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Abstract
The paper’s aim is to evaluate mosaicking and analysis of backscatter angular responses as 
adequate techniques to quickly characterize the seafloor adjacent to shipwrecks, extending 
the results of a limited number of grabs. Both techniques have been applied to the case-
study of the VLCC Haven shipwreck site, applying the approach known as Geocoder among 
the available methods. From these results, the development of the research activities will 
attempt to improve techniques and to generalize a methodological approach for the analysis 
of backscatter coming from an area of seafloor with the presence of one or more anthropic 
objects.
Keywords: backscatter, mosaic, multibeam, seafloor classification, shipwreck.

Introduction
An acoustic wave propagating in water meets a series of obstacles either in the water column 
itself (e.g., plankton, air bubbles, fish shoals) or at the boundary interfaces of the medium (seabed 
and surface of the sea). After these collisions, a part of the transmitted energy comes back to the 
sonar system. In the case of a monostatic configuration (transmitter and receiver located at the 
same point), this energy is called backscatter.
As a function of the available system typology and the related purpose of utilization, the 
energetic components of an echo are then either desirable (if the obstacle is the target wanted) 
or not (reverberation jamming the useful signal). In both cases, understanding their properties is 
essential to the functioning of the acoustic system because the echoes need to be received in the 
best conditions, or because they need to be reduced or filtered out as much as possible [Lurton, 
2002].
Depending on the purpose of the user, there are many different types of information that is 
possible to extract from the seafloor acoustic data including physical (i.e. porosity), acoustic 
(i.e. attenuation), geotechnical (i.e. elastic and shear strength moduli) properties, and also the 
general morphology (i.e. relief) at different scales. In the absence of a specific task, a seafloor 
characterization system aimed at extracting information about sediment texture probably is most 
generally useful. In fact, the grain size is important for a number of engineering, environmental, 
and military applications [Mayer, 2011]. For the particular case of the environmental risk 
assessment of shipwrecks, this information is useful for many scopes (i.e. what intervention 
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adopts to minimize the environmental impact, monitoring of oil patches).
The use of the multibeam echosounders (MBES) started in the seventies for bathymetric 
purposes. But only in the last two decades their potentialities for seafloor characterization 
from the reflected energy measurements have emerged [De Moustier, 1991]. In the recent 
years, a certain number of different approaches have been developed to process the MBES 
reflectivity data in order to map discrete geographical areas of the seafloor with the same 
acoustic signature. This process is generally called acoustic segmentation [Preston et al., 
2004].
In the work presented in this paper, we analyze the backscatter coming from the seabed – 
acquired by a MBES – to mainly remotely identify the sediment type of an area adjacent to 
an anthropic object (i.e. the shipwreck of the VLCC Haven). Among the various available 
ones, the approach called Geocoder is applied [Fonseca and Calder, 2007; Fonseca et al., 
2009]. The deducted results are ground-truthed by grabbing.
The expected results of this work are to evaluate the advantages of the Geocoder approach 
to quickly and entirely identify – with the help of a limited number of seafloor samples – the 
sediment type of seafloor areas characterized by the presence of shipwrecks.

Backscatter, roughness and angle of incidence
An acoustic wave meeting an interface between two mediums produces – in function of 
the angle of incidence, the different acoustic impedances (products of sediment density 
and sound speed), and other parameters that are characteristics of each medium – a set of 
waves refracted in the second medium and another set reflected and diffused (scattered) 
in the first one.
The ratio between the acoustic intensity coming back from the target in direction of 
the source and the intensity incident on the same obstacle is called target strength (TS). 
This ratio is related to the physical nature of the obstacle, to the structure (internal and 
external) and to the characteristics of the incident signal (angle and frequency).
During the propagation, the intensity of the transmitted acoustic wave (source level, SL) 
is subject to transmission loss (TL) mainly due to geometrical spreading and medium 
absorption.
In the specific case of the seabed, the target strength mentioned before can be determined 
using the backscattering cross-section which can be decomposed into two parts: 
the dimension of the seabed actually insonified by the acoustic system (As) and the 
corresponding backscattering strength for unit of surface (BSs).
So the level in decibel of the backscattering signal (echo level, EL) can be estimated using 
the monostatic active sonar equation [Kinsler at al., 2000]:

logEL SL TL TS SL TL A B2 2 10 1S S10= - + = - + + 6 @

The interactive process is influenced by the local characteristics of the seabed, which 
– as a function of the frequency and of the angle of the incident acoustic wave – can be 
more or less represented as an ideal plan surface. The irregularities of the surface shed the 
acoustic energy in all the directions (Fig. 1): one part, called coherent, is reflected without 
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deformations – except the transmission loss – in a direction specular to the incidence; 
whereas, the remaining part is scattered all around the space, including the direction of the 
source (backscatter). The relation between the two over mentioned parts – specular and 
scattered – is mainly a function of the surface roughness.

Figure 1 – Reflection (coherent part) and scattering of an acoustic 
wave incident a rough surface.

The roughness of the seabed – depending by the geological (i.e. rock, mud, …) or 
biological (living organism, shell, …) origin – covers a wide scale of sizes (from a 
few millimeters to meters). Furthermore, there are some scales – i.e., ripples of some 
centimeters present on the topography of a sandy seabed – which produce different 
physical processes at the same time. Applying the Fourier transform to the seabed 
relief, it is possible to quantify the energetic distribution in different spatial harmonic 
components, each one defined by a spatial wavelength (Λ) and a wave number (K = 2π 
/ Λ). In the case of a surface of random roughness, the power spectrum (SK) tends to 
decrease with wave number, as larger amplitudes are associated with longer wavelengths 
(Fig. 2). For a given seafloor area, the variance h2 of relief amplitude can be estimated 
by the integral of its spatial spectrum over all components [Lurton, 2002]:

h S dK 2K
2 = 6 @#

Beyond the surface roughness, the scattered part of the acoustic signal is tightly 
influenced by the angle of incidence. For angles of incidence close to the normal, 
the incident wave is reflected by the facets oriented to work as a mirror. This way 
corresponds to the maximum level of measured backscatter intensity and it is called 
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facet reflection. At oblique angles of incidence, the backscatter comes back as a product 
of a series of little contributors (scatterers), variously distributed in function of the local 
roughness. This process occurs in the so-called Bragg scattering domain.
A composition of the two over mentioned regimes (facets reflection and Bragg scattering) 
– in function of the local roughness – can be used to realize a simple theoretical model 
for the scattering of an acoustic wave on a rough surface (Fig. 3).

Figure 2 – Spatial spectrum of a random rough surface through Fourier transform 
of the relief.

Figure 3 – Simple model of backscattering strength response of the seafloor in function 
of the angle of incidence and the microscale roughness.
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Acoustic response of the seabed
The seabed mainly acts as a rough surface which spreads the incident acoustic wave. Among 
the energy scattered, the backscatter represents the source of information used by the acoustic 
seafloor mapping systems.
Part of the incident intensity can penetrate into the seabed due to the little contrast 
of impedance between water and sediments. At the high frequency usually used by 
shallow-water MBES, the bottom penetration is small and the interaction is bounded to 
the surface (reflection from a non-plane interface), with possible complications related 
to the stratified or heterogeneous nature of the sediment.
Heterogeneities can have various natures, but they are mainly represented by air bubbles 
entrapped in the sediment. Their response is usually modeled by a random distribution 
of scatterers whose contributes interferes with each other.
In literature there are different parameters to describe the variety of sediment types. 
The most common parameters representative of the sediment hardness are: the main 
grain size in Phi units (Mφ); the porosity (n); the density (ρ); the relative compressional 
velocity (cr) referenced to the speed of sound in water; the absolute compressional 
velocity (c) for a seawater value of 1,500 m/s; the reflection coefficient at normal 
incidence (V0°); the compressional wave absorption coefficient (α); the absolute shear 
wave velocity (cs); etc. Whilst, parameters representative of the sediment roughness 
may be: the roughness spectral strength (Ω0), the standard deviation of the roughness 
along a unit distance (h), and the roughness slope standard deviation (δ).
There is an obvious correlation between the sediment hardness and its roughness. For 
example, the roughness parameters globally increase with the acoustic impedance and, 
then, with the mean grain size of the sediment.
At frequencies used by acoustic seafloor mapping systems – from tens to hundreds of 
kHz – the backscatter coming from the seabed can be separated into a part scattered by 
the interface relief (either as facets reflection close to the nadir or by the scatterers due 
to local roughness at grazing angle) and another part which penetrates the sediment and 
is reflected back by volume heterogeneities (Fig. 4). This last process can also become 
predominant at oblique angles of incidence.

MBES imaging and remote characterization
The principle of sonar imaging for a MBES is mostly the same of a sidescan sonar system 
(SSS): the signal backscattered is recorded as a function of time and its instantaneous 
intensity varies with the roughness and so with the nature of the insonified seabed strip 
swept by the signal.
But there are differences which make the process more complicated: with MBES data, time 
signal is available only after the beamforming and the sonar image is performed on the basis 
of a digital terrain model (DTM) created by bathymetric measurements; the central point of a 
beam is positioned on the swath and the image pixels are distributed around it until the boundary 
with the neighbor beam is reached. The sonar image so obtained has a geometrical distortion 
more reduced than a SSS imaging, which uses only the oblique-distance measurement and 
supposes a plane surface. At the same time, the presence of co-located bathymetry and 
reflectivity information in the MBES data permits to apply at the backscatter values more 
accurate corrections due to the effects of footprint size and local slope.



Masetti et al.		  Characterization  of seafloor  adjacent  shipwreck

82

However, using systems at comparable frequencies, the quality of MBES imagery is 
generally less satisfying than SSS products. This is due to different issues: the along-
track resolution is usually less fine; the directivity diagrams, although they improve 
the SNR, are prone to modulate the amplitude of the data collected (i.e., the resulting 
image without appropriate corrections is striated at constant angles parallel to the ship’s 
track); the angle of incidence of a MBES – usually hull mounted – is less grazing than 
for a SSS towed close to the seafloor. In particular, this last issue makes the detection 
of intensity contrast for micro-relief facets difficult.

Figure 4 – Processes involved in the backscatter response: A) facets 
reflection, B) volume heterogeneities and C) scatterers.

For all the above mentioned arguments, it is easy to understand why the quality of 
a MBES image is usually lower than one obtained by SSS data. So MBES imaging 
should be more properly assimilated to measurement of average reflectivity and used 
to map variations in seabed types.
As for many common applications (navigation, dredging, fishery, …) only a restricted 
identification of the seabed type – i.e. using an around ten classes – is required, this 
objective can simply be obtained by the analysis of the measured backscatter. However, 
none of the geological (granulometry, mineral constituents, …) and geotechnical 
(density, compression modulus, …) characteristics of the sediment can be directly 
identified by MBES reflectivity.
It is also possible trying to extract some geological and geotechnical sediment parameters 
by comparison with a model. This approach – only proven under simplifying assumptions 
– has a limited validity for the number of parameters to obtain in comparison of the 
small number of information that can be extracted from the backscattered acoustic 
signal.
Two main approaches coexist to characterize the seabed with MBES. The first – surely 
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more ambitious – aims at solving the “inverse problem”: to extract the characteristics 
of the sediment from the acoustic data available. This implies large modeling efforts 
to correlate acoustics data observed experimentally and the geological characteristics, 
in particular for the presence of porous media, living organisms, variously layered 
sediments, etc.
This approach, theoretical reachable, is too highly conditional – a large number of input 
parameters and very few observations – and sometimes hard to ground-truth, i.e. in deepwater 
[Lurton, 2002]. However, an increasing number of mathematical models has been developed to 
obtain a better physical understanding of backscatter coming back from the seabed [Mulhearn, 
2000]. There are models that consider backscatter versus grazing angle, i.e. Stockhausen 
[1963], Crowther [1983], Stanton [1984], Jackson et al. [1986], Boyle and Chotiros [1995],   
and other which consider its behavior versus time from a pulse transmission , i.e. Bergem et 
al. [1999], Clarke et al. [1988].
The second approach – definable pragmatic – categorizes useful classifying parameters among 
the data acquired by the MBES. Also if usually deprived of any direct physical significance, 
these parameters are provided of sufficient discriminatory power. The MBES data are 
calibrated in function of these parameters, over a certain number of validated configurations. 
If there is a new case, it can be identified by comparing them with the existing database.
Despite this approach can appear restrictive, the largest part of the practical applications 
available nowadays are based on it. For instance, RoxAnn [Murphy et al., 1995] and QTC-
View [Collins et al., 1996], ones of the first commercial systems in this field, work on the 
output of a standard ship’s echosounder to analyze in various way the acoustic returns from 
the seafloor. These systems are not seafloor classifiers, but rather segmentation systems that 
divide the seafloor into regions of consistent acoustic return type [Mayer, 2011]. The results 
obtained – empirical and site specific – require a certain number of sediment samples to 
correlate acoustic answers and seabed parameters [Hamilton et al., 1999].
Recent approaches to the problem of the acoustic segmentation are mainly based on: the texture 
analysis applied to backscatter mosaic [Preston et al., 2004; Preston, 2009], the extraction of 
features based on the relationship between the reflectivity and the angle of incidence [Hughes 
Clarke, 1994; Fonseca and Calder, 2007; Fonseca and Mayer, 2007; Parnum et al., 2007], the 
analysis of entire backscatter curves [Canepa and Pace, 2000; Hamilton and Parnum, 2011].

Issues linked to the backscatter mosaicking
A backscatter mosaic image is a grid of square pixels, each one representing an area of m x 
m square meters on the seabed [Augustin et al., 1994]. It is built by grouping and averaging 
individual backscatter intensity – at different angles of incidence and from different acoustic 
swaths – into pixels values representing a normalized amplitude and the original angular 
information removed. At the same time, as a consequence of the mosaic resolution chosen, some 
pixels may contain interpolated value from the surrounding measured reflectivity values.
In the mosaicking process, there are two main obstacles: MBES does not log directly the 
absolute value of backscatter, but relative magnitude whose calculation is not clearly defined 
in the technical documentation of the system manufacturer; the need to remove the backscatter 
angular response, which represents how the backscatter strength changes with the angle of 
incidence.
The removal of the angular variations of the backscatter, due to different angular response, is 
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an essential operation to create a consistent mosaic – without angular variation along the swath 
– for an area of homogeneous seafloor.
This result is difficult to obtain because the angular response is an intrinsic characteristic of the 
seafloor. Thus, we need to know some information about the seabed type before to create the 
relative backscatter mosaic. This prerequisite is not properly practical as the primary aim of an 
acoustic mosaic is proper to obtain some indications around the seafloor nature [Fonseca and 
Calder, 2007].

Analysis of the backscatter angular response
The variation along-swath of the backscatter intensity linked to the angle of incidence 
– one of the two problems for a correct mosaicking – represents, at the same time, the 
main source of information in various methods of remote seafloor characterization. In 
practice, by the analysis of the backscatter angular response, it is possible to estimate 
important acoustic and physical properties as grain size, impedance, attenuation and 
roughness of the superficial sediments.
In this technique, the signal level for a given beam, sometimes averaged on a series of 
consecutive pulses, is corrected for some terms of the sonar equation [1] to obtain the target 
strength. This is then corrected for the swath footprint in function of the geometry, of the 
beam amplitude and of the signal time duration. So the unit backscattering strength obtained 
– corrected by the refraction for the sound velocity profile and by the bathymetry extracted by 
the digital seabed model – is assumed to be only function of the angle of effective incidence 
on the seafloor and the sedimentary facies.
However, the information obtained is enough coarse as it is possible to fall into ambiguities due 
to different seabed types with similar acoustic responses at the same angles. Moreover, there 
are two additional sources of difficulties in the application of the above method: inaccurate 
measurements of backscatter strength and not uniform sediment types of seafloor across the 
swath [Fonseca et al., 2009].

The case-study of the VLCC Haven
The unfortunately famous VLCC Haven shipwreck – one of the biggest of the Mediterranean 
with its 344 meters of length overall – has been chosen as a case-study to apply the mosaicking 
and the analysis of the backscatter angular response. The main body lies on a muddy seafloor off 
the coast of Arenzano (Genoa) at a depth of about 75 meters (Fig. 5 and  Fig. 6), whilst a part of 
the bow with the bulb is at more than 500 meters of depth.
The sinking – dating back to April 14th, 1991 – was due to a fire caused by a violent explosion 
abreast of the forward tank. After the sinking, the combusted and semi-combusted residues were 
removed from the seashore and the seabed as far as the 10-meters isobath, and were pumped 
from the shipwreck tanks and premises. The residues present on the seabed at a depth beyond 
10 meters have been left to environmental auto-decomposition processes.
In 1998, at the end of a dispute lasting about eight years, the Italian Prime Minister solved 
the dispute concerning compensation for the sinking related damages, with an out-of-court 
settlement. Part of the damage compensation was employed to perform both decontamination 
operations on the shipwreck and interventions of environmental restoration of the 
sea and coast area, which were most damaged by the accident’s harmful effects. The 
shipwreck decontamination operations formally ended on June 12th, 2008.
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Figure 5 – Bathymetric map (in meters) of the case-study area.

From the environmental point of view, the decontamination operation of the Haven 
represents an important pilot experience at the international level because of both the 
location of the hydrocarbon tanks and the shipwreck position, lying on shallow seabed 
a few nautical miles from a tourist coastal zone [Masetti and Orsini, 2009].
The acoustic data of this case-study were recorded using the MBES Kongsberg Simrad 
EM300, hull mounted at the Aretusa ship, hydrographic vessel of the Italian Navy 
[Masetti et al., 2010]. The tool Mosaic Editor – based on the Geocoder engine – of the 
hydrographic data processing software Caris HIPS&SIPS 7 was used to create mosaics 
and analyze the sediment properties of the acoustic image obtained. This choice was 
mainly due to the array of detailed backscatter corrections and accurately modeled 
seafloor characterization algorithms of the Geocoder approach.
The workflow, started with the import of the acquisition lines, was developed with 
the application of tide corrections and the editing to remove any spikes or bad data 
through the editors for navigation, attitude and bathymetry. After this cleaning, a step 
common to the bathymetric processing, the Geocoder engine algorithms of backscatter 
correction were applied to the data [Fonseca and Calder, 2005; Mayer et al., 2007].
The backscatter information are collected by this Kongsberg MBES as reflectivity 
(backscattering strength) for each beam and seabed image reflectivity (amplitude) for 
each of the contributor samples at the bottom detection of a beam. The data can be 
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used for the seafloor characterization, but require some post-processing corrections to 
increase their accuracy and remove the distortion of the real-time Time Variable Gain 
(TVG) model applied during the acquisition [Hammerstad, 2000].

Figure 6 – 3D view of the shipwreck based on the bathymetric data acquired.

Figure 7 – Beam pattern window showing the real answer of the transducer, the 
predicted one on the basis of the MBES frequency and sediment type, the resulting 
correction to apply to remove the transducer artifacts.
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The Kongsberg seabed image data are not corrected for beam pattern variations in the 
receiver beams. Thus, the beam pattern correction has been applied to remove angular 
artifacts due to the transducer. This correction is based on a beam pattern file generated 
by the user to identify and remove this effect (Fig. 7). To obtain a good result, the file 
has been created on a flat, homogeneous and target-free area characterized by a well 
known sediment type. This file has been applied to all the survey data to correct them 
uniformly, obtaining a better acoustic image.
The processed imaging data were stored as Georeferenced Backscatter Raster 
(GeoBaR). GeoBaRs use BASE Surface technology and share in all of the benefits of 
that technology such as data caching, which helps provide scalability [MacDonald and 
Collins, 2008]. Using these GeoBaRs, a preliminary mosaic was created and, after the 
application of proper supervised adjustments (i.e. contrast, brightness) the final product 
was realized (Fig. 8).

Figure 8 – Backscatter mosaic of the area adjacent to the VLCC Haven 
shipwreck.

It is now possible to spatially identify mosaic regions with similar acoustic properties 
– called “acoustic themes” – defined using conventional, subjective and by-eye 
interpretation. The same method has been proven to be effective for SSS backscatter 
data, particularly in regions with sharp demarcations between neighboring seabed types 
[Brown, 2004].
From the analysis of the obtained mosaic, the uniformity of the reflectivity emerges and, 
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on the basis of the mentioned acoustic themes assumption, it could be possible to deduct 
the uniformity of the seabed sediment around the shipwreck object of the investigation. 
However, this assumption is recognized to be less effective for seafloor with a high 
level of seabed heterogeneity or a gradual change in the seabed characteristics because 
the backscatter behavior doesn’t present clear demarcations [Brown, 2008].
At the same time, a certain number of artifacts – i.e., corresponding at the normal 
incidence of some acquisition lines in the northern part of the survey area – are present 
in the final product (Fig. 9 left); whilst the area closer to the shipwreck is of difficult 
visual interpretation (Fig. 9 right).

Figure 9 –Artifacts present at normal incidence in some acquisition lines in the northern part of the               
backscatter mosaic (left); zoom on the shipwreck site (right).

An objective automated classification of the acoustic data based on the backscatter 
signal were conducted to avoid uncertainty or low confidence in the acoustic themes. 
This classification is based on a series of parameters calculated from the stacking of 
consecutive time series over a spatial scale that approximates half of the swath width (a 
stack of 20 – 30 consecutive sonar pings). Thus, each stacked angular response defines 
two distinct seafloor patches (one for the port side and another for the starboard side).
These sediment analysis capabilities are one of the most innovative aspects of the 
Geocoder approach. It is made possible by the accurate removal of acquisition artifacts 
found in the source data and derived from years of published research in this field. The 
Geocoder sediment analysis engine – based on the ARA model [Fonseca and Mayer, 
2007] and realized in SIPS with the name of Sediment Analysis Tool (SAT) – has 
been applied to the corrected imaging data. The results returned (i.e., sandy mud and 
muddy sand) are largely common for the entire area, showing the same homogeneity 
obtained by the visual interpretation (Fig. 10). This analysis, as in the case of the 
visual interpretation of the mosaic (Fig. 9 right), has also given results of difficult 
interpretation and high variability for the area closer to the shipwreck.
Summarizing, the described mosaicking technique, requiring the removal of 
information linked to the angular response, reduces the ability to make a quantitative 
seabed characterization on the obtained mosaic and it presents a series of artifacts. 
Whilst, the analysis of angular responses only permits to characterize the seafloor, but 



89

Italian Journal of Remote Sensing - 2011, 43 (2): 77-92

with a spatial resolution limited to the swath width of the sonar. A combined approach could 
improve the spatial resolution of the angular response analysis and could produce mosaics more 
homogeneous, with fewer along-track and across-track artifacts [Fonseca and Calder, 2007].
The quality of the backscatter analysis and mosaicking results has been directly verified trough 
the execution of a limited number of seabed samples trough grabs (Fig. 11). Due to the target 
of this work, limited to the sediment type classification, these samples have been only visual 
inspected to define the mean grain size.

Figure 10 – Sediment Analysis Window: the real backscatter answer is modeled as 
the product of interface, volume and Kirchoff backscatter components.

  Figure 11 – Seabed sampling trough grabs.
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Conclusions
The backscatter mosaicking and analysis processes applied to the seafloor adjacent to the 
VLCC Haven shipwreck have allowed for quickly characterization of the area – 2 hours for 
the MBES acquisition and the sampling operation, less than 1 hour for the data processing, 
both bathymetry and seafloor classification – extending the results of a limited number of 
grab samples to the remaining part of the survey with a good level of confidence.
The content of this paper represents a preliminary report, coming from the first part of a 
University of Genoa Ph.D. research project entitled “Georeferencing and Environmental 
Risks Monitoring of Shipwrecks using MBES data”. From these results, the development of 
the research activities will attempt to improve techniques and to generalize a methodological 
approach for the analysis of backscatter coming from an area of seafloor characterized by 
the presence of one or more anthropic objects.
At the same time, it will attempt to define uniform criteria to collect the information coming 
from MBES data into a modern shipwrecks’ GeoDB. In fact, only the standardization of 
databases allows the accessibility and comparability for various States [ICRAM CEDRE, 
2007]. This characteristic should be a fundamental element for a wreck identification 
program – in particular for a closed basin as the Mediterranean – to ensure permanent 
monitoring and continuous updating of the shipwreck sites to prevent pollution effects (i.e., 
spillage of oil from the tanks).
The main research outcome could be the possibility to use MBES data as a low-cost method 
to monitor conditions of the large number of shipwreck presents in oceans. Furthermore, this 
research could give an important contribution to the creation of a Decision Support System 
(DSS) – based on a large geo-database with vessel, cargo and sink event information – used 
to define the criteria and the priorities for decontamination operations related to potential 
polluting shipwrecks.
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