relatively precise p(Bathy) estimate, 
it is anticipated that the second classification would be more 
accurate than the first.  This process would continue until some 
convergence criterion was achieved.  Though this criterion has 
not yet been defined, a number of alternative metrics are 
available – e.g., the number of lidar pulses changing from 
Bathymetry to NotBathymetry or vice versa at each iteration, or 
the magnitude of change in the TPR from one iteration to the 
next. 

This work presents the initial step in a ML-based 
modification to existing density-based methods for processing 
bathymetric lidar data.  That the bathymetric signal strength 
can be detected in the lidar pulse return metadata – and 
strengthened even for highly imbalanced samples – suggests 
that this approach is reasonably promising. 
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