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Abstract—Active sonar sensing often entails propagation paths
that include a surface reflection, particularly in shallow-water sce-
narios. Surface reflection loss, which degrades sonar performance,
depends on how rough the surface is with respect to the sens-
ing wavelength and grazing angle. The Rayleigh roughness mea-
sure quantifies this relationship with small values representing an
acoustically smooth surface and large values an acoustically rough
surface. Models predicting surface reflection loss are generally de-
rived assuming the surface shape is not varying over the time in
which the pulse is reflecting from it and that the ensonified region
of the surface is large in extent relative to the spatial correlation
length of the surface. While these models are often appropriate
for short-duration narrowband pulses, they are not necessarily
applicable to long-duration broadband pulses, which are the fo-
cus of this paper. By assuming the effective ensonified area after
matched filtering is smaller in extent than the spatial correlation
length, a surface-reflection-loss model is derived as a function of
pulse duration relative to surface wave period when the net sur-
face displacement is Gaussian distributed. As might be expected the
matched filter loss for the small-ensonified-area scenario increases
with the Rayleigh roughness, the number of consecutive surface
reflections, and the ratio between pulse duration and the surface
wave period. With respect to the latter, the loss is predicted to sat-
urate when the pulse duration exceeds one surface wave period.
The model was compared with data measurements from the 2013
Target and Reverberation Experiment, as reported by Hines et al.
(“The dependence of signal coherence on sea surface roughness for
high and low duty cycle sonars in a shallow water channel,” IEEE
J. Ocean. Eng., vol. 42, no. 2, pp. 298–318, Apr. 2017). The data
represent both short- and long-duration pulses with respect to the
surface wave period. For the short-duration pulses, the model cor-
roborates the data analysis by Hines et al. in predicting a very small
matched filter loss. It also compared very favorably with the data
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for the long-duration pulses in both level and slope as a function of
surface roughness. The models presented in this paper should be
useful in sonar-equation analysis for predicting surface reflection
loss with broadband waveforms when pulse duration is on par with
or exceeds the surface wave period.

Index Terms—Coherence, matched filter, sonar, surface reflec-
tion loss, surface roughness, surface waves.

I. INTRODUCTION

R EMOTE sensing with active sonar systems often involves
indirect propagation paths reflecting from the ocean sur-

face. When the surface is perfectly reflecting and smooth in
shape with respect to the sensing wavelength the reflected pulse
only undergoes a change in sign. However, when the surface
is rough the reflected pulse is also attenuated, which will re-
duce sonar performance. A rough surface can arise from swell
or wind-generated waves and models are readily available to
describe the surface reflection loss as a function of wind speed
(e.g., [1] or [2, Sec. 8.1.1]). These theoretical models for rough-
surface reflection are generally derived under an assumption
that the surface is static while the pulse reflects off of it (i.e.,
the “frozen” ocean assumption) and that an area large in extent
relative to the spatial correlation length (SCL) of the surface is
ensonified. A classic model [3] arising when the displacement
from the smooth-surface condition (i.e., a flat surface) follows
a Gaussian distribution results in a 4.3γ2

r dB attenuation in the
pressure for each reflection.1 The quantity γr = 2kcσz sin θg is
the Rayleigh roughness, where kc is the acoustic wavenumber,
σz is the root-mean-square (RMS) surface displacement, and
θg is the grazing angle of the incident and reflected pulses as
measured from the surface. The focus of this paper is on sur-
face reflection loss when the effective ensonified area on the
surface is small in dimension relative to the SCL and when
the surface is in motion while the pulse reflects from it. Two
design characteristics of an active sonar pulse motivate this fo-
cus: bandwidth and duration. The classic theory is generally
adequate for short-duration narrowband (NB) pulses. However,
broadband waveforms such as linear- and hyperbolic-frequency-
modulated (LFM and HFM) pulses produce, after matched fil-
tering, an effective ensonified area that is inversely proportional

1Derivations of the classic surface reflection loss result can be found in [4,
Sec. 13.2.1] or [5, App. A.3.3].
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to bandwidth in the down-range dimension and can therefore
be small relative to the SCL of the surface. When the surface is
not so rough that the pulse compression properties of matched
filtering are significantly impaired, the portion of the surface
contributing to the match-filtered reflected wave, termed the ef-
fective ensonified area, depends (in the down-range dimension)
on the bandwidth of the waveform rather than its duration as
occurs for NB pulses. Noting that surface waves with periods
of 4–12 s appear to dominate the wave energy spectrum [6, Ch.
9], the surface is expected to be effectively stationary for many
sonar pulses. However, longer duration pulses are not uncom-
mon in underwater acoustical applications (e.g., see [7]–[9]) and
are therefore subject to a surface that is in motion throughout
the reflection process.

This paper is organized in three sections. Modeling the sur-
face reflection (see Section II), modeling sonar performance (see
Section III), and a model-data comparison (see Section IV). The
basic surface reflection geometry is described in Section II along
with the classic surface-loss result for a Gaussian-distributed
surface displacement. While broadband waveforms will clearly
provide a small effective ensonified area in the down-range di-
mension, other factors are identified in Section II-C that can con-
tribute to reducing the cross-range extent of the effective ensoni-
fied area. Given a small effective ensonified area, the reflected
pulse is described as the incident pulse subject to a time-varying
delay, which is related to the temporal variation in surface dis-
placement. The ensuing distortion in the reflected pulse causes
a mismatch loss in the matched filter (MF) that can be related to
the surface displacement characteristics and sensing geometry.
For a single surface reflection, the statistical characterization of
the surface strongly influences the time-varying delay. When the
surface comprises a large number of linearly combined waves,
the Gaussian distribution is a natural candidate. As shown in
Section II-F, it also arises in describing the net surface displace-
ment encountered for a long-range sensing scenario within a
waveguide, where there are multiple consecutive surface reflec-
tions. Research in the area of reflection and scattering from
moving surfaces often focuses on the effect of Doppler (e.g.,
[10] and [11]), which is important in communications applica-
tions and is also affected by motion of the source and receiver.
The loss of coherence [12]–[14], which can represent MF loss,
has also been evaluated when the surface is in motion, although
under the classical assumptions of a NB pulse and a large en-
sonified area. The small-effective-ensonified-area scenario with
broadband waveforms appears only to have been considered in
the data analysis and preliminary modeling reported by Hines
et al. [9], which forms the motivation for the research presented
in this paper as an expansion of [15]. By modeling the sur-
face as a temporally bandpass space-time wide-sense-stationary
(WSS) random process, the surface waves’ dominant temporal
frequency can be incorporated into the time-varying delay im-
parted to the pulse as it is reflected from a small effective ensoni-
fied area. As shown in Section III, this allows evaluation of the
average loss incurred after matched filtering as a function of the
pulse duration and bandwidth. While the modeling initially uses
a NB analysis to provide tractable analytical results, both model
and simulation results are presented for broadband LFM pulses.

Fig. 1. Illustration of the displacement of the reflection point for a tilted
surface relative to a smooth surface.

In Section IV, the models are compared to data measurements
reported by Hines et al. [9] from the Office of Naval Research’s
2013 Target and Reverberation Experiment (TREX-2013)2 [16].
Two sensing scenarios from TREX13 are considered: A one-
way/short-range/single-surface-reflection case (termed the “S1
path”) and a two-way/longer-range/multiple-surface-reflection
case involving reflection from an air-hose (termed the “PATS
echo”). While the details pertinent to the TREX13 data analy-
sis are found in Section IV, the assumptions made developing
the surface reflection loss models in Sections II and III will be
related to the conditions encountered in the TREX13 data and
environment when appropriate.

II. MODELING THE SURFACE REFLECTION

A. Surface-Reflection Geometry

Suppose a source and receiver are both at depth zs and are
separated by horizontal distance xs . A pulse with analytic sig-
nal p0(t) is transmitted from the source, reflects from a smooth
surface, and is measured at the receiver. Assuming the sound
speed is constant, the point of specular reflection off the sur-
face in the path connecting the source, surface, and receiver is
halfway between the source and receiver. The reflection from
this nominal surface is depicted in the upper part of Fig. 1, with
a grazing angle θg relative to horizontal. The signal measured
at the receiver

pr (t) = ar p0(t− τ0) (1)

is simply the transmitted signal subject to an amplitude scale
(ar ) and a delay τ0 = r0/cw , where r0 is the distance traveled
and cw is the speed of sound.

2See Section V for a full acknowledgement related to TREX13.
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Fig. 2. Path-length difference for a single surface-reflection cycle of the PATS scenario in terms of wavelengths (clipped at 0.5) and the sonar resolution cell for
a 900-Hz LFM pulse.

Now suppose the surface at the point of reflection is subject to
small offsets in height and slope, as illustrated in the lower part
of Fig. 1. This changes the surface-reflected path connecting the
source and receiver, displacing the point of specular reflection
from its original location on the nominal surface. Let (δ‖, δ⊥)
represent the offsets in the horizontal plane with δ‖ in the par-
allel (‖) dimension (i.e., in the source-receiver plane) and δ⊥
as perpendicular (⊥) to that plane. Let z represent the vertical
offset with z > 0 below the nominal surface. Note that z is used
here rather than “δz ” to emphasize that the reflection point is
still a point on the surface. The difference in the path lengths
between the perturbed and nominal surface geometries, when
approximated by a MacLaurin series with first order in z and
second order in δ‖ and δ⊥, is

Δr ≈ −2z sin(θg ) +
δ2
‖
zs

sin3(θg ) +
δ2
⊥
zs

sin(θg ) (2)

= −2z sin(θg )

{
1 −

δ2
‖ sin2(θg )

2zzs
− δ2

⊥
2zzs

}
(3)

≈ −2z sin(θg ). (4)

From (2) or (3), it can be seen that the second-order approxima-
tion requires the horizontal displacements (δ‖ and δ⊥), which
depend on the shape of the surface. The approximation in (4)
retains only the first-order terms, assuming the conditions are
met for the horizontal displacements to be small (e.g., a small
RMS waveheight).

B. Classic Surface-Loss Result

Models of reflection from rough surfaces typically assume
that the effective ensonified region of the surface is large rela-
tive to the SCL of the surface (n.b., a low-grazing-angle/far-field
assumption may be required to produce an effective ensoni-
fied area encompassing many SCLs). For a pulse with duration
D impinging on a surface at grazing angle θg , the ensonified
down-range extent is E‖ = cwD/ cos θg . As such, the large-
ensonified-area assumption will generally be true for pulses with
duration on the order of a second. The classic result (e.g., see [4,
Sec. 13.2.1]) under this assumption uses (4) to obtain the loss
in the average “coherent” pressure arising from reflection off a
rough surface. In deriving the classic result, the surface height
displacement is assumed to be static throughout the duration

of the pulse. The measured signal is then assumed to contain
contributions from all possible surface displacements owing to
the large ensonified area. This allows describing the measured
signal as an expectation

pr (t) = arE

[
p0

(
t− τ0 +

2z sin(θg )
cw

)]
(5)

over all possible surface heights (z). As shown in [4,
Sec. 13.2.1], when p0(t) is a sinusoidal signal with frequency
fc and the surface displacement z is modeled as Gaussian dis-
tributed with zero mean and variance σ2

z , the pressure mea-
sured at the receiver for a given time t has an amplitude lower
than that for a fixed smooth surface by a factor e−γ

2
r /2 , where

γr = 2kcσz sin θg is the Rayleigh parameter with wavenumber
kc = 2πfc/cw .

It is important to note that this reduction in the pressure
amplitude does not accurately represent the loss incurred by a
MF unless the coherent component dominates the total power
(i.e., it will represent the MF loss only for small values of γr ).
Using the total power computation (e.g., see [17, Sec. 6.5])
produces the desired MF loss when the surface is stationary
while the pulse reflects off it, but requires a statement about the
SCL of the surface or the surface slope when γr is not small.

C. Small Effective Ensonified Area

The area of the surface ensonified by the sonar is (for low
grazing angles) nominally defined in the down-range dimen-
sion by the pulse length and grazing angle and in the cross-
range dimension by the transmitter beamwidth. However, the
subset of the ensonified area contributing significantly to the
specular reflection is limited to the first few Fresnel zones [18,
Sec. 2.2]. To illustrate this, the path-length difference for one
surface-reflection cycle of the PATS scenario is shown in Fig. 2,
but limited to a maximum difference of one half wavelength to
emphasize the first Fresnel zone.

The sonar and signal processing can also result in a reduction
of the ensonified area contributing to the specular reflection. Of
particular interest in this paper is the case of a broadband trans-
mit waveform. Matched filtering broadband waveforms results
in a sonar resolution cell with width approximately 1/W , where
W is the waveform bandwidth. This corresponds to the effective
ensonified area having a down-range extent that is inversely pro-
portional to bandwidth, E‖ = cw /(W cos θg ), rather than being
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proportional to pulse duration as it is for NB pulses. For exam-
ple, the very narrow sonar resolution cell for the 900-Hz LFM
pulse used in the TREX13 experiment is shown in Fig. 2 for
the PATS scenario. The 0.85-m down-range extent of the sonar
resolution cell is significantly less than that of the first Fres-
nel zone. The effective ensonified area after Matched filtering
can be viewed as the intersection between the sonar resolution
cell and the first Fresnel zones. Thus, for the example shown
in Fig. 2, pulse compression limits the effective ensonified area
in the down-range dimension while the Fresnel zone limits it
in the cross-range dimension. The “small” effective ensonified
area assumption made in this paper further assumes the SCL
is larger in each dimension than the intersection of the sonar
resolution cell and Fresnel zone so the reflection is dominated
by only one part of the surface.

In the cross-range dimension, there are multiple mechanisms
by which the effective ensonified area can be limited.

1) Beamforming in either the transmitter or receiver reduces
the cross-range extent of the effective ensonified area
of the surface, although generally not as significantly as
Matched filtering does to the down-range dimension. This
may only be the limiting factor for very narrow beams or
at short ranges.

2) As previously mentioned, the physics of reflection as
quantified by the first few Fresnel zones can limit the
effective ensonified area. For shallow grazing angles, the
Fresnel zone is narrower in the cross-range dimension
than in the down-range dimension (i.e., the phase changes
more rapidly in the cross-range dimension than down-
range). This can be seen from (2), where the change in
the path length with respect to the squared horizontal
offset (δ2

‖ or δ2
⊥) is proportional to sin3(θg ) in the down-

range dimension whereas it is only proportional to sin θg
in cross-range, so an offset in the down-range dimension
must be a factor 1/ sin θg larger than a cross-range offset
to yield an equivalent change in path length.

3) The SCL measurements, which can be formed from the
ratio of the RMS wave height to the RMS surface slope
as done in [9], primarily focus on the mainlobe of the sp-
atial correlation function (SCF). They do not capture re-
gions of high correlation induced by spatial periodicity
of surface waves. These regions of high correlation out-
side the mainlobe of the SCF act to reduce the net surface
variability (i.e., the number of statistically independent
surface heights observed) within the effective ensonified
area.

4) In a shallow-water sensing scenario where there are multi-
ple surface-reflection cycles, reflection in the specular di-
rection of the smooth surface (i.e., from horizontal facets)
may dominate as other directions will fail to propagate
down the waveguide [2, Sec. 8.1.1]. Thus, the small-
effective-ensonified-area definition changes to require ob-
serving only one horizontal facet. This suggests using
either one half of a spatial wavelength (if the surface is
spatially periodic) or perhaps the distance to the first neg-
ative sidelobe in the SCF to define the SCL.

Of these mechanisms, only beamforming is under the control
of a sonar designer. The others are either a byproduct of the
sensing geometry or depend on the shape of the surface SCF.

When the effective ensonified area of the surface is small in
extent relative to the SCL and the surface is smooth with a radius
of curvature that is large relative to the acoustic wavelength, the
tangent-plane scattering assumption inherent in the geometric
representation of Section II-A is all that is necessary to describe
reflection of the pulse.3 Because only a small, very correlated
portion of the surface is effectively contributing to the reflec-
tion, the signal measured at the receiver can be represented by
(1) with a time-varying delay defined by the height of the one
contributing part of the surface. In the case where the pulse
is short relative to the wave period, the wave can be assumed
stationary throughout the reflection (i.e., the frozen ocean as-
sumption). This implies the one part of the surface contributing
to the reflection does not change during pulse reflection, it is at
a constant height. The signal measured at the receiver is then
of the form found in (1) with a delay τ0 − 2z sin(θg )/cw . This
is the opposite extreme of the large ensonified area assumed
in the classic surface-loss result; here there is no combination
over multiple surface heights but rather only one fixed surface
height contributing to the reflection and resulting in no more
than a small change in travel time. This implies that broadband
pulses that are short in duration relative to the wave period will
suffer little to no loss during surface reflection if the effective
ensonified area is less than the SCL.

D. Time-Varying Delay

If the pulse duration is on the order of, or larger than, the
wave period, the time-delay imparted on the reflected pulse
can no longer be assumed constant; it must change with the
surface displacement. Under the small-effective-ensonified-area
conditions of Section II-C, (1) becomes

pr (t) = ar p0(t− τ0(t)) . (6)

When (4) is a good approximation to the effect of displacing
the point of specular reflection, the time-varying delay is dom-
inated by the vertical displacement of the surface itself. Math-
ematically, if Z(t, �x) is the surface displacement as a function
of time and space in the horizontal plane with �x = (x‖, x⊥), the
time-varying vertical displacement of the reflection point is

z(t) = Z(t, �x0 + �δ(t)) (7)

where �δ(t) = (δ‖(t), δ⊥(t)) is the horizontal displacement from
the reflection point of the nominal surface, which is assumed
to be at �x0 . As long as the horizontal displacement is small,
z(t) will be very similar in its statistical characteristics to the
surface height at �x0 ; that is, from a statistical perspective z(t) ≈
Z(t, �x0).

Using the approximation in (4) with a time-varying vertical
displacement in (6) produces

pr (t) = arp0
(
t− τ0 + 2c−1

w z(t) sin θg
)

(8)

3Ignoring the effects of shadowing and multiple scattering.
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at the receiver where it is assumed that there is no change in
the amplitude from either the longer propagation path or the
small change in grazing angle associated with a displaced re-
flection point. As an example, suppose the vertical surface dis-
placement has constant speed, z(t) = vst, then (8) results in
pr (t) = p0(ζt− τ0) where

ζ = 1 +
2vs sin θg

cw
(9)

is the familiar Doppler-induced time scale. However, as will be
described in the following section, a more realistic model of the
surface motion is desired before evaluating the impact on sonar
performance.

E. Time-Varying Surface

Wind-generated surface waves, while not pure sinusoids, of-
ten have narrow spectral content. For example, both the Pierson–
Moskowitz and Joint North Sea Wave Observation Project
(JONSWAP) spectra [19, Sec. 16.4] exhibit increasingly narrow
spectra as wind speed increases. A natural model for the surface
displacement is therefore one of a temporally NB space-time
random process

Z(t, �x) = A(t, �x) cos(2πfw t+ φ(t, �x)) (10)

where fw is the dominant wave frequency in cycles per second
(hertz). A(t, �x) and φ(t, �x) represent temporally and spatially
varying amplitude and phase and are assumed to be constructed
so that Z(t, �x) is a zero-mean, WSS random process. The tem-
poral variation of A(t, �x) and φ(t, �x) should be slow relative
to the frequency fw for the surface height to be considered
NB; however, the bandwidth only needs to be less than 2fw
(when centered at fw ) for (10) to represent a band-limited pro-
cess. As an example, suppose φ(t, �x) = �kw · �x+ φ0 where φ0
is uniformly random on (0, 2π) andA(t, �x) is constant. The sur-
face is then purely sinusoidal with the wave frequency fw and
wavenumber vector �kw related by the appropriate wave disper-
sion equation. A band-pass nature implies that the mean-square
surface displacement

σ2
z = E

[
Z2(t, �x)

]
=

1
2
E

[
A2(t, �x)

]
(11)

is half the average power in the wave amplitude A(t, �x). For
the purely sinusoidal surface with amplitude Aw , this results in
σ2
z = A2

w/2.

F. Multiple Consecutive Surface Reflections

In the remote-sensing scenario of interest, the propagating
pulse is assumed to reflect off the surface ns times consecutively
as it travels down a waveguide. Suppose the surface reflections
occur at locations �xi and times t+ τi for i = 1,...,ns . Assuming
the model of (4) where the time delay induced by the moving
surface is dominated by the surface’s vertical displacement at
the point of reflection, the effect on the measured signal at a

receiver is that of a net displacement

z(t) ≈
ns∑
i=1

Z(t+ τi, �xi)

=
ns∑
i=1

A(t+ τi, �xi) cos(2πfw (t+ τi) + φ(t+ τi, �xi))

=
ns∑
i=1

Ai cos(2πfw t+ φi) (12)

where Ai and φi represent the amplitude and net phase offset,
respectively, from each reflection.

When the surface displacement is not purely sinusoidal, it is
reasonable to assume it is statistically independent when sam-
pled far enough apart in time and/or space. Such an assump-
tion in the TREX13 environment is supported by the decaying
SCFs found in [9]. Under the statistical independence assump-
tion, the central limit theorem (CLT) [20, Sec. 5.3.2] can be
applied to simplify the characterization of z(t). First note that
cos(2πfw t+ φi) = Real

{
ej2πfw t+jφi

}
. Then

z(t) = Real

{
ej2πfw t

ns∑
i=1

Aie
jφi

}
(13)

=
√

2σ2
z ns Real

{
ej2πfw tV

}
(14)

where E[A2
i ] = 2σ2

z from (11) and, under some mild regularity
restrictions on the distribution of (10)

V =
1√

2σ2
z ns

ns∑
i=1

Aie
jφi (15)

is approximately a zero-mean, unit-variance, complex Gaussian
random variable. V can then be described in polar form as
V = Aejφ , where A is Rayleigh distributed with unit power
(i.e., E[A2 ] = 1) and φ is uniformly random on (0, 2π). This
simplifies z(t) to

z(t) =
√

2σ2
z nsA cos(2πfw t+ φ) (16)

and implies that for a given time, the net displacement is a
zero-mean Gaussian-distributed random variable with variance
nsσ

2
z . Owing to the CLT applied to the sum in (13), this result

is valid even when the surface displacement at a single point is
not Gaussian distributed. The accuracy, of course, depends on
how many surface reflections occur, unless Z(t, �x) is initially
a Gaussian random process in which case the result is accurate
for all ns , even a single reflection.

III. SONAR PERFORMANCE MODELING

A. MF Loss and the Static-Surface Result

Sonar detection processing involves applying an MF to the
received signal in (8), which represents the small-effective-
ensonified-area scenario, using the transmit waveform as a
replica

x(τ) =
∫ ∞

−∞
p0(t)p∗r (t+ τ) dt. (17)
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Because p0(t) and pr (t) are formulated as analytic signals, x(τ)
is the complex envelope of the MF output. Detection is therefore
accomplished by comparing the instantaneous intensity |x(τ)|2
to a threshold for all delays τ .

When the surface displacement is static (i.e., z(t) = z0) the
MF complex envelope is a scaled and delayed version of the
waveform autocorrelation function (ACF)

x(τ) = arχ(τ − τ1) (18)

where χ(τ) =
∫ ∞
−∞ p0(t)p∗0(t+ τ) dt is the ACF of the trans-

mit waveform. The delay τ = τ1 = τ0 − 2c−1
w z0 sin θg is where

(18) will have a maximum squared envelope,|arχ(0)|2 .
The loss in sonar performance arising from rough-surface

reflection can be described by the reduction in the average peak
signal intensity after Matched filtering, quantified by the loss
factor

L̄ =
1

|arχ(0)|2E
[
max
τ

|x(τ)|2
]

(19)

where |arχ(0)|2 represents the smooth-surface result.
While the delay time τ1 at which the peak MF output in (18)

occurs will vary with z0 , there is no loss (i.e., L̄ = 1) when
the surface is static throughout the duration of a pulse and the
effective ensonified area is small relative to the surface SCL.
The scenario in which a loss might occur with a static surface
displacement is when multiple different time delays are included
in the measured signal for every realization of the surface (i.e.,
the scenario of the classic result described in Section II-B).
However, the focus of this paper is on how much loss is incurred
when the surface is in motion while the pulse is reflecting off it.

B. NB Modeling Results for a Time-Varying Surface

When the surface is in motion throughout the duration of the
pulse, the time-varying surface height in (16) can be used to
determine the MF loss for a given pulse type. While our pri-
mary interest lies in broadband waveforms because they yield
a small effective ensonified area after Matched filtering, it is
useful to consider the analytical results under the NB assump-
tion of a small bandwidth relative to center frequency, which
is essentially the same (in a mathematical sense) as assuming
a continuous-wave (CW) pulse. Noting that the ACF width for
a CW pulse is proportional to its duration, notionally there is
a potential conflict between the need for a short CW pulse to
induce a small ensonified area and at the same time a long
pulse to observe changing surface motion (i.e., there may not be
many CW-pulse-duration/surface-period/SCL conditions satis-
fying this scenario). Despite this limitation, the analytical results
for the NB model are expected to be accurate for broadband
pulses when the bandwidth-to-center frequency ratio (W/fc )
is small and they provide a mathematically tractable solution.
This is conceptually similar to assuming the Doppler effect pro-
duces a frequency shift rather than a scale; it will be accurate if
the waveform bandwidth is small enough relative to its center
frequency.

The MF output of the received signal can be obtained by using
(16) in (8) and then (17) to produce

x(τ) = a∗r

∫ ∞

−∞
p0(t)

× p∗0

(
t+ τ − τ0 +

2 sin(θg )
cw

√
2σ2

z nsA cos(ωw t+ φ)
)

dt

(20)

where ωw = 2πfw . To simplify the analysis, the peak magni-
tude of (20) is assumed to occur for the delay time matching
that of the smooth surface (τ = τ0). This essentially assumes
any potential offset of the peak in delay from τ0 arising from
a distortion of the MF response is less than the temporal res-
olution of the waveform. Note that the offset of the peak here
arises from an overly distorted MF response; it is not referring
to a displacement of the effective ensonified area of the surface
from the smooth-surface specular point as may occur in some
surface/sensing-geometry scenarios (in which case τ0 would be
the travel time from the source to the displaced reflection point
and then to the receiver). For CW pulses, the temporal resolution
is proportional to duration and so this approximation is expected
to be valid. However, for broad-band waveforms this may not
be true. An additional approximation in the following analysis
is that the integral in (20) will be restricted to t ∈ (0,D), where
D is the pulse duration. This approximation ignores the situa-
tions where the argument of p∗0 in (20) is outside of (0,D) when
t ∈ (0,D) and τ = τ0 . When D is large relative to the max-
imum change in the integral limits, 2c−1

w sin(θg )
√

2σ2
z ns , the

approximation will be valid. Recall that active sonar processing
for LFM and HFM waveforms uses a single MF to detect targets
over a wide range of radial velocities [21, Sec. 5.3.3] because
of their insensitivity to Doppler. The MF response in (20) is
therefore formed assuming there is no Doppler effect in the
replica waveform. Analysis of the impact of Doppler on sonar
pulses most commonly assumes a constant relative radial veloc-
ity throughout the reflection process and results in the waveform
ambiguity function (e.g., see [22, Sec. 5.1] for NB waveforms
or [23] for broadband waveforms). While this could be used to
obtain the MF response when the pulse is short relative to the
wave period, it is not applicable when there is variation in the
Doppler scale throughout the duration of the pulse as described
by (20). However, as noted in Section II-D, the Doppler effect
imparted by the moving surface is embodied in the time-varying
delay found in the reflected signal in (20).

For a CW pulse with duration D and amplitude a0 at ra-
dian frequency ωc = 2πfc , the analytic signal is simply p0(t) =
a0e

jωc t for t ∈ (0,D) and zero elsewhere. Inserting this into
(20), subject to the aforementioned approximations, results in

x(τ0) ≈ a∗r |a0 |2
∫ D

0
e−j

√
2βA cos(ωw t+φ) dt (21)

where β = nsγ
2
r . Assuming the delay τ0 achieves the maxi-

mum MF response, the MF loss for a given realization of the
surface displacementZ(t, �x), which is quantified by the random
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variables A and φ, is

L(A,φ) =
|x(τ0)|2
|arχ(0)|2 . (22)

The average MF loss is then an expectation over A and φ

L̄ = E[L(A,φ)] (23)

= E

[
D−2

∫∫ D

0
exp

{
j
√

2βA [cos(ωw t+ φ)

− cos(ωws+ φ)]
}

dtds

]
(24)

whereχ(0) = D|a0 |2 for a pulse with durationD and a constant
envelope a0 . To simplify (24), note that the difference of cosines
can be described as a product

cos(ωw t+ φ) − cos(ωws+ φ) = m(t− s) cos(φ+ θ(t, s))
(25)

where

m2(t− s) = 2[1 − cos(ωw (t− s))] (26)

and the particular form of θ(t, s) is not necessary in the following
analysis except to note that it does not depend on φ. Taking the
expectation over φ inside the integrals over t and s results in a
requirement for the integral

1
2π

∫ 2π

0
exp{jκ cosφ} dφ = J0(κ) (27)

where the solution from [24, eqs. 3.715-13 and 3.715-18] is
J0(κ), the zeroth order Bessel function. Using (27) in (24),
taking the expectation over A inside the integrals and changing
variables to y = a2 results in

L̄ = D−2
∫∫ D

0

∫ ∞

0
J0

(√
2βm(t− s)

√
y
)
e−y dy dtds

(28)

= D−2
∫∫ D

0
exp

{−βm2(t− s)/2
}

dtds (29)

= 2D−2
∫ D

0
(D − u) exp

{−βm2(u)/2
}

du (30)

where the solution to the integral over y in (28) is from [24,
eq. 6.614-1] and the dependence of the integrand in (29) on
u = t− s is exploited to simplify the double integral into a
single integral. Substituting (26) into (30) results in the average
MF loss

L̄(Dfw , β) =
e−β

πDfw

∫ 2πDfw

0

(
1 − v

2πDfw

)
eβ cos(v ) dv.

(31)
Note that L̄ depends on the product Dfw , which is the pulse
duration in terms of surface-wave periods, and the net squared
roughness, β = nsγ

2
r . We will generally evaluate the models as

a function of the quantity
√
β =

√
nsγr , which will be called

the net Rayleigh roughness (NRR).
When the pulse duration is much larger than the surface period

(Dfw 	 1) the integral I0(z) = (1/π)
∫ π

0 ez cos x dx from [24,

Fig. 3. MF loss as a function of pulse duration in terms of surface wave
periods (Dfw ) for various values of NRR (

√
ns γr ). The approximation from

(39) is only shown for
√
ns γr = 4.

eq. 3.339], which describes the zeroth-order modified Bessel
function, can be used to obtain an asymptotic (in terms of large
Dfw ) value of the MF loss

L̄∞ = L̄(∞, β) = e−β I0(β) (32)

only depending on the net squared roughness.
Numerical evaluation of (31) is shown in Fig. 3 (the gold

colored lines under the black dashed lines) as a function of
Dfw for various values of NRR ranging from 0.25 to 4. Note
that the loss is shown in decibels as −10 log10 L̄. For a given
NRR, the loss increases from 0 dB when the pulse is very short
until Dfw = 1, above which it exhibits minor oscillations as it
converges to L̄∞. This implies that the asymptotic value may be
an adequate approximation as long asDfw ≥ 1. The asymptotic
MF loss (L̄∞) is shown in Fig. 4 as a function of the Rayleigh
roughness (note this is γr , not NRR) for different numbers of
surface reflections. As one would expect, the MF loss increases
as either the Rayleigh roughness or number of surface reflections
increases.

1) Approximations to the Asymptotic Average Loss for the
NB Model: In sonar-equation analysis, the effect of reflection
from a rough surface is commonly described as a “per-bounce”
loss in SNR or increase in propagation loss. When using the
coherent-pressure result for a large ensonified area as described
in Section II-B, this results in a loss of 10γ2

r / ln(10) ≈ 4.3γ2
r dB

per reflection (e.g., see [25]).
The per-reflection loss for the small-effective-ensonified-area

result can be derived by differentiating the loss in decibels with
respect to ns . Applying this process to the Dfw 	 1 case rep-
resented by (32) results in

∂

∂ns

{−10 log10 L̄∞
}

= 4.3γ2
r

[
1 − I1

(
nsγ

2
r

)
I0(nsγ2

r )

]
(33)

where β has been written as nsγ2
r to emphasize the dependence

of (33) on ns and I1(·) is the first-order modified Bessel func-
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Fig. 4. Asymptotic (i.e., large Dfw ) MF loss as a function of the Rayleigh
roughness (γr ) for various number of surface reflections.

tion. Using a small-argument expansion of the Bessel function
from [26, Ch. 49] leads to

∂

∂ns

{−10 log10 L̄∞
} ≈ 4.3γ2

r

[
1 − nsγ

2
r

2 + n2
sγ

4
r /4

]
(34)

for the MF loss when nsγ2
r � 1. This indicates that, subject to

low NRR, the result is similar for both the large-ensonified-
area/short-pulse and the small-effective-ensonified-area/long-
pulse scenarios. As described in [9], the proximity of these two
results may be explained by noting that when Dfw 	 1, the
pulse interacts with many cycles of the surface. When rough-
ness is very low (e.g., dominated by the coherently reflected
pressure), this is in some manner similar to the averaging over
all possible surface heights enacted in the coherent-pressure loss
result.

However, the dependence on ns observed in (33) indicates
that increasing the number of reflections results in a decreasing
rather than a constant loss per reflection. This likely arises from
a partial cancelation of delays and advances encountered in
separate reflections. To examine this, an expansion of I0(x) for
large arguments from [26, Ch. 49] is used to approximate (32),
resulting in

−10 log10 L̄∞ ≈ 4 + 10 log10 γr + 5 log10 ns

− 10 log10

{
1 +

1
8nsγ2

r

}
dB. (35)

The approximation is accurate to within 0.2 dB when nsγ2
r ≥ 1

and indicates that, for pulse durations such thatDfw ≥ 1, prop-
agation loss in decibels increases (approximately) according to
10 log10 γr and 5 log10 ns when nsγ2

r > 1. Both of these effects
are evident in Fig. 4, with the latter producing the 1.5-dB separa-
tion between each doubling of ns seen for γr > 1/

√
ns . Thus,

when NRR becomes large enough, additional surface reflec-
tions have less impact on sonar performance than for low-NRR
scenarios. In particular, the approximately linear accumulation

of loss in decibels with γ2
r represented by (34) is only valid

while nsγ2
r remains small. This is likely similar to the large-

ensonified-area result when MF loss is characterized by the
total power.

2) Approximations to the Average Loss for the NB Model: As
previously described, when the pulse duration is much shorter
than the wave period (Dfw � 1), there is negligible loss in the
MF. To illustrate this and to examine how the per-reflection loss
changes with NRR, approximations to L̄(Dfw , β) from (31) are
derived for both small and large values of β.

When β is small, a first-order MacLaurin series expansion to
(31), after converting to a decibel loss, results in

−10 log10 L̄(Dfw , β) ≈ 4.3β
{

1 − [1 − cos(2πDfw )]
2π2(Dfw )2

}
(36)

≈ ns
(
4.3γ2

r

) (2πDfw )2

12
(37)

where the approximation from (36) to (37) assumes Dfw � 1.
Thus, for low roughness and short pulses relative to the wave
period, the per-reflection loss is constant and proportional to
γ2
r and (Dfw )2 . For example, doubling pulse duration in this

regime will result in a fourfold increase in the decibel MF loss.
When β is large or Dfw is small, the cos(v) term in (31) can

be approximated by 1 − v2/2, yielding

L̄(Dfw , β) ≈ 1
πDfw

∫ 2πDfw

0

(
1 − v

2πDfw

)
e−βv

2 /2 dv

=
1√

2βπDfw

{
2Φ

(
2πDfw

√
β
)
− 1

− 1√
2βπ πDfw

[
1 − e−2βπ 2 (Dfw )2

] }
(38)

where Φ(z) is the standard normal cumulative distribution func-
tion. When β 	 1, the term inside the braces in (38) tends to
one and

−10 log10 L̄(Dfw , β) ≈ 4 + 10 log10 γr + 5 log10 ns

+ 10 log10(Dfw ) (39)

which is essentially the result for Dfw 	 1 from (35) with
the addition of the term 10 log10(Dfw ). The usefulness of this
approximation can be seen from the

√
nsγr = 4 case shown

in Fig. 3, where (39) is the light blue line approximately from
(0.1, 0) to (1, 10).

The approximation in (38) is quite good for small Dfw
and large β. For example, the error is less than 0.1 dB when
Dfw ≤ 0.8 and β ≥ 5 and also whenDfw ≤ 0.98 and β ≥ 20.
Similarly, the small-β approximation in (36) is accurate when
β � 1. Unfortunately, this leaves a region of moderate values of
both β andDfw for which the above approximations are not ad-
equate. Fortunately, much of the structure observable in Fig. 3
is amenable to functional approximation. Clearly L̄(Dfw , β)
tends to L̄∞ as Dfw → ∞. Starting with this, and successively
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approximating the residual errors, the function

L̄(Dfw , β) ≈ L̄∞ +

(
1 − L̄∞

)
sinc2(Dfw )

1 + β[1 − cos(2πDfw )] g(β,Dfw )
(40)

was found to provide an excellent fit to the integral in (31). The
coefficients of the function

g(β,Dfw ) =
1

6.2
− β

501
+ cos(2πDfw )

[
1

71.8
+

β

735

]

− cos(4πDfw )
[

1
437

− β

1490

]
(41)

found in the denominator of the latter term in (40) were obtained
by a least-squared-error fit over a large region inβ andDfw . The
approximation is shown in Fig. 3 as a dashed line and appears
to overlay the numerical results. The fit error is less than one
tenth of a decibel for (at least) the region defined by β ≤ 20
and Dfw ≤ 4. The largest errors generally occur in the regions
Dfw < 1. The approximation should be used with care outside
of this region, especially if β > 20.

3) NB MF Loss for a Purely Sinusoidal Surface: When the
surface is purely sinusoidal, the amplitude in (10) is constant
in both space and time (i.e., A(t, �x) = Aw ). If there are many
reflections, then Ai = Aw for all of them in (12), but the CLT
still dictates that z(t) is Gaussian distributed when the φi are
independent so the results of (31) and (32) will be valid.

However, if there is only one surface reflection and the phase
is assumed to be uniformly random on (0, 2π), the MF loss for
reflection of a NB pulse from a purely sinusoidal surface can be
obtained from (28) by removing the expectation over y = A2 .
This results in

L̄ = D−2
∫ D

0

∫ D

0
J0

(√
2γr m(t− s)

)
dtds

=
2
D2

∫ D

0
(D − u)J0

(√
2γr

√
2 − 2 cos(ωwu)

)
du

(42)

where the amplitude Aw of the sinusoid enters through σz =
Aw/

√
2 in γr . When Dfw is large, the asymptotic loss is ap-

proximately

L̄∞ ≈ J2
0

(√
2γr

)
(43)

as shown in [9, App. B] where [24, eq. 6.684-1] can be used to
simplify (42).

Recalling the similarity between the large-Dfw /small-
effective-ensonified-area scenario and the small-Dfw /large-
ensonified-area results for a Gaussian-distributed surface, it is
not surprising that (43) is identical to the specular mode reflected
from a sinusoidal surface in the latter scenario as described in
[18, pg. 48].4

The asymptotic (large Dfw ) MF loss for a single-surface
reflection with a Gaussian-distributed height (via (32) withns =
1) is compared to the sinusoidal-surface result of (43) in Fig. 5.

4Note that the
√

2 in (43) accounts for γr being defined here using the RMS
height, whereas the result in [18, pg. 48] uses the sinusoidal amplitude.

Fig. 5. Asymptotic MF loss (L̄∞) as a function of Rayleigh roughness (γr )
for a single reflection from a Gaussian-distributed and sinusoidal surface height
when the effective ensonified area is small. The average loss in coherent pressure
for a Gaussian-distributed surface with a large ensonified area is also shown for
comparison.

The higher loss incurred for the sinusoidal surface (e.g., for
γr ≤ 2) is expected because the Gaussian-distributed surface
displacement is most likely to be observed near zero, while the
sinusoidal surface is most likely to be observed near its extrema.
For further comparison, the loss in coherent pressure from the
classic result described in Section II-B is also shown.

C. Average Loss for Broadband LFM Pulses With a
Time-Varying Surface

As previously mentioned, the primary application of this work
requires the use of broadband signals (e.g., LFM or HFM wave-
forms) to induce a small effective ensonified area on the surface.
The NB modeling presented in Section III-B can be extended to
a broadband LFM pulse to result in a 2-D integral akin to (29)
depending on Dfw , β, and the bandwidth-to-center-frequency
ratio η = W/fc

L̄(Dfw , β, η) =
∫∫ 1

2

− 1
2

exp
{
− β

[
[1 − cos(2πDfw [u− v])]

× (1 + ηu)(1 + ηv)

+
η2

2
(u− v)2

]}
dudv. (44)

Unfortunately, two of the approximations noted at the beginning
of Section III-B, can cause the result in (44) to be inaccurate.
When both Dfw and β are large, the reflected pulse can be
distorted enough that the MF response x(τ) differs significantly
from the waveform ACF in such a way that the peak response is
at a different delay than that for the smooth surface. A secondary
issue arises when Dfw is small and the temporal resolution
capability of the LFM waveform is finer than the delay imparted
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Fig. 6. Correlation function between LFM transmit pulse and a distorted
reflected pulse for various effective surface wave amplitudes.

by the displaced surface. In both cases, the model was seen to
overestimate the MF loss.

To illustrate how a distorted reflected signal produces a dis-
torted MF response with a displaced peak, consider the net
surface displacement from (16)

z(t) =
√

2σ2
z nsA cos(2πfw t) (45)

where the surface phase has been set to zero and the amplitude
A is varied according to percentiles of the unit-power Rayleigh
distribution. The MF response normalized by that for the smooth
surface is shown in Fig. 6 for Dfw = 5,

√
nwγr = 1, W/fc =

0.5, and three values of the amplitudeA. The top plot showsA =
0.23, which is a larger amplitude than only 5% of the Rayleigh-
distributed occurrences, and exhibits a minor distortion in the
form of a higher sidelobe in the response. The abscissa in Fig. 6
is the delay offset from the smooth-surface delay in terms of
resolution cells, which is the product τW for an LFM pulse
where τ is the actual delay offset. The high sidelobe occurs
(approximately) at a delay offset of τ = Dfw/W (i.e., τW =
±Dfw = ±5 in the example).

When A =
√
π/2 = 0.83, where half the Rayleigh-

distributed amplitudes are above and half below, the high-
est sidelobe is still below the peak at zero delay offset and
therefore does not violate the model assumptions. However,
when A = 1.73, which is the 95th percentile of the unit-power
Rayleigh distribution, the peak is no longer at zero delay off-
set and occurs instead at the sidelobe located ten resolution
cells away. The implication is that the MF loss obtained under
the assumption of the peak occurring at the same delay as for
the smooth surface will be larger than that encountered by the
Matched filtering process considering all possible delays. Vary-
ing the phase in (45) or W/fc changes the response somewhat,
but not the pertinent characteristics.

To determine the MF loss when all delays are evaluated, a
simulation was performed as a function of NRR and η = W/fc .
The simulation implemented the MF described in (17) with

Fig. 7. MF loss from model assuming peak response occurs for zero delay
offset compared with simulation result taking peak over all delays.

Fig. 8. Difference in MF loss between NB model and LFM-pulse simulation
as a function of NRR and W/fc .

Dfw = 5, fw = 0.25 Hz, fc = 100 Hz, 104 trials and an over-
sampling factor of 15 to ensure the peak response was measured.
The results for W/fc = 0, 0.5, and 1 are shown in Fig. 7. For
the CW pulse (η = W/fc = 0), the model results are very ac-
curate even up to an NRR of 5 where they differ by less than
0.25 dB. However, the LFM-pulse simulation results exhibit
a significantly smaller loss than does the LFM-pulse model,
in both cases exceeding a 3-dB difference at the highest NRR
evaluated. The difference between the NB model and the LFM-
pulse simulation results is shown in Fig. 8 for values of W/fc
ranging from zero to one. The figure illustrates that very little
bandwidth in the LFM pulse is required for a significant dif-
ference between the NB model and the LFM-pulse simulation
(e.g., the difference exceeds 1 dB at a 1% bandwidth to center
frequency ratio when NRR exceeds 3). The difference peaks
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for η ≈ 0.2 with larger values being more accurately approxi-
mated by the NB model. The difference curve for η = 0.5 was
approximated by the function

ΔdB
L̄ ≈ max

{
0, 1.11 − 0.527

√
β + 1.25 log(β)

}
(46)

which has a maximum absolute error of approximately 0.1 dB
for NRR ∈ [0.2, 5]. The coefficients in (46) were formed by
least-squared-error fitting for the values of NRR in the simula-
tion exceeding 0.5 and truncated to three significant digits. This
function can be used to approximate the difference between the
NB-model asymptotic MF loss in (32) and that expected for an
LFM pulse when η ∈ [0.03, 0.7] with less than 0.65-dB absolute
error for

√
β ≤ 5. For the TREX13 data evaluated in Section IV

where η = 0.4, the maximum error is less than one-eighth of a
decibel.

IV. MODELING AND DATA ANALYSIS FOR TREX13

In this section, the models developed in Section III-B are ap-
plied to two scenarios from TREX13. In particular, predictions
of MF loss are compared against the processed-data results re-
ported in Hines et al. [9]. This section has four parts: Basic
information on the TREX13 environment, sensing scenarios,
and data processing are described in Section IV-A; the NB-
and LFM-pulse model results from Sections III-B and III-C are
applied to two TREX13 scenarios of interest in Section IV-B;
modifications to the measurements reported in [9] required to
account for geometric averaging are described in Section IV-C;
and the model and data are finally compared in Section IV-D.
Information regarding the broader TREX13 sea trials can be
found in [16].

A. TREX13 Scenarios and Data

The sensing scenarios from [9] considered here include a
short-range (∼70 m) single surface reflection (S1) involving
one-way propagation and an echo from a 2.8-km-distant pas-
sive acoustical target system (PATS echo)5 encountering a to-
tal of 12 surface reflections during two-way propagation. The
source, receiver, and PATS were all fixed to the seabed, which
had a nearly constant depth of 20 m, and the sound-speed pro-
file was reasonably stable over the measurements. As such, the
surface was expected to be the dominant source of fluctuations
and MF loss. Details specific to the scenarios under consid-
eration in this paper (e.g., the experiment, sonar equipment,
sensing geometry, and data processing) can be found in [9]. The
parameters required for the analysis presented here are found
in Table I.

The transmit waveforms analyzed in [9] were 0.5- and
18-s duration LFM pulses with a 900-Hz bandwidth centered at
2250 Hz and a 10% Tukey shading (5% at both the beginning
and end). The waveforms were transmitted at a repetition rate
of 1 every 20 s over the course of six different 1-h acquisition
periods (i.e., “runs”) for each pulse duration. The runs spanned
a range of surface conditions providing Rayleigh roughness val-
ues of γr ∈ (0.45, 1.2) for the S1 path and γr ∈ (0.08, 0.21) for

5In [9] the PATS echo was labeled “TE.”

TABLE I
PERTINENT INFORMATION FOR THE TREX13 ENVIRONMENT

AND SENSING SCENARIOS

Item Value

Average speed of sound cw = 1525 m/s
Pulse duration D = 0.5 and 18 s
Bandwidth W = 900 Hz
Center frequency fc = 2250 Hz
Surface wave period fw ∈ (0.2, 0.35) Hz
Dfw for 0.5-s pulse 0.14
Dfw for 18-s pulse 5
Grazing angle S1: θg = 30°/PATS: θg = 5°
Number of surface reflections S1: ns = 1/PATS: ns = 12

the PATS echo.6 As described in [9], the S1-path data were ob-
tained from a single hydrophone in the receiving array while the
PATS-echo data were obtained by beamforming the receiving
array (48 triplet elements of the Five Octave Research Array
[27] spaced at 0.2 m) with the main response axis pointed in the
direction of the PATS. The remaining processing and analysis
presented in [9] entailed Matched filtering followed by averag-
ing the peak MF signal from each ping over 10-min windows
(up to 30 pings) within each run. The 10-min-window averages
(six per run) were used to produce a linear model fit to the peak
MF response as a function of sea-surface RMS roughness (σz )
as measured by a wave-rider buoy deployed and operated by the
Applied Physics Laboratory of the University of Washington
[28]. It is the linear model of the peak MF response as a func-
tion of RMS wave height from [9] that is taken for comparison
with the models developed in this paper.

The 10-min averaging of the peak MF response performed in
[9] was a compromise between a small window to reduce the
impact of nonstationarity in the environmental conditions and
a large enough window to reduce estimation error. To convey
the uncertainty associated with the linear model of the aver-
age loss, a 90% confidence interval is constructed assuming the
estimation errors in the linear-model parameters are Gaussian
distributed and using the standard deviation of both the peak MF
response and direct-blast measurements from [9] as a function
of the RMS waveheight.7 The 90% confidence intervals, which
are displayed as a gray shaded area around the TREX13 linear
model in the figures, exhibit absolute errors in the 0.1–0.25 dB
range (higher near the extremes of the RMS waveheight mea-
surements and lower in the middle). These confidence intervals
include both the inherent estimation error involved in estimating
the linear-model parameters and any errors arising from nonsta-
tionarity of the environment within each 10-min measurement
window.

1) Effective-Ensonified-Area Analysis: Using the formula
from Section II-C, the effective ensonified down-range extent
for the 900-Hz bandwidth pulse is E‖ ≈ 1.7 m for the PATS

6While the same runs are used to analyze both the S1 path and PATS echo,
the different grazing angles lead to different values of γr .

7Note that the RMS waveheight measurements have been assumed to have
no errors because they arise from 30-minute averages and the wave period
is approximately fw ≈ 0.3 Hz which results in several hundred independent
observations.
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TABLE II
EFFECTIVE ENSONIFIED EXTENT AND RANGE OF SCL MEASUREMENTS

(MINIMUM AND MAXIMUM OVER SIX RUNS) FOR

TREX13 SENSING SCENARIOS

Scenario Direction Effective ensonified SCL (m)

extent (m) 0.5-s Pulse 18-s Pulse

S1 down-range (‖) 1.9 (W) 1.5–6.6 (1) 1.5–6.2 (1)
S1 cross-range (⊥) 7.1 (F) 1.7–3.6 (6) 1.6–3.9 (6)
PATS down-range (‖) 1.7 (W) 1.2–4.6 (1) 1.9–4.5 (0)
PATS cross-range (⊥) 17.6 (F) 11.4–39.6∗ (3) 3.0–19.6∗ (4)

The effective ensonified extent is either limited by the waveform (W) or by the Fresnel
zone width (F). The number in parentheses indicates how many of the six runs violate
the small-effective-ensonified-area requirement. ∗Note: The PATS cross-range SCL is the
distance between the peak of the SCF and the peak of the first negative sidelobe. All other
SCLs are from [9].

echo and 1.9 m for the S1 path. The span of down-range (‖)
SCL measurements from [9] are shown in Table II for the S1
(first row) and PATS (third row) scenarios. For most of the runs
(10 of 12 for the 0.5-s pulse and 11 of 12 for the 18-s pulse) the
down-range SCL is larger than the effective ensonified area.

Cross-range extent is limited by the Fresnel zone rather than
by beamforming for the PATS echo or by the curvature of spher-
ical spreading for the S1 path. The cross-range extent encom-
passing the first Fresnel zone8 is 7.1 m for the S1 path and 17.6 m
for the PATS echo (for a single reflection). For the S1 path, the
SCL measurements from [9] are less than 5 m for all of the
runs (second row in Table II), so the small-effective-ensonified-
area models of MF loss developed in Sections III-B and III-C
are expected to predict less loss than that measured from the
data. Following the arguments made in Section II-C regarding
multiple consecutive reflections, the SCL for the PATS echo is
defined by the distance in the cross-range dimension of the SCF
to the first negative sidelobe (akin to a peak-to-trough distance).
As seen in the last row of Table II, nearly half of the runs (3 of
6 for the 0.5-s pulse and 2 of 6 for the 18-s pulse) satisfied the
small-effective-ensonified-area requirement.

Mitigating the concern of when the SCL measurements are
less than the effective ensonified area is the observation that
the longest lengths were measured when the sea surface was in
one of the top two roughest conditions measured, indicating the
model-data error will be lowest in the region where the most
loss will be observable.

2) Pulse Duration Re Wave Period: From [9, Appendix B],
the peak frequency of the sea-surface height power spectral
density ranged from 0.2 to 0.35 Hz for the TREX13 runs under
consideration. Using a nominal value of fw = 0.275 Hz, the
0.5-s duration pulse has a very small value of Dfw = 0.14.
From Fig. 3, the maximum loss expected to be observed in
the TREX13 data for this pulse duration is less than 0.5 dB.
This result corroborates the analysis presented in [9], where the
0.5-s-pulse peak MF level was shown to have a low correlation

8The first Fresnel zone width is calculated as two times the lateral distance
at which the path difference is one half wavelength at fc . This can be seen to

be 2δ⊥ ≈
√

2λc zs / sin θg from (2) by letting Δr = λc /2 with z and δ‖ set
to zero.

Fig. 9. MF loss model-data comparison for S1 path of TREX13 data.

Fig. 10. MF loss model-data comparison for PATS echo of TREX13 data.

between the received level and σz . The remainder of this section
therefore focuses on the 18-s duration pulse for whichDfw ≈ 5.

B. Model Results for the TREX13 Scenarios

With Dfw = 5 for the 18-s duration pulse, the asymptotic
results of (32) for the Gaussian-distributed net surface displace-
ment and (43) for the sinusoidal surface are appropriate for
consideration. These models are shown as the colored dashed
lines in Figs. 9 and 10, respectively for the S1 path and PATS
echo (note that the sinusoidal surface results are not evaluated
for the PATS echo because of the 12 surface reflections). Be-
cause the transmit waveform was broadband and the models are
for a NB pulse, the need for a bandwidth correction as described
in Section III-C must be assessed.

By examining Fig. 8, it can be seen that little to no impact is
expected for the PATS echo for which NRR will have maximum
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value
√

12 · 0.21 = 0.73 and the NB model is within one quar-
ter decibel of the LFM-pulse simulation for η = 0.4. However,
the S1 path (for which NRR will have a maximum value of 1.2)
shows approximately a 1-dB difference. This difference is in-
corporated into the NB models for the Gaussian-distributed sur-
face displacement using (46) and shown in Figs. 9 and 10 as the
solid blue line. A separate simulation similar to that described in
Section III-C was performed for the sinusoidal surface model
for the S1 path, but only for η = 0.4. The results are shown as
the solid brown line in Fig. 9 and differ from the bandwidth
effect seen for the Gaussian-distributed surface in that the NB-
model results are accurate to a larger value of γr (approximately
one) after which the decrease in loss is much more significant
than for the Gaussian-distributed surface (i.e., the NB-model
MF loss is very pessimistic).

C. Linear Models for Measured MF Loss From [9] and
Geometric Averaging

The linear models fit to measurements of the peak MF re-
sponse reported in [9, Fig. 17] for the two scenarios were ad-
justed in [9, App. B] to represent MF loss, resulting in

L̂dB
S1 = 47.17σz − 1.04

= 5.09γr − 1.04 (47)

for the S1 path and

L̂dB
PATS = 43.37σz − 2.45

= 26.84γr − 2.45 (48)

for the PATS echo with units of decibels. The second line in (47)
or (48) represents the function as a linear model in γr , obtained
by modifying the slopes according to the definition of γr using
the information found in Table I. These data results are the black
dashed lines in Figs. 9 and 10. It is important to note that the data
used to form the linear model contain some noise despite the
10-min averaging. Additionally, the y-intercept term for the
PATS echo in (48) incorporates estimates of two-way transmis-
sion loss (120 dB) and the target strength of the PATS (6 dB).
These complications explain the negative MF loss values exhib-
ited in Fig. 10 and suggest a focus on the slopes of the functions
for the PATS echo as opposed to the y-intercepts.

The averaging implemented in [9] over the 10-min windows
was performed after the peak MF envelope had been converted
to decibels (i.e., a geometric average). Such averaging is prudent
to limit the effect of outliers when working with small sample
sizes, but can introduce a bias in the measurement as described
in [29]. An approximation to the bias for a Rician signal model
[30] is derived in the Appendix. The bias ranges from zero (no
bias) for a completely coherent signal (i.e., a deterministic or
nonfluctuating signal) to −2.5 dB for a Gaussian-fluctuating
signal. Because averaging in decibels produces an estimate that
is expected to be lower than the true value, the MF loss func-
tions in (47) and (48), which are formed by subtracting the
decibel-averaged estimates, are biased high. The bias derived
in the Appendix only depends on the scintillation index (SI)
of the signal, which is the ratio of the variance of the instan-

Fig. 11. Modeled SI as a function of RMS surface roughness for the S1 path
and PATS echo of TREX13 data.

taneous intensity to its squared average. For the Rician signal
model, SI depends on the ratio between the coherent (Pcoh) and
incoherent power (Pinc) in the MF response as described in (54)
in the Appendix. The models derived in this paper represent
the total power (Pcoh + Pinc) while the coherent power under
the small-effective-ensonified-area assumption can be shown to
have the same form as that of the classical result (Pcoh ∝ e−β ).
Using (32) for the large-Dfw , Gaussian-distributed net surface
displacement case results in

Pcoh

Pinc
=

1
I0(β) − 1

. (49)

The Rician signal model assumption then yields

SI = 1 −[I0(β)]−2 (50)

which is shown in Fig. 11 as a function of the RMS surface
roughness (σz ) for the two TREX13 scenarios. As expected, the
signal is purely coherent when σz → 0 and fluctuations increase
with σz . It is important to note the models in this paper do not
account for any loss of coherence arising from reflection from
the bottom. Estimates of SI for the PATS echo presented in [31,
Fig. 1] indicate it should be approximately 0.3 for TREX13
Run 84 (which had the roughest surface with σz = 0.128 m)
while (50) only predicts SI = 0.12. The higher SI observed in
the data might arise from reflection off a rough bottom, but also
might arise from failing to precisely meet the requirements for
a small effective ensonified area or from the effects of multipath
propagation. To account for the observed SI, the ratio Pcoh/Pinc

was reduced by 4.37 dB so the model matched the Run-84
measurement from [31]. The resulting SI is the middle curve
in Fig. 11. Estimates of SI for the S1 path are not available so
only the model results are shown. However, there was no bottom
interaction on the S1 path.

Using an SI calculation from (50) in the Rician-signal
geometric-averaging bias from (55) in the Appendix allows
comparison of the models developed in Sections III-B and III-C
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with the data analysis reported in [9] as represented by (47)
and (48). Rather than adjusting the MF loss model to account
for the decibel-averaging bias, the linear models of the MF
loss measurements were modified so as to present the expected
MF loss, which is important for sonar performance modeling.
These adjustments are the black solid line in Fig. 9 for the S1
path and the black dash-dot (SI as predicted by the model) and
solid (SI model as corrected by data) lines in Fig. 10 for the
PATS echo.

D. Model-Data Comparison

As can be seen from Figs. 9 and 10, the linear models of
the TREX13 MF loss measurements from [9] (after correcting
for the geometric-averaging bias) and the models developed
in this paper are quite similar in terms of trends and levels.
Based on the adjustments made in Sections IV-B and IV-C, the
solid colored lines (the models) should be compared with the
solid black lines (data after bias removal). The 90% confidence
intervals (gray shaded region) for the linear model described in
Section IV-A are only shown for the TREX13 results after bias
removal. The confidence intervals are not intended to “accept”
or “reject” the various models, particularly because the data are
known to not precisely satisfy the requirement for an effective
ensonified area less than the SCL of the surface. However, they
are useful to represent the quality of the TREX13 measurements,
which strengthens the relevance of a good model fit when the
confidence interval is tight (as is the case here).

For the S1 path (see Fig. 9) the fit between the Gaussian-
distributed net surface displacement model (blue solid line) and
the data is always within 1 dB. While the NB-model result (blue
dashed line) appears as a better fit, the incongruity may be ex-
plained as the effect of not precisely meeting the small-effective-
ensonified-area requirements in the cross-range dimension. As
noted in Table II, the SCL in the cross-range dimension for the
S1 path was less than the effective ensonified extent for all six
runs. This implies a larger MF loss because of the combination
of reflections from multiple independent surface components,
which would improve the fit between the LFM-pulse model
(blue solid line) and the TREX13 linear model. Accounting for
this in the NB model (blue dashed line) would also have the
effect of increasing the MF loss, which would then degrade the
quality of the fit with the TREX13 data.

While there appears to be more support for the Gaussian-
distributed surface than the sinusoidal surface in Fig. 9, that
the data lie between the two models may indicate the surface
is not precisely either. These qualitative assessments are sup-
ported quantitatively by calculations of the average slope over
the region of support of γr for the data. The slopes, calculated
as changes in the MF loss relative to either γr or log10 γr ,
are shown in Table III. The change relative to γr can be com-
pared with the linear models from (47) and (48) while that
relative to log10 γr can be compared with the approximations in
Section III-B for the NB pulse (i.e., Fig. 4), where it is 10 when
NRR is large. For the S1 path (second data column in Table III),
the slope from the model (8.85) is similar to the asymptotic value

TABLE III
AVERAGE SLOPE OF MF LOSS [UNITS: dB] OVER THE REGION OF γr

SUPPORTED BY TREX13 DATA MEASUREMENTS ANALYZED IN [9]

S1 path PATS echo
change re: change re:

Case Note γr log1 0 γr γr log1 0 γr

Model Gaussian surf. / NB 4.56 8.85 12.85 4.48
Model Gaussian surf. / LFM 3.21 5.92 12.85 4.48
Model Sinusoidal surf. / NB 9.47 20.21 – –
Model Sinusoidal surf. / LFM 5.28 9.06 – –
Data linear model fit from [9] 5.09 9.78 26.84 8.99
Data Geo. avg. / SI via model 3.86 7.35 23.58 7.84
Data Geo. avg. / SI data adj. – – 20.09 6.68

(10) while the data (adjusted for geometric averaging) is smaller
(7.35), possibly because of the effect of the LFM waveform for
which the model calculation is 5.92.

The PATS-echo MF-loss comparison found in Fig. 10 is also
seen to have less than 1 dB of error between the bias-corrected
data and the model (solid lines). While the previously described
limitations in the PATS-echo data limit the strength of this result,
the slopes at the higher values of γr are very similar and the
restriction of the data fitting to a linear model may cause the
disparity at lower values of γr . As anticipated in Section IV-B,
the NB model is adequate for the small values of NRR spanned
by the data. This is seen in Fig. 10 where the LFM pulse and NB
models do not differ significantly over the region of γr with data
support and is evident in Table III, where both models exhibit
the same average slope. Similar to the discussion for the S1 path,
the LFM-pulse model may be more accurate than the NB model
if it were possible to account for the effective ensonified extent
in the cross-range dimension exceeding the SCL (from Table II,
the small effective ensonified area assumption is violated in the
cross-range dimension for the PATS scenario in four of the six
runs.)

Removing the geometric-averaging bias from the linear mod-
els reported in [9] is clearly an important step in comparing
the data with the models. As seen in Figs. 9 and 10, qualita-
tively the process improved the model-data fit both in terms of
absolute level and slope. Unfortunately, the process requires as-
sumptions about the statistical nature of the data (e.g., the Rician
signal model and SI model used here). Quantitatively, the aver-
age slopes shown in Table III improved for both scenarios.

V. CONCLUSION

The focus of this paper has been on developing models for
the loss incurred in Matched filtering when a broadband sonar
pulse reflects off a rough surface that has motion on the same
time scale as the pulse duration. The case considered was when
the effective ensonified area on the surface is limited to a region
smaller in extent than the SCL. Matched filtering the broadband
pulse accomplishes this in the down-range dimension while
several system and sensing conditions can enforce it in the
cross-range dimension. Under the small-effective-ensonified-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ABRAHAM et al.: MF LOSS FROM TIME-VARYING ROUGH-SURFACE REFLECTION WITH A SMALL EFFECTIVE ENSONIFIED AREA 15

area assumption, simple models were developed for the MF
loss using a NB assumption in the analysis and a Gaussian-
distributed net surface displacement. The Gaussian-distributed
net surface displacement can arise naturally or from multiple
consecutive reflections as a pulse travels down a waveguide
when the surface is not Gaussian distributed. The models illus-
trate how MF loss from a time-varying rough surface increases
with the Rayleigh roughness (γr ), the number of consecutive
surface reflections, and the product between pulse duration and
the surface wave frequency (Dfw ). With respect to Dfw , the
loss saturates when Dfw exceeds one. Because of the focus on
a small effective ensonified area, the models only depend on
the surface RMS height (through γr ) and do not require specific
knowledge of the spatial correlation other than to satisfy the
small-effective-ensonified-area requirement. While the models
are simple to evaluate, approximations useful in sonar-equation
analysis were derived and found in some cases to be similar to
the classic large-effective-ensonified-area result (e.g., the 4.3γ2

r

dB per bounce loss when γr is small and Dfw large). These
similarities support the assessment found in [9] of the equiva-
lence between reflection of a long pulse (relative to the surface
period) from a small effective ensonified area with the classic
scenario of a large effective ensonified area.

The NB models were seen to be accurate for broadband wave-
forms when both the roughness and the bandwidth-to-center-
frequency ratio were small. While the theory was applied to
broadband LFM pulses, the model result could not be simpli-
fied beyond a 2-D integral and was found to over-estimate the
MF loss because the MF response was distorted to a point where
the peak shifted away from the delay associated with a smooth
surface. Simulation results illustrated that the MF loss using
the peak of the distorted response should always be less for a
broadband LFM pulse than that predicted by the NB modeling,
so the NB model can be used as an upper bound.

The models were then compared with data measurements
from TREX13 reported by Hines et al. in [9] including both one-
way/short-range/single-surface-reflection and two-way/longer-
range/multiple-surface-reflection scenarios with both short and
long pulse durations relative to surface wave period. The data
and models were in agreement for both scenarios on a very low
MF loss for the short pulse and very little dependence on γr
over the range of observations. For the longer pulse duration,
the models and data were always within one decibel, exhibiting
a good fit in both level and slope. The minor disparity between
the model and data is believed to arise from the effective en-
sonified extent in the cross-range dimension being larger than
the SCL.

The models presented in this paper will be useful in predict-
ing surface reflection loss for broadband waveforms when pulse
duration is on par with or exceeds the surface wave period.
When the small-effective-ensonified-area requirements are not
met (most likely failing in the cross-range dimension), the mod-
els presented here can be taken as lower bounds on the MF loss.
Finally, the NB model is most likely applicable as an approxi-
mation to HFM waveforms as well as the LFM; however, this
has not been confirmed.

APPENDIX

BIAS INCURRED BY AVERAGING IN DECIBELS

Estimates of the MF loss obtained from the data analysis
in [9] were formed as the sample mean after pressure mea-
surements were converted to decibels. This implements a ge-
ometric averaging rather than a linear average and imparts a
bias on the estimate depending on the statistical distribution
of the MF response as described in [29]. Geometric averag-
ing is both common and desirable because of its robustness
against outliers observed in small samples from heavy-tailed
distributions.

Reflection from a rough surface is often represented as pro-
ducing both a coherent and an incoherent response. If the
incoherent response can be approximated through a Gaussian-
distributed random variable, this produces what is known as
a Rician signal model [30]. For the Rician signal model, the
instantaneous intensity T (i.e., the magnitude-squared MF re-
sponse) is proportional to a noncentral chi-squared (NCCS)
random variable

2T
Pinc

= Y ∼ χ2
2,δ (51)

where δ = 2Pcoh/Pinc is the noncentrality parameter, Pinc is the
incoherent power of the signal and Pcoh is the coherent power.
The mean value of T is μT = Pcoh + Pinc. When the instanta-
neous intensity is converted to decibels before averaging, the
measurement becomes

E[10 log10 T ] = 10 log10 μT + E

[
10 log10

(
Y

2

)]

− 10 log10

[
1 +

Pcoh

Pinc

]
. (52)

The first term on the right side of (52) is the desired measurement
while the latter two terms represent the bias.

When the incoherent component of the signal dominates the
coherent component (i.e.,Pinc 	 Pcoh), the instantaneous inten-
sity is approximately exponentially distributed and represents
Gaussian signal fluctuations. For this situation, Y/2 is a unit-
mean exponential random variable and the bias can be shown
(using [24, 4.331-1] or from [29]) to be

BdB =
10ψ(1)
log(10)

≈ −2.5 (53)

where −ψ(1) ≈ 0.5772 is Euler’s constant and ψ(·) is the
digamma function [26, Ch. 44]. Within the context of the NCCS-
distributed instantaneous intensity, this represents the largest
bias expected to be encountered. Thus, averaging in decibels
can result in up to a 2.5-dB bias lower than the actual value for
the NCCS signal model mean.

No simple closed-form result appears to be available for the
more general NCCS model. An approximate solution can be ob-
tained by noting the gamma distribution can be used to represent
the NCCS distribution [32, Sec. 29.8]. If T ∼ Gamma(α, β),
matching moments with the NCCS characterization results in
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α = 1/SI where

SI =
1 + 2Pcoh/Pinc

(1 + Pcoh/Pinc)
2 . (54)

As will be seen, the Gamma scale parameter, β = μT /α, is not
used in determining the estimator bias. Using [24, 4.352-1] and
assuming T is gamma distributed, the bias term can be shown
to be

BdB = E

[
10 log10

(
T

μT

)]

=
10

log(10)
[
ψ

(
SI−1) + log(SI)

]
. (55)

Thus, when the signal is completely coherent, SI = 0 andBdB =
0. When the incoherent component dominates, SI = 1 and BdB

simplifies to the −2.5 dB result shown in (53). In between
(0 ≤ SI ≤ 1), BdB is nearly linear in SI (the maximum error to
a linear fit is less than 0.1 dB).

Using [24, 4.358-5], it can also be shown that the variance
of the decibel calculation of the instantaneous intensity through
the gamma approximation to the Rician signal is

Var{TdB} =
(

10
log 10

)2

ψ′(SI−1) (56)

where ψ′(·) is the trigamma function [26, Ch. 44]. For a fully
saturated signal (i.e., SI = 1), this yields the familiar standard
deviation of 5.6 dB that was derived in [29].
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