
Diagrams are essential in documenting
large information systems. They capture,

communicate, and leverage knowledge indispensable
for solving problems and act as cognitive externaliza-
tions (intertwining internal and external processes to
extract information from the external world to enhance
thought).1 A diagram provides a mapping from the

problem domain to the visual rep-
resentation by supporting cognitive
processes that involve perceptual
pattern finding and cognitive sym-
bolic operations.2 However, not all
mappings are equal, and for effec-
tiveness we must embed a dia-
gram’s representation with
characteristics, which lets users eas-
ily perceive meaningful patterns.
Consequently, a diagram’s effec-
tiveness depends to some extent on
how well we construct it as an input
to our visual system.4

In our research, we focus on a class of diagrams com-
monly referred to as graphs or node-link diagrams.
Nodes representing entities, objects, or processes, and
links or edges representing relationships between the
nodes characterize them. Their most common form is
outline circles or boxes denoting nodes and lines of dif-
ferent types representing links between the nodes. Enti-
ty-relationship diagrams, software structure diagrams,
and data-flow models are examples of node-link dia-
grams used to model the structure of processes, soft-
ware, or data. 

Currently, the most widely used graphical language
for modeling complex systems is the Unified Modeling
Language. UML contains a suite of diagramming tech-
niques that lets you model various aspects of a software
system,5 a real-time application,6 or an enterprise struc-
ture.7 Its versatility in several application areas results
from the rich semantics it seeks to model. For example,
class diagrams in UML model software structures and
include methods for depicting inheritance and compo-
sition. For example, when we use these semantics in the

enterprise modeling realm, UML can capture relation-
ships between organizations or relationships between
corporations and their employees. However, although
developers have made UML notations general and com-
plete, the actual choice of graphical notations appears
to be somewhat arbitrary; only an expert in the field can
easily read them.

Structured object perception
We can roughly divide theories of object perception

into two general approaches: image- and structure-
based perception. Image-based theories propose that
human perception stores multiple views of an object in
memory, specifying processes for matching the stored
views to what’s being perceived.8 Structure-based the-
ories place emphasis on the extracting 3D structural
information of objects for recognition.9 This extraction
results in decomposing the image into perceptual prim-
itives consisting of 3D solids such as cones, cylinders,
and ellipsoids, along with information about how
they’re interconnected. Each theory has strong evidence
supporting its validity and we believe that the visual sys-
tem possibly uses both mechanisms in a hybrid manner
at several layers of the recognition process. However,
for our purposes the structure-based theories are more
interesting because they suggest that if we can map
information structures into structured objects then the
structure will be extracted automatically as part of nor-
mal perception. 

As our starting point, we take the theories of struc-
tural object recognition. Marr and Nishihara proposed
a model in which our visual system extracts information
from the viewed object’s 2D contour or silhouette struc-
ture.10 The silhouette decomposes into regions of con-
cavity that facilitate the extraction of the image’s
subparts. Transformations within our visual system let
us translate the sillhouett’es subparts into a set of 3D
generalized cones. Figure 1 illustrates a crudely drawn
animal that we nevertheless readily perceive as having
distinct head, legs, torso, and tail parts. Marr and Nishi-
hara also proposed a mechanism that cognitively con-
nects the parts’ axes to draw a structural skeleton.
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Biederman elaborated Marr’s initial theories in two
significant ways.11 He extended the set of generalized
cones defined by Marr by describing them based on geo-
metrical properties of the silhouette in the 2D plane
including colinearity, symmetry, parallelism, curvature,
and cotermination (the contours meet at a point—such
as a cone). He devised a set of 36 primitives he termed
geons (geometrical ions). We depict a sample set of
geons and objects constructed with them in Figure 2. A
second significant contribution by Biederman is his
description of the structural composition of the decom-
posed geons from the image. The decomposition of an
object results in a geon structural description (GSD),
consisting of geons, their attributes, and their relations
with adjacent geons. The structural description con-
tributes to object constancy. For example, if two views of
an object result in a similar GSD, then our perceptual
system recognizes them as equivalent objects.

The structural description isn’t purely topological. As
Figure 3 illustrates, two objects—such as a human figure
and a table—can have identical geons and an identical
skeleton in terms of its topology but still be identified as
different objects. In describing the representational
capacity of his set of geons, Biederman suggests look-
ing at the number of readily discriminable relations
between any pair of geons. These relations are largely
viewpoint independent, preserve their 2D silhouette
structure, and are categorical.12 We base the following
set of relational rules on the set Biederman proposed.
We have added an additional containment rule. 

� RR1. Color and texture are surface properties of geons
that play a secondary role in perceptual object classi-
fication. These properties may aid in the recognition
process, but don’t play a major role in entry-level clas-
sification.

� RR2. Verticality. Geon A can be above, below, or
beside geon B. 

� RR3. Centering. Objects can be connected on- or off-
center. For example, human legs connect to the right
and left of the bottom of the torso. Human arms are
at the top of the torso. 

� RR4. Connection relative to elongation. Most geons
are elongated, and connecting to the long face versus
the short face has important perceptual semantics.
We differentiate humans and four-legged animals in
this way.

� RR5. Relative size. One geon is larger or smaller than
another. 

� RR6. Containment. An important perceptual task is

identifying objects enclosed within larger compo-
nents. This relationship is inherently hierarchical.
However, we can only display strict containment
using transparency.

Geon diagrams
If we identify structured objects through these mech-

anisms then we should be able to apply this theory to
making more effective diagrams. We call such diagrams
geon diagrams because they are loosely based on Bie-
derman’s geon theory. To evaluate this concept we did a
series of studies that compare diagrams constructed with
3D geon primitives to various types of 2D diagrams (Fig-
ure 4).13 Subjects in our experiments identified sub-
structures 40 percent  faster and about twice as
accurately using the geon diagrams compared to corre-
sponding UML diagrams. They also recognized geon dia-
grams they had seen briefly with far greater accuracy (18
percent versus 39 percent error rate). As an additional
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1 According to Marr and Nishihara,9 concave sections
of the silhouette define the object’s subparts. These
points are critical in defining a structural skeleton.
(Adapted from Marr and Nishihara.9)

2 (a) Geons are object primitives in Biederman’s theory. (b) When con-
nected in a particular structural relationship, they can define an object. (c)
Different connections of the same geons can result in different objects
(geons 1 and 4).

3 The same geons and topological arrangement result
in different objects. The geon structural description
(GSD) is important for identification.

4 UML and Geon equivalent of a structured diagram. The relationships
between nodes didn’t represent any actual system.
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test, we repeated the experiments without surface attrib-
utes (color and texture) for the geon diagrams and with-
out the corresponding labels on the UML diagrams. The
result was the same. We found that subjects made half
as many errors recognizing the geon diagrams compared
to their equivalent 2D UML diagrams.

However, because many differences between UML
and geon diagrams exist other than the use of 3D shape
primitives, we conducted a further set of studies com-
paring shaded diagrams with the same diagrams as flat
outline shapes (Figure 5). These results were also high-
ly significant. Using 3D shaded primitives resulted in
much more accurate substructure identification (11.4
percent versus 21 percent errors) and shorter times (4.1
seconds versus 5.2 seconds). The subjects also accu-
rately recognized more 3D diagrams than 2D silhouette
diagrams (20 percent  versus 34 percent  errors).14

The results of our experiments strongly suggest that
3D shaded primitives facilitate diagram structures’ visu-
al parsing and recognition compared to box and line dia-
grams (such as UML) and 2D silhouette equivalents.
Thus, using 3D shaded components for diagram ele-
ments can facilitate interpretation and recognition of
diagrams.

Perceptual semantics
The work of Biederman and others suggests that cer-

tain spatial relationships, such as on top of or unbal-
anced, may have a kind of immediately understandable
perceptual meaning. We reasoned that if we could map
the semantics of systems modeling into this perceptual
semantics we could make easier to read.

UML class diagrams present a view of software struc-
ture. In particular, they depict the objects that exist, their
internal structure, and their relationships with one
another. They don’t show temporal or causal informa-
tion.5 The notation was derived from three main
sources—Booch, Rambaugh, and the Object Modeling
Technique (OMT)—through the efforts of the Object
Management Group (OMG) to standardize software
modeling semantics and notations. UML offers a rich
semantic base that we use for deriving our visual repre-
sentations. We aren’t augmenting UML notation by sug-
gesting the use of differently shaped boxes or different
types of edges. Instead, we’re exploring the use of cer-
tain visual constructs to enhance the understanding and
intuitiveness of semantics such as those available
through UML. We hope that our readers can generalize
our findings to other diagramming applications. 

We carried out our investigation in a three-stage
process. In the first stage, we constructed several dif-
ferent visual representations for each of the following
modeling concepts: 

� generalization—(a) is a (b);
� dependency—(a) depends on (b);
� strength of relationship—some relationships are

stronger or weaker than others;
� multiplicity of relationship—for example, from one

to many; and
� aggregation—(a) has a (b).

In each case, we used a perceptual principle to con-
struct at least one of the instances. The other members
of the set were made up of what we thought were rea-
sonable alternatives. In the second stage, we conducted
a multipart evaluation study to find out if subjects
agreed on which mappings were the best. This experi-
ment had made five parts, each evaluating the repre-
sentation that best fit the five semantics. We conducted
the experiment on 40 volunteer students, 20 of whom
were familiar with software diagramming notation, in
particular UML (experts). The remaining 20 students
hadn’t been exposed to any form of diagram modeling
and hadn’t been trained in understanding software
semantics (novices). The experiment’s interface was a
Web browser. We used HTML and Javascript to resize
and randomize the images’ appearances. In the third
stage, we created diagrams using the best mappings and
evaluated how well users perceptually understood.

For clarity, we then separated each of the modeling
concept mapping subexperiments, together with the
evaluation results, in the following sections. 

Generalization
In abstract terms, generalization is the task of group-

ing concepts that fit a given pattern under a common
header by moving from the particular to the general.
This capability of the human mind has led to the con-
cretization and refinement of ideas over the centuries.
In software modeling, we use generalization to classify
objects based on their common functionality. The UML
notation guide defines generalization as being the rela-
tionship between a general element and a specific ele-
ment that adds additional information to it.15 It’s also
commonly referred to as inheritance (the specific object
inherits properties of the general object) and is casual-
ly referred to as an is a relationship. Thus, objects can
belong to a common class—for example, rottweilers,
boxers, and retrievers are all dogs. The perceptual prin-
ciple is based on Biederman’s claim that the primitive
shapes play a primary role in object classification,
whereas surface properties such as color and texture
play a secondary role (see our RR1 definition).1

Representing generalization
The purpose of this part of the experiment was to

determine whether shape had a stronger influence than
color in classifying objects of the same kind. If we deter-
mined shape was a better cue, then we could suggest
using same-shaped primitives to denote objects of the
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gram and an
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silhouette dia-
gram.



same kind. This is radically different
than what is available in UML,
where objects of the same kind con-
nect by a solid line arrow with a
closed arrowhead pointing to the
general class. 

We considered two cases, one
containing objects made of a single
geon primitive (a one-component
case) and the other consisting of
images containing two primitive
shapes (a two-component case).
The procedure used for each case
was similar, so they only differed in
their representations.

The one-component case.

We constructed three sets of images.
Each set contained eight shaped
primitives labeled (a) to (h) (Figure
6). The types of primitives were dif-
ferent from one set to another. Each
set contained two primitives with
the same color but different shapes,
and two others that had the same
shape but different surface color. For
example in the set depicted in Fig-
ure 6, (a) and (g) are the same color
(red) while (e) and (c) are the same
shape (barrels). All the other shapes
in the set have either a different
color or different shape than these
two pairs.

The two-component case. In this case, we creat-
ed three sets of pictures, each containing six images.
Each image was comprised of two geon primitives (Fig-
ure 7) labeled (a) to (f). For the images in all the sets we
used one major (bigger) and one minor (smaller) geon
primitive to construct the image. We created each set
with two images containing major and minor compo-
nents of the same color and different shapes—color pair
(b) and (d)—and two others whose minor and major
components were made of the same shaped geons with
different colors—shape-pair (c) and (e). All the other
images in the set contained primitives whose major and
minor components weren’t colored as our selected color
pair and didn’t have the same arrangement of primitives
as our shape pair.

Evaluating generalization
We showed subjects the three sets of images for the

one-component case and the three sets of images for the
two-component case. We asked them to select using
their best judgment the pair of images that are of the
same kind, which they recorded on handouts. For each
of the two cases, we show the three sets in different
order for all the subjects.

We didn’t observe any statistically significant differ-
ences between responses from novice and expert sub-
jects (a test for null hypothesis of agreement between
novices and experts yielded P-values of 0.403 for the

one-component case and 0.3091 for the two-component
case). We therefore combined the results. Overall, 92
percent of the responses favored same shaped objects,
whereas 8 percent of the responses favored the same
color. This suggests that shape is a better stimulus for
identifying objects of the same kind than color.

The small, representative set of 36 geon primitives11

limits a large system in the number of different distinct
objects that can be represented. By using shape to iden-
tify objects of the same kind, a diagram couldn’t be
formed by more than 36 distinct objects. We might
resolve this limitation by creating objects with pairs of
primitives, as we did for the two-component case of this
part of the experiment. However, designing compound
objects that express single-object identity might be chal-
lenging. 

Using same shaped objects for generalization will also
be problematic when modeling a system using multiple
inheritance. Two objects of different shapes generalize
into a third object whose representation may be a com-
bination of the earlier two. On the other hand, some
regard multiple inheritance as an improper structure in
software modeling.16 This has led to the exclusion of this
feature in Java. 

Dependency
Dependency commonly means a relationship in

which an entity is supported by another. In software
modeling terms, dependency describes a relationship
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6 A sample set
of representa-
tions containing
only one com-
ponent. This
contains a
matching color
pair (a) and (g)
and a matching
pair of shapes
(c) and (e).

7 A sample set of two components contains a pair with matching major-
and minor-shaped components (c) and (e), and matching color coding on
major and minor components (b) and (d).

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b) (c)

(d) (e) (f)



in which changes to one component can cause changes
to the state of the dependent component. Therefore, the
dependent module is unstable when changes are made
to the entity it depends on. A goal in proper software
modeling is to reduce the number of dependencies.5

Certain spatial representations are easily visually rec-
ognized.17 These visual properties include such relations
as longer or shorter, thinner or thicker, and above or
below. Biederman suggests that the spatial property of
verticality (see RR2) makes up for more than 80 percent
of arrangements between visual components during
object perception.11 Glasgow and Papadias use such spa-
tial properties to construct models that lower the com-
putational costs for AI systems to retrieve and
understand the representations of visual images.18

Petre’s study concluded that secondary notation, such as
relative positioning of nodes (for example, placing two
linked or unlinked nodes near each other), plays an
important role in conveying meaning.19

Representing dependency
The purpose of this part of the experiment was to

derive a representation best suited for understanding
the semantics of dependency. If our perceptual system
has certain spatial properties deeply ingrained to
describe and classify objects, then perhaps we could use
such properties to depict dependency. 

We constructed five different ways of representing
the dependency relationship, as Figure 8 illustrates. To
show that the red cylinder depends on the blue barrel,
these representations consisted of a broken tube (a), a
connected tube (b), the cylinder on top of the barrel (c),
disconnected objects (d), and the cylinder on the bot-
tom of the barrel (e). Representation (a) most closely

resembles the dependency repre-
sentation in UML, which consists of
a dashed line with an open arrow-
head going from the dependent to
the depended on.5

Evaluating dependency
We asked subjects to rank from

one to five (best to worst) the repre-
sentation denoting that one object
depends on another. In Figure 8, the
red cylinder depends on the blue
barrel. They recorded their rankings
for all three sets of representations.
We showed each subject the repre-

sentations in  different random orders.
A χ2 test on the results shows that there were no sta-

tistically significant differences in selecting the best rep-
resentations between novices and experts (a P-value of
0.49 for null hypothesis of agreement between novices
and experts). Therefore, we combined the results and
Figure 9 shows the average rankings of all 40 subjects.
A top-down test of correlation on the average rankings
shows a strong agreement between all 40 subjects for
the best-ranked representations (P-value < 0.0001 for
null hypothesis of no correlation between rankings cho-
sen by 40 subjects). As Figure 9 shows, dependency is
best depicted using the on top of representation (c). This
representation is significantly better than the second
best representation of a connected tube (b). With 95
percent confidence, the probability that any subject—
novice or expert—would choose (c) over (a) is between
0.58 and 0.86).

You don’t commonly see dependency represented
using the spatial property on top of in software struc-
ture diagrams, but you can find it in other types of visu-
al representations. Organizational charts, which stack
different parts of the corporation on a pyramid, use such
a spatial organization between the represented entities.
In such diagrams, an implicit assumption of the depen-
dency exists between objects on the top of and on the
bottom of the pyramid. A drawback of such a represen-
tation is the amount of space required to show several
entities on top of any given object. 

Relationship strength
A common semantic in structured diagrams is strong

and weak relationships. This semantic isn’t directly mod-
eled using UML but is common in other types of struc-
tured diagrams, such as entity-relationship diagrams.20

In UML class diagrams, we refer to a strong aggregation
as a composition, and this denotes a strong relationship
between two entities. Biederman suggests that during
object recognition our perceptual system differentiates
parts of an object based on their relative sizes (see RR5).

Representing relationship strength
The purpose of this subexperiment was to examine

whether we can apply the perceptual mechanism of dis-
criminating based on relative ratios toward the seman-
tic of relationship strength.
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8 A sample set
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ranked for
showing depen-
dency. The red
cylinder
depends on the
blue barrel.
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We created six different ways of
representing the strength of a rela-
tionship (Figure 10). These repre-
sentations consisted of a thick
connected tube (a), adjacent enti-
ties (b), a long connected tube (C),
a conic connection (d), disconnect-
ed entities (e), and a short connect-
ed tube (f). 

Evaluating relationship
strength

We asked subjects to rank from
one to six (best to worst) the repre-
sentation denoting that one object
is strongly related to another. For the example in Figure
10, we asked subjects to rank the representations
according to how effectively each denoted a strong rela-
tionship between the blue barrel and red cylinder. For
each subject, the representations appeared in a different
random order. 

A χ2 test on the results showed that novices and
experts were in perfect agreement on their choice of
rankings (a test of null hypothesis of agreement yields
P-value of 1.0). We thus combined the results and sum-
marized the average rankings for 40 subjects in Figure
11. A top-down test of correlation shows that all 40 sub-
jects were in strong agreement in selecting the top best
rankings (P-value < 0.0001 for null hypothesis of no
correlation between rankings chosen by 40 subjects),
and Figure 11 depicts the best representation for show-
ing that two entities are strongly related is a thick con-
nection between the objects (a). This representation is
significantly better than its alternative representation
(b). With 95 percent confidence, the probability that
any subject—novice or expert—chooses (a) over (b) is
greater than 0.99. These results strongly suggest that
using a relatively larger size for a connection can depict
strength of relationship. 

Multiplicity (or cardinality)
In many instances, skills involving counting or know-

ing the exact quantity isn’t essential in providing a sta-
ble image. For example, a shepherd need not count to
know whether his group is complete.20 When children

are asked to copy a figure made with counters, they don’t
use the exact number of counters (even if they know to
count) but do justice to the shape of the figure.21 A com-
mon method for representing this semantic attribute is
the use of an asterisk (*) or an exact numeral (such as
1, 2, and so forth) over the link and beside the entity
which is associated in multiples. Other common nota-
tions are 1..*, 0..*, or *. However, numbers are learned
symbols and aren’t cognitively immediate.

Representing multiplicity
The purpose of this part of the experiment was to

derive a representation that would represent that an
entity is associated with multiple copies of another
object.

We constructed five different ways of representing
the multiplicity attribute of a relationship as Figure 12
illustrates. These representations consist of a conic con-
nection with multiple glyphs (a), disjoint objects (b),
multiple connecting tubes (c), single connecting tube
(d), and simple conic connection (e). In this illustration,
the representations depict the blue barrel being associ-
ated to multiple instances of the red horn.

Evaluating multiplicity
We asked subjects to rank from one to five (best to

worst) the representation denoting that one object is
associated to multiple copies of another object. We pre-
sented them three sets of images. For the set in Figure
12, we asked subjects to rank the representation that
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10 One of three sets being ranked for showing relationship strength. The
red cylinder and blue barrel are strongly related.
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best denotes the blue barrel is associated to multiple
copies of the red horn. The order of the representations
was random for each subject.

A χ2 test on the results shows that both groups of sub-
jects strongly agree on rankings (a test of null hypothe-
sis of agreement yields P-value of 0.18). We therefore
average the results, which we summarized in Figure 13.
A top-down test of correlation on the average rankings
shows strong agreement between all 40 subjects on their
rankings (P-value < 0.0001 for null hypothesis of no
correlation between rankings chosen by 40 subjects).
As Figure 13 shows, multiple connecting tubes (c) best
represent multiplicity. This representation is signifi-
cantly better than its alternative (a). With 95 percent
confidence, the probability that any subject—novice or
expert—chooses (a) over (b) is between 0.52 and 0.82.

This representation of multiplicity has obvious prob-
lems. People are likely to interpret multiple representa-
tions in an overly literal sense. For example, if three
branches exist, exactly three instances will be inferred.
On the other hand, there’s a theory that humans and

animals have a perceptual sense of numbers, but only
in a limited amount. We may be only able to naturally
separate one, two, and possibly three objects. If there
are more objects, we simply perceive them as a lot.22

Aggregation
In UML methodology, aggregation describes a special

form of association in which an object contains anoth-
er. In software engineering terms, we also refer to aggre-
gation as a has a relationship. For example, an
organization has a president. We refer to a strong aggre-

gation as a composition. Evidence
suggests that our perceptual system
can separate an object when it’s seen
as being contained within other
objects.

Representing aggregation
The purpose of this part of the

experiment was to establish a rep-
resentation suitable to denote an
aggregation, part of, or containment
relation.

We constructed five different ways
of representing aggregation (Figure
14). These representations consist of
a connected tube (a), an object per-
cent (b), disjoint objects (C), con-

nection with containment (d), and containment (e).

Evaluating aggregation
We asked the subjects to rank from one to five (best to

worst) the representation denoting that one object is
contained within another. In the case of the represen-
tations given in the set in Figure 14, we asked subjects to
rank the representation that best denotes that the red
barrel is contained within the green cylinder. 

A χ2 test on the results shows that both groups of sub-
jects strongly agree on rankings (a test of null hypothe-
sis of agreement yields P-value of 0.74). This result lets
us average the rankings of all 40 subjects, which we sum-
marize in Figure 15. A top-down test of correlation on
the average rankings shows that subjects are consistent
in their ranking (a P-Value < 0.0001 for null hypothesis
of no correlation between rankings chosen by 40 sub-
jects). The results show that the best depiction for aggre-
gation is a connection with containment (d). This
representation isn’t significantly better than its alterna-
tive (e). With 95 percent confidence, the probability that
any subject—novice or expert—chooses (a) over (b) is
between 0.47 and 0.76.

Applying theories of perception to
drawing diagrams

Together with results from our previous studies, the
results we describe here help us define rules for the geon
diagram. We’ve used Biederman’s term (geon), as it
nicely describes the idea of a 3D shape, although we
don’t necessarily endorse the particular set of 3D shape
primitives in Biederman’s theory. We define five rules
relating to the use of geons as 3D primitives, three rules
that relate to the layout of the geon structure, and nine
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additional rules for portraying cer-
tain semantics.

� G1. Present a system’s major enti-
ties using simple 3D shape primi-
tives (geons).

� G2. Represent links between enti-
ties by the connections between
geons. Thus the geon structural
skeleton represents the data
structure.

� G3. Represent minor subcompo-
nents as geon appendices—small
geon components attached to
larger geons. 

� G4. Shade geons to make their 3D
shape clearly visible.

� G5. Represent secondary attributes of entities and
relationships by geon color and texture and by sym-
bols mapped onto the surfaces of geons.

Although geons are 3D shape primitives, theories of
shape extraction rely heavily on a clear silhouette. For
this reason, a good 2D layout will also be important in
determining how easily users identify a geon structural
description. Thus we add the following layout rules:

� L1. All geons should be visible from the chosen view-
point.

� L2. Lay out the geon diagram predominantly in the
plane orthogonal to the view direction.

� L3. Make junctions between geons clearly visible.

To provide rules for constructing effective diagrams,
we need to extend the syntax of structural description to
include mapping of semantics to data elements. The
results of our experiments suggest that we can use cer-
tain types of naturally occurring semantic rules:

� SM1. Similarity and generality. We can use geons with
the same structural geometrical composition (or
shape) to denote objects of the same kind.

� SM2. Gravity. If geon (a) is on top of geon (b), this
suggests that geon (b) supports geon (a). In addition,
gravity determines that structures are perceived as
either being stable or unstable. 

� SM3. Enclosure. This shows that geon (b) contains
geon (a). Syntactically, we can show this as an inter-
nal component attached to the same primitive geon
on the outside.

� SM4. Ordinality. To show multiple associations
between two entities, a series of attachments can best
denote such a relationship.

� SM5. Strength of connection. Using a thicker con-
nection as opposed to a thinner one can denote a
stronger relationship between two entities.

� SM6. Sequence. Geons arranged in a line become a
metaphor for a chain of operations or some other lin-
ear structure. 

� SM7. Symmetry. Some information structures have
symmetry, and we should use a symmetrical arrange-
ment of geons to show this. 

� SM8. Central and peripheral. If a component is of cen-
tral importance to a structure, we can illustrate this
through its position and by the location of the inter-
connections. 

� SM9. Size. We can map larger components to an
understanding of superiority in areas such as
finances, economics, and politics.

Validating the perceptual syntax
To evaluate the geon diagram syntax and semantics,

we created geon diagrams to model real world exam-
ples. For example, Figure 16 illustrates one of the dia-
grams modeling an academic conference whose
components are attendees, speakers, A/V equipment,
and so on. Using this diagram and others like it, we con-
ducted an experiment to evaluate whether the notations
of the geon diagrams were intuitive and easily describ-
able. A group of 35 students (different from the 40 sub-
jects we used earlier) who were unfamiliar with the
software modeling semantics in UML participated in the
experiment.

We created a set of 3 UML diagrams and equivalent
geon diagrams for the experiment. We arbitrarily
labeled the entities in the diagrams as we were primar-
ily validating the syntax and didn’t want to influence the
choice of semantic based on the labeling (Figures 17 and
18). In a classroom setting, we presented the subjects
with the UML diagrams and equivalent set of geon dia-
grams. They had no previous experience with either
type of diagramming convention. We asked them to
describe the relationships between several pairs of enti-
ties in the diagram using multiple-choice answers. The
choices included is the same kind as, depends on, has
man, and has one.

We summarize the error rates in identifying relation-
ships as follows: the geon error rate was 11.5 percent
and the UML error rate was 53.6 percent. These results
show that there were almost five times as many errors
deciphering relationships using UML notation than
using the perceptual syntax.

Conclusion
Perception researchers have theorized that complex

structured objects are automatically parsed by the visu-
al system into component parts, together with a struc-
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tural skeleton. We’ve shown that applying this theory
leads to a perceptual syntax with which we can construct
diagrams that are easier to interpret and remember. The
results suggest that mapping information structures into
connected structures built with 3D geon primitives will
make the information easy to read.

We recognize that our semantic mappings are far from
complete. For example, studying the perceived meaning
of different kinds of linking objects—broken tubes,
dashed tubes, cone-shaped tubes, and transparent
tubes—might further enrich our graphical vocabulary. 

There are tradeoffs inherent in creating geon diagrams.
Due to the amount of real estate they can consume, the
complexity of what can be represented using these kinds
of primitives may be less than what is possible using more
cryptic line and box diagramming techniques. A possible
tradeoff also exists between the concrete nature of geon
diagrams and the representation of certain abstractions.
If, for example, we use size to represent magnitude, then
it becomes difficult to represent objects or concepts that
have arbitrary magnitude. Labeling is an important ele-
ment of diagrams and is another issue that we must
address when using geon primitives. It may be difficult
to show text as clearly wrapped on a 3D-shaded object. A
textured object is especially likely to interfere with the
readability unless the texture is subtle.

Our new notation can possibly help experts and non-
experts interact. In many projects, interaction between
the client, manager, and programmer is essential for the
proper system development, so a diagramming system
that is more easily accessible to nonexperts could be use-
ful. We of course aren’t advocating the abandonment of
UML notations; they’re the most highly evolved graph-
ical modeling tools we have. However, we hope that for
new applications we can start to see the development
of diagrams that take advantage of diagrams made with
3D shape primitives. �
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