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1 INTRODUCTION  

First developed for ship detection with synthetic aperture radar1, 2, multi-look coherence explores the 
phase information contained in synthetic aperture sonar (SAS) data by first splitting along-track and 
cross-track spatial bandwidth contained in a complex image into sub-bands and then estimating the 
coherence between the lower-resolution images formed from these sub-bands. In the presence of a 
random distribution of surface or volume scatterers, the spectral coherence is proportional to the 
degree of overlap in sub-bands of the SAS image. Consequently, for a perfectly random distribution 
of scatterers, the spectral coherence should be zero when the sub-bands do not overlap. If the 
scatterer distribution deviates from this basic random distribution, the coherence may be non-zero for 
special cases that would be related to scattering from specific structures such as points or facets. 
Based on preliminary experimental results, it appears to be possible to separate man-made targets 
from interfering background reverberation and clutter using coherence, as targets have features that 
scatter coherently in angle versus the random seafloor interface or volume which scatters 
incoherently. Characteristics of a target object may also be inferred as sub-band coherence is a 
sensitive function of both angle and frequency. 
 
For multi-look coherence-based detection or classification, the key parameter is the magnitude of the 

complex correlation coefficient, . For two complex images this parameter is an estimate of the 

coherence between scenes. Typically the expectation operation used in estimating the correlation 
coefficient is evaluated using a spatial average, which lowers the spatial resolution of the resulting 
coherence map. The resolution of the coherence image will be a function of the original image 
resolution, the number of sub-look images formed from the original image and the number of samples 
used in the expectation. Reducing the size of the expectation window will increase spatial resolution 
but at the cost of increasing the bias and variance of the estimate. Increasing the expectation window 
size will reduce the bias and variance of the estimate but at the cost of introducing more background 
reverberation, reducing the overall value of coherence caused by a target in the window. It is also 

possible to form an additional expectation by combining estimates of | |over a number sub-look pairs 

of the scene in angle or frequency.  When averaging independent coherence estimates from sub-look 
pairs, the resolution of the resulting average coherence image is equal to the spatial resolution of the 
coherence maps of the individual sub-looks while its variance is inversely proportional to the number 
of sub-looks.  The advantages of averaging the coherence of sub-look pairs for variance reduction 
must be weighed, however, against the reduction in the number of coherence samples that will be 
available for target classification using the angular or frequency dependence of coherence.    
 
In the sections that follow, we review and apply the relevant coherence estimation theory to explore 

the effects of target signal-to-noise ratio (SNR) and the number of samples used in forming the 

coherence map on the resulting coherence signal to background ratio (SBR). Example model-data 

comparisons will be shown for data collected off the coast of Florida by the Applied Physics 
Laboratory, University of Washington, using a rail-based SAS system during the 2004 Sediment 
Acoustics Experiment (SAX04)3, 4. 
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2 ESTIMATION OF THE SIGNAL TO BACKGROUND RATIO IN 
THE COHERENCE IMAGE 

The complex coherence for a pair of zero-mean complex signals x1 and x2 is defined by Born and 
Wolf3 for stationary processes as the zero-lag correlation coefficient: 
 

𝛾 = 〈𝑥1𝑥2
∗〉/√〈|𝑥1|2〉〈|𝑥2|2〉      (1) 

 

where 〈⋯ 〉 represents the expectation operator. The coherence magnitude |𝛾| is sometimes referred 
to as the “degree of coherence,” or more often, simply “coherence”. In practice, the sample 

coherence, 𝛾̂, is used as the coherence estimate, which implies ergodicity in x1 and x2. Given n 

measurements, the sample coherence is given by:  
 

                         𝛾 = ∑ 𝑥1𝑥2
∗𝑛

𝑖=1 /√∑ |𝑥1𝑖|2𝑛
𝑖=1 ∑ |𝑥2𝑖|2𝑛

𝑖=1      (2) 

 

where i is the sample number. The sample coherence given by Equation (2) yields a coherence 

estimate which should be asymptotically unbiased as n increases4.  In our application, n represents 
the values in a window centered on given complex image pixel for a pair of images. It is expected that 
the multilook coherence for targets will differ from that of natural background. To quantify this 

difference the signal-to-background ratio of coherence, SBR, is defined as 
 

          𝑆𝐵𝑅 = ⟨|𝛾|⟩′
⟨|𝛾|⟩

       (3) 

 

where 〈|𝛾|〉′ the multilook coherence estimated from a target region and 〈|𝛾|〉 is the multilook 
coherence estimated from a non-target region. 
 

Our interest is in the magnitude of the sample coherence, |𝛾|, which is the maximum likelihood 

estimate of the coherence magnitude5. For a jointly complex-Gaussian process, an analytical 

expression for the probability density function of |𝛾| was derived by Touzi and Lopes6 as a function 

of the coherence magnitude, |𝛾|, and the number of independent samples, n, used to form the sample 
estimate and is given by the expression: 
 

     𝑝(|𝛾|; |𝛾|, 𝑛) = 2(𝑛 − 1)(1 − |𝛾|2)𝑛|𝛾̂|(1 − |𝛾|2)𝑛−2 2𝐹1
(𝑛, 𝑛, 1, |𝛾|2|𝛾|2)  (4) 

 

where 2𝐹1 is the Gauss hypergeometric function, a special case of the generalized hypergeometric 

function, 𝑝𝐹𝑞. Equation (4) was used in Touzi and Lopes6 to obtain an analytical expression for the 

first moment of |𝛾|: 
 

                                       〈|𝛾̂|〉 = (𝛤(𝑛)𝛤(3/2)

𝛤(𝑛+1/2)
) ∙3 𝐹2 (

3

2
, 𝑛, 𝑛; 𝑛 + 1

2
; 1; 0).         (5) 

 
Evaluation of Equation (5) shows that the sample coherence magnitude is biased towards higher 
values. This bias increases as the sample coherence magnitude approaches zero, with a maximum 
bias occurring at zero. In the application of multilook coherence for target detection, the increased 
levels of bias in the estimate for the non-target background, where no coherence is expected, will 

result in a reduction in the target signal-to-background ratio of coherence, SBR. The bias in the 
coherence estimate decreases with increasing number of independent samples, as the maximum-
likelihood estimate is asymptotically unbiased. 
 
If we assume that the signal-to-noise ratio (SNR) for a target is identical between two complex images 
that are being correlated, then the sample coherence estimate after the addition of incoherent noise 
becomes7: 



Proceedings of the Institute of Acoustics 
 
 

 
Vol. 40. Pt.2 2018 

          〈|𝛾̂|〉′ = 〈|𝛾̂|〉 (
𝑆𝑁𝑅

1+𝑆𝑁𝑅
)      (6) 

 

This SNR term in Equation (6) can contain any sources of incoherent noise, including system noise, 
multipath interference, ambient noise or any non-target seafloor areas that are included in a pixel 
after multilook processing.  This term is difficult to estimate in practice, but for this work, we will simply 
use the ratio of the average intensity of a target in a complex SAS image to the surrounding seafloor 
background level (which has a value of 1 in our case as we have normalized our data). We 

acknowledge that our approximation for the SNR here is suspect and may be the source of the modest 

model-data disagreement seen in comparisons shown in the next section. 
 
Although increasing the number of samples used to form the sample coherence magnitude will 
improve the estimate for non-target background, increasing the estimation window size will also 
necessarily include samples of unwanted reverberation noise into the estimate of coherence for the 
target. This has the undesirable effect of reducing the coherence of the target and thereby decreasing 

the SBR. Reverberation from the sediment in a complex SAS image is assumed to behave like an 
incoherent source, adding noise to a coherent signal. Under some specific simplifying assumptions, 
the assumed incoherent scattering of the background reverberation leads to the practical statement 
that adjacent resolution cells are uncorrelated, i.e., independent. Under the reverberation model given 
above, we treat any uncorrelated background reverberation in our as sampling window as the addition 

of incoherent noise and simply scale our original target SNR by the additional non-target area included 

in the estimation window. This additional area is directly proportional to the number of samples, n, so 

that we can replace the SNR in Equation (6) by SNR /n. As the window size is increased, the effective 

SNR is reduced in our sample coherence estimate. It is important to note that decorrelation due to 
this addition of non-target background will always be present in multilook processing and is likely to 
be the dominant factor in the decreasing the coherence value in the absence of multipath.  
 
For this study we want to understand the relative levels of target coherence to background coherence 
as we vary our estimation window size.  Combining Equations (5) and (6) yields the coherence signal-

to-background ratio, SBR, for multilook processing with no overlapping bands in along-track spatial 

wavenumber:  
 

𝑆𝐵𝑅 =
⟨|𝛾|⟩[

𝑆𝑁𝑅
𝑛

(1+
𝑆𝑁𝑅

𝑛
)⁄ ]

(
𝛤(𝑛)𝛤(3/2)
𝛤(𝑛+1/2)

)∙3𝐹2(
3
2

,𝑛,𝑛;𝑛+
1
2

;1;0)
     (7) 

 
Figure 1 shows the effects of increasing the estimation window size on the SBR estimate as a whole 

for a given target SNR of 16 dB (blue line). The numerator and denominator terms in the SBR of 
equation (7) are also shown separately by holding one constant while varying the other to highlight 

their individual effects on the overall SBR shape. For a low number of samples in the estimation 

window, the SBR is seen to have a low value caused by the large bias in the maximum-likelihood 

estimator.  For a high number of samples, the SBR also has a low value, but now caused by the large 

number of non-target samples that have been included in the estimate.  At intermediate values of 

sample number, the SBR has a maximum value, which will be the optimum window size for target 

detection. This maximum, or optimum window size, depends on the initial target SNR in the complex 

image.  Figure 2 displays the SBR as a function of the initial target SNR and window size. It can be 

seen in this figure that the optimum window size moves to higher values as the target signal-to—
noise ratio is increased. Higher target signal levels allow more background reverberation to be 

included in the estimate without decreasing the SBR. Equation (7) will be compared to experimental 
results of target signal coherence to background coherence in the following section. 
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Figure 1: Target Signal to Background results from Equation (7) (blue line). The yellow and red lines 
show the numerator of Equation (7) holding the denominator constant and the denominator of 
Equation (7) holding the numerator constant, respectively.  An optimum window size can be seen in 
the SBR due to the competing mechanisms of estimation bias and added background noise in the 
estimation window.  
 
 

                          
 

Figure 2: Signal-to-background results from equation (7) as a function of the target SNR and window 
size.  The optimum window size is seen to shift to larger values as target SNR is increased.  
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3 APPLICATION TO SAS DATA 

Having established the theoretical framework within which to interpret the effects of window-size on 
the signal-to-background ratio for coherence in multilook processing, we next investigate the 
applicability of these results by comparison to real data. The data used for our analysis was collected 
as part of the SAX04 experiment that took place on a rippled sandy seafloor off of Panama City, 
Florida in the fall of 2004. The acoustic system was operated by the Applied Physics Laboratory at 
the University of Washington and consisted of transmitters and receivers mounted on a tower which 
moved along a 28 m rail. A synthetic aperture was formed using returns from transmissions made 
along the length of the rail. We made use of data collected in two different frequency bands, 12 – 28 
kHz with a 42 degree beamwidth, and 30 – 50 kHz with a 21 degree beamwidth.  The top left image 
in Figure 3 displays an example of a 30 – 50 kHz SAS image taken during SAX04 with ripples and a 
large variety of clutter evident in the figure. In this figure, man-made targets are circled in green and 
included a buried sphere at 10 m range and 7 meters along track, a partially-buried cylinder at 30 m 
range and 22 m along track, two floats at 23 m range, 3 m along track and 37 m range and 6 m along 
track respectively, and an unknown target at 30 m range and 22 m along track.  In addition to strongly 
scattering patches, ripples, and fish schools, target-like clutter appears at 30 m range 1 m along track 
and 37 m range and 10 m along track and are circled in red on Figure 3. 
 
The processing chain for the results presented below consisted in taking complex SAS images, such 
as those used to form the example intensity image shown in Figure 3, and transforming them into the 
wavenumber domain. The full band is then filtered into non-overlapping sub-bands (or ‘looks’) in 
along-track wavenumber. The sub-bands are then transformed back into the spatial domain as 
complex images with lower resolution. The complex cross-correlation can then be estimated between 
these images with different looks in angle and coherence examined as a function of target and window 
size. The top right and bottom left and right images in Figure 3 show coherence maps for the 
broadside pair of looks (out of 6 sub-looks) formed using the same 30 – 50-kHz band complex image 
used for intensity image in Figure 3. The three coherence maps use different estimation window sizes.  
 
For the coherence map formed using the largest two estimation window sizes, the man-made targets 
(circled in green in the intensity image in Figure 3) are clearly detected in the coherence map with 
correlation coefficient values above 0.8, while the seafloor background (ripples, patches with high 
scattering) and clutter objects (circled in red in the intensity image in Figure 3) display low levels of 
coherence. The reduction in background coherence bias is evident as a larger number of samples 

was used in estimating the coherence (as is the loss in resolution of the coherence map). The SBR is 
seen to increase with window size for all man-made targets seen for this data set. Another tradeoff to 

consider when increasing estimation window size to increase SBR is the loss in spatial resolution of 

the final coherence map.   
 
As described in the previous section, for a random distribution of scatterers when the wavenumber 
bands used in forming sub-band images do not overlap, the estimated coherence for the background 
should have a minimum value which depends on the finite window size used to form the correlation 
coefficient. The target signal coherence estimate will depend on additional non-target reverberation 
included in the estimation window.  Figure 4 shows results of coherence signal-to-background 
estimated for SAS data from both the 12 – 28 kHz band and the 30 – 50 kHz band. Predictions based 

on Equation (7) are also shown as solid lines on this figure for initial target SNRs of 15, 20 and 25 dB. 

Comparisons for the 12 – 28 kHz data are quite good, with the shift in optimal number of samples 

with increasing SNR captured well.  The 30 – 50 kHz dataset shows less agreement, but is still 
satisfactory. Discrepancy could be due to a variety of factors, including mis-estimation of the original 
target signal-to-noise ratio or frequency/aspect dependent scattering effects for specific targets.  
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Figure 3: 30-50 kHz SAX04 rail-SAS intensity image (top left) includes buried, partially buried and 
proud targets on rippled sand (circled in green) and clutter objects (circled in red). Coherence 
estimated between a pair of sub-band images formed from the same 30 – 50 kHz dataset for 

variously-sized coherence estimation windows.  SBR increases as estimation bias for the background 

decreases with larger window sizes. 
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Figure 4: Estimates of coherence signal to background for targets found in sequences 20 (top) and 
259 (bottom) from the SAX04 SAS data set described in the text. In these plots, the solid lines are 
predictions made using Equation (7) for various levels of target on background signal to noise ratio. 
Symbols on these plots are results for individual targets with their SNR given in the legend. 
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4 SUMMARY 

In this paper, we have presented predictions of the impact of estimation window size on target signal-

to-background ratio, SBR, for coherence maps produced as part of multilook SAS processing for 

target detection. This was accomplished by including both the inherent bias of the maximum-
likelihood estimator for coherence and the coherence degradation caused by inclusion of non-target 

background reverberation into the estimate into an estimate for SBR. For the two experimental 

datasets considered here, SBR increased or showed an optimal window size in agreement with 

predictions. Increasing estimation window size to increase SBR results in loss of spatial resolution in 

the final coherence map, which may be a consideration in choosing a window size for target detection 
using the multilook coherence technique. Knowledge gained as part of this study will help to determine 
the performance of multilook technique for target detection.   
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