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Quality assurance and continuous improvement (QA&CI) are essential elements of operational workflows 

and require information that pinpoints the weakest part(s) of workflow outputs.  The focus of this article 

is the production of such information to improve the accuracy of shallow water bathymetric maps 

produced from airborne lidar.  The collaborating and funding partner for this work is the United States 

National Oceanographic and Atmospheric Administration (NOAA). 

 

Essentially NOAA’s lidar processing workflow classifies each pulse return in a point cloud as bathymetry 

(Bathy) or not bathymetry (NotBathy) using a variety of information and data.  One type of information 

that is routinely collected but not currently used is lidar “point attribute data” (PAD) associated with each 

return – e.g., the intensity of the return, the stability of the airborne platform at the moment of 

acquisition.  To improve the accuracy of NOAA’s bathymetric extraction – i.e., its Bathy/NotBathy 

classification –the strength of the bathymetric signal in the PAD was evaluated using machine learning 

(ML) techniques.  The data used for evaluation are four 500 m-by-500 m lidar data “tiles” located in the 

vicinity of Key West, Florida covering an approximate depth range of 0.5m to 20m.  It has been concluded 

that: 

 The bathymetric signal is sufficiently strong in the PAD to warrant further exploration for QA&CI. 

 The three types of PAD variables – we term these pulse-specific, SBET (Smoothed Best Estimate 

of Trajectory), and lidar-edge – were related to the bathymetric signal. 

 Extreme gradient boosting (XGB) modelled the bathymetric signal better than did neural networks 

and logistic regression 

 XGB was the fastest ML and is therefore preferred for operational implementation of results. 

 

XGB models that measure bathymetric signal strength can also be used to estimate the probability that 

each pulse return is bathymetry.  This “p(Bathy)” value can be used in QA&CI in two ways.  First, it can be 

used in NOAA’s lidar processing workflow to improve the initial Bathy/NotBathy classification.  Second, 

because PAD are not used in NOAA’s workflow, p(Bathy) can be used to produce a second independent 

Bathy/NotBathy classification.  This can then be compared to NOAA’s classification statistically and 

spatially to identify areas of disagreement in feature space and geographic space.   

 

Figure 1 shows an example for the area-based rate of false negatives – i.e., pulse returns identified by 

NOAA as Bathy that were NotBathy according to the XGB model.  In Figure 1a (left), major differences 

appear as red and dark blue areas with light green areas indicating better agreement between the two 

classifications.  Figure 1b shows the same information statistically; the red line represents the line of 

perfect agreement and the blue line and surrounding zone indicate the 95% confidence interval around 

the regression line. 
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Figure 1. Representation of differences in false negatives – Bathy pulse returns incorrectly labelled 

NotBathy – between a NOAA classification and a classification produced by a machine learning model. 

 

Figure 1a provides a clear indication that the southwest and eastern edge of this tile are the areas of 

maximum disagreement and therefore should be targeted by QA&CI protocols.  Similarly, Figure 1b 

suggests that disagreement is greatest in areas in which NOAA has indicated the highest density of 

bathymetry – i.e., the blue line and zone diverge the most from the red perfect-agreement line.  

Moreover, Figure 1b demonstrates that the variance of differences is heteroscedastic which, with further 

analysis, may provide additional information about why there is disagreement between classifications and 

how this can be addressed if necessary. 

 

Figure 1 is based on the number of false negatives which is often of greatest interest in bathymetric 

mapping.  However, for QA&CI comparable figures can be produced for false positives (pulses incorrectly 

identified as bathymetry), true positives (correctly identified Bathy), and true negatives (correctly 

identified NotBathy).   

 

In closing, we note that the reason for the disagreements between the two classification –an inaccurate 

NOAA classification, an inaccurate ML classification, or both – is not apparent from the information 

provided.  However, the information produced provides for targeted improvement of bathymetric maps 

and a consequent savings of time and effort. 


