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Passive acoustic monitoring of marine mammals is common, and it is now possible to estimate abso-

lute animal density from acoustic recordings. The most appropriate density estimation method

depends on how much detail about animals’ locations can be derived from the recordings. Here, a

method for estimating cetacean density using acoustic data is presented, where only horizontal bear-

ings to calling animals are estimable. This method also requires knowledge of call signal-to-noise

ratios, as well as auxiliary information about call source levels, sound propagation, and call produc-

tion rates. Results are presented from simulations, and from a pilot study using recordings of fin

whale (Balaenoptera physalus) calls from Comprehensive Nuclear-Test-Ban Treaty Organization

(CTBTO) hydrophones at Wake Island in the Pacific Ocean. Simulations replicating different animal

distributions showed median biases in estimated call density of less than 2%. The estimated average

call density during the pilot study period (December 2007–February 2008) was 0.02 calls hr�1 km2

(coefficient of variation, CV: 15%). Using a tentative call production rate, estimated average animal

density was 0.54 animals/1000 km2 (CV: 52%). Calling animals showed a varied spatial distribution

around the northern hydrophone array, with most detections occurring at bearings between 90 and

180 degrees. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5031111

[AMT] Pages: 2980–2993

I. INTRODUCTION

Using acoustic data to estimate animal density has been

demonstrated for both terrestrial and marine species (e.g.,

Buckland, 2006; Marques et al., 2013; Stevenson et al., 2015).

A suite of density estimation methods exist that can be applied

to different types of acoustic survey data. The most appropri-

ate density estimation method depends on how much detail

about animals’ locations can be derived from the recordings,

which is often determined by the number and configuration

of deployed instruments. At best, three-dimensional locations

of calling animals can be estimated from acoustic data; con-

versely, some recordings can yield little to no information

about animals’ locations.

Distance sampling (Buckland et al., 2001) and spatially

explicit capture-recapture (SECR; e.g., Borchers, 2012) are

methods that estimate the probability of detecting animals (a

key parameter of any animal density estimation method) using

spatial data collected during the survey. Specifically, distance

sampling can be used when the horizontal range between an

instrument and a calling animal can be estimated (e.g.,

Marques et al., 2011), which, for marine animals, typically

requires animal depth to be estimable (or assumed). SECR

requires that the same acoustic event is matched across multi-

ple recorders, creating “capture histories” of acoustic events.

Indirect information about the location of calling animals can

be inferred from these capture histories by assessing which

recorders (with known locations) detected the acoustic events.

Although SECR does not need measured ranges, SECR analy-

ses can be supplemented with data relating to animals’ loca-

tions such as direction, received sound level, and time of

arrival (Borchers et al., 2015). Given their data requirements,

both distance sampling and SECR require arrays of recorders

to estimate detection probability (though horizontal ranges to

calling animals can, in some particular scenarios, be estimated

from single instruments, e.g., Harris et al., 2013; Marques

et al., 2011; Tiemann et al., 2006).

Conversely, when no spatial information can be esti-

mated from recorded data (e.g., in most scenarios where sin-

gle instruments are deployed), detection probability can be

estimated using some form of auxiliary data. Marques et al.
(2013) consider two types of auxiliary information: (1) a

sample of measured animal locations in relation to a recorder

either from animal-borne tags (e.g., Marques et al., 2009) or

combined visual and acoustic trials using focal animals (e.g.,

Kyhn et al., 2012); (2) acoustic modeling using elements of

the passive sonar equation (Urick, 1983), including informa-

tion about the target species’ call source level (SL), transmis-

sion loss (TL), ambient noise levels (NLs), and the efficiency

of the detection and classification process. This latter infor-

mation can be combined to estimate the probability of detec-

tion using a simulation-based framework (e.g., K€usel et al.,
2011). Monte Carlo simulations have been implemented for a

range of cetacean species (K€usel et al., 2011; Harris, 2012;

Helble et al., 2013; Frasier et al., 2016) but rely on accurate

simulation inputs. One such input is the distribution of
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simulated animals; however, there are often no a priori data

about what this distribution should be. This is a key limitation

of the Monte Carlo simulation approach.

Here, a new method is presented for estimating cetacean

density using acoustic data, for cases where horizontal bearings

to calling animals are estimable. This approach is suitable for

scenarios where neither distance sampling nor SECR can be

implemented due to lack of recorders (note that SECR survey

design is an ongoing area of research but, to date, the minimum

number of recorders used for acoustic capture histories has

been three; Kidney et al., 2016). The new method is related to

the Monte Carlo simulation methodology as it uses the passive

sonar equation; measured call signal-to-noise ratios (SNRs) are

required, as well as auxiliary information about call SLs, sound

propagation, and call production rates. However, the additional

bearing data give some empirical information about animal

distribution, conferring an advantage over the standard Monte

Carlo simulation. Another advantage of this method is that it

produces a spatial map of estimated abundance (or density),

allowing inferences about spatial habitat preferences of acous-

tically active animals.

The paper is structured as follows. Section II presents

a background to density estimation using acoustic data and

a description of the new method. Details about the motivat-

ing case study—fin whales recorded in the Pacific Ocean

by Comprehensive Nuclear-Test-Ban Treaty Organization

(CTBTO) hydrophones—are given in Sec. III (including

details of all the required auxiliary analyses). Simulations

are presented, which investigate method performance under

different known spatial animal distributions (Sec. IV). The

method is then applied to three months of recordings from

Wake Island between December 2007 and February 2008

(Sec. V). This analysis forms a pilot study prior to applying

the method to long-term CTBTO datasets from Wake Island

and Diego Garcia in the Indian Ocean. Finally, Sec. VI

presents a discussion of the approach, including its limita-

tions, benefits, and potential implementations.

II. DENSITY ESTIMATION USING ACOUSTIC DATA

A general estimator of animal density using acoustic

cues (e.g., animal calls) from static instruments was pre-

sented by Marques et al. (2009),

D̂ ¼ nc 1� ĉð Þ
Kpw2P̂aTr̂

; (1)

where D̂¼ animal density, nc¼ number of detected signals,

ĉ¼ false positive proportion, K¼ number of monitoring points,

w¼maximum detection range, P̂a¼ average probability of

detection of an animal within radius w of the sensor, T¼ total

monitoring time, and r̂ ¼ cue production rate. This equation

can be decomposed into three components,

D̂ ¼ nc 1� ĉð Þ
P̂a

1

Kpw2

1

Tr̂
; (2)

where N̂c ¼ ncð1� ĉÞ=P̂a is the estimated abundance of cues,

Kpw2 is the area monitored, so that dividing the abundance of

cues by the area monitored gives a density of cues, and 1=Tr̂
converts the density of cues to the density of animals.

The average probability of detection, P̂a, can be esti-

mated in several ways, as shown by the variety of available

density estimation methods (Marques et al., 2013). Each

method has various assumptions that must be met to produce

an unbiased detection probability and hence density. One

key assumption in distance sampling is that the distribution

of animals’ distances from samplers (i.e., transect lines in a

line transect survey, or monitoring points in a point transect

survey) is known. This is achieved by random placement of

multiple samplers within the study area so that, on average,

animals are distributed uniformly in horizontal space. For a

survey using many fixed monitoring points with circular

detection areas, this assumed average distribution of animal

distances is specifically a triangular distribution due to the

linear increase in area with increasing incremental horizontal

distance from each sample point (Buckland et al., 2001).

However, when single acoustic stations are used, it may

not be reasonable to assume animal distances from that sin-

gle station follow a triangular distribution, and standard dis-

tance sampling should not be used to estimate P̂a (even if

ranges to animals can be estimated). Therefore, an alterna-

tive approach to estimating detection probability is required.

In the method developed here, cue abundance is estimated

using a Horvitz-Thompson-like estimator (after terminology

used by Borchers and Burnham, 2004). These estimators are

based on seminal work by Horvitz and Thompson (1952),

who showed that when sampling at random from a popula-

tion where each individual, i, has probability Pi of being

sampled, then an unbiased estimator of population size is

given by the sum over detected individuals of 1=Pi. One

can think of each detection “representing,” on average, 1=Pi

objects in the population. In animal density estimation meth-

ods, individual detection probabilities for every detection

can be estimated [rather than estimating an average detection

probability as shown in Eq. (1)] and combined to give

N̂c ¼
Pnc

i¼1 1=P̂i. However, the detection probabilities, Pi,

are estimated, not known (hence “Horvitz-Thompson-like”).

Horvitz-Thompson-like estimators are not unbiased; the bias

is typically small unless estimated probabilities are highly

uncertain or close to zero (Borchers et al., 2002). The key

advantage of this approach in the current case is that the

individual detection probabilities can be estimated without

requiring any assumption about the distribution of animals

with respect to the samplers.

Other key assumptions that apply to this new method are

that (1) all data measurements and derived parameters are

accurate and (2) detections are independent of one another. It

is highly improbable that recorded whale calls are produced

independently of each other, given that one animal may pro-

duce many calls. However, violation of the independence

assumption should not produce severe bias, though variance

estimation can be affected (Marques et al., 2013). Another

assumption of any density estimation method is that parame-

ters used in the estimator are accurate for the time and place of

the main survey. A frequent limitation of auxiliary data used

in density estimation analyses is that the additional experi-

ments (e.g., to estimate cue production rate) may have been
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conducted in a limited part of the study area (or in a different

location) and/or at a different time as the main survey, which

may lead to bias in the estimated parameters. Therefore, as

many auxiliary analyses should be undertaken using data from

the main survey region and time period as possible.

A. Method overview

It is assumed that acoustic data have been recorded at

known locations for a known time and then processed using

an automated detection and classification algorithm.

Estimation proceeds in the following stages, described

in more detail in Sec. II B.

(1) Characterize the automatic detection process to estimate

the probability of detecting a call as a function of SNR

[PðSNRÞ]. The resulting fitted “detection characteriza-

tion curve” is used to estimate the detection probability

for each detected signal.

(2) Determine the monitored area: for each of a set of dis-

crete bearings, use the assumed call SL and the measured

NL distributions with a TL model to determine a set of

ranges at which calls are almost certain to be masked

(i.e., the resulting SNR is so low that probability of detec-

tion is very low) and exclude these areas from further

analysis.

(3) Estimate the distribution of possible ranges for each

detection. Use the measured received level (RL) and bear-

ing of each detection, together with the assumed SL dis-

tribution and TL model to estimate the probability density

function (pdf) of ranges for that detection. A probabilistic

approach is required because (a) SL for each detection is

not assumed known, but is assumed to come from a prob-

ability distribution; (b) even if SL were assumed known,

the TL does not increase monotonically with range, and

hence a detected signal with a given RL can correspond

to more than one range.

(4) Estimate the range-specific distribution of number of sig-

nals corresponding to each detection, i.e., scale each

detection by its associated detection probability to account

for undetected signals. Using the Horvitz-Thompson-like

estimator, each detection, i, on average corresponds to

1=PðSNRiÞ signals within the area monitored.

(5) Estimate spatial density of signals by summing over the

estimated number of signals at each bearing and range to

yield an empirical spatially explicit abundance of sig-

nals. Then smooth this using a generalized estimating

equation (GEE) spatial model.

(6) Estimate animal density: use additional multipliers, i.e.,

false positive proportion, time spent monitoring (exclud-

ing periods of high ambient noise that cause masking),

and cue rate [Eq. (1)]. Also potentially restrict inference

to areas where detection probability is higher and hence

inference more reliable.

B. Further details

Stage 1: Characterize the automatic detector. Detector

characterization is performed using a sample of manually

detected calls. To ensure the sample is representative, a

systematic random subset of recordings (i.e., short sections

equally spaced in time—see Sec. III for an example) should

be analysed manually. SNR is measured for a sample of

manually detected calls, as well as noting whether or not

each call was detected by the automatic detector. Logistic

regression with automated detection/non-detection as the

response and SNR as the explanatory variable is used to

model the probability of detecting a call as a function of

SNR. A generalized additive model (GAM; Wood, 2006) is

used to allow a smooth, nonlinear relationship between prob-

ability of detection and SNR. The fitted detector characteri-

zation curve is then used to predict probability of detection,

PðSNRÞ, for each detection (over the entire monitoring

period), P̂i ¼ P̂ðSNRiÞ.
If bearings cannot be estimated for all detections, one of

two approaches can be taken: the detector characterization

curve can be estimated where a successful detection is

defined as either (1) any detected fin whale call (regardless

of whether it had an associated bearing or not), or (2)

detected fin whale calls that had an associated bearing mea-

surement. The choice of detector characterization approach

will affect the value used for nc in the estimator [Eq. (1)].

Under the first definition, nc will be the number of detections

(with or without measured bearings); under the second defi-

nition, nc will be the number of detections with measured

bearings only. In both cases, an assumption is made that the

measured bearings represent the spatial distribution of all

detected signals, including those for which bearings could

not be estimated.

Stage 2. Determine area monitored. This stage is anal-

ogous to identifying the maximum detection range, w, in Eq.

(1), although a set of bearing-specific ranges are derived,

allowing TL to vary in different directions, and be non-

monotonic with increasing range. Hence, the area monitored

does not have to be circular or continuous.

SL is assumed to follow a normal distribution; so, it is

theoretically possible to detect calls from implausibly large

(or even infinite) ranges in stage 3. Therefore, a pragmatic

cutoff is used that ensures detections from outside the area

monitored will be very rare. The assumed SL and NL distri-

butions are evaluated at the 90th and 10th percentiles, respec-

tively, to represent a loud call in low noise. These values are

used in the passive sonar equation along with TL to calculate

the SNR of the hypothetical call at various range and bearing

steps around the hydrophone (SL – TL – NL¼SNR). The

detection probability of the call at all locations is evaluated

from the detector characterization curve. Locations where the

call has a detection probability of equal to or less than 0.1 are

considered to be acoustically masked. The lowest TL associ-

ated with a masked location is used as a TL threshold to

define acoustically masked areas, which are then excluded

from the remainder of the analysis.

Stage 3. Estimate distribution of possible ranges for

each detection. Given a detection with measured RL and

bearing h, the SL of the detection if the source was at range r
can be derived from the (simplified) passive sonar equation as
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SLðr; hÞ ¼ RLþ TLðr; hÞ; (3)

where TLðr; hÞ is range- and bearing-specific TL. An SL dis-

tribution is required, which is assumed to follow a normal

distribution with mean l and standard deviation r. In this

analysis, SL could be estimated from a subsample of local-

ized calls at short ranges. Then, the pdf of range is

f rjRL; hð Þ ¼ r

�

1ffiffiffiffiffiffiffiffiffiffi
2pr2
p e� SL r;hð Þ�lð Þ2=2r2

; (4)

where � is a normalizing constant to ensure f is a proper pdf

� ¼
ðw

r¼0

rffiffiffiffiffiffiffiffiffiffi
2pr2
p e� SL r;hð Þ�lð Þ2=2r2

dr: (5)

The need for an r in the denominator of Eq. (4) is explained

by viewing the analysis as analogous to distance sampling

with measurement error on the distances. In this case, the

geometry of a circular detection area means that random

measurement error (in this case, uncertainty in location) will

result in underestimation of detections’ true locations (dis-

cussed in Buckland et al., 2015), leading to biased density

estimates at closer ranges.

In practice, range is discretized into a fixed set of range

intervals, with midpoints fRg. TL is calculated at these

ranges, and it is assumed that the TL values apply to each

corresponding interval. Then, the probability a detection

comes from interval k is

Pr kjRL; hð Þ ¼ f RkjRL; hð ÞX
Rj2R

f RjjRL; h
� � : (6)

Stage 4. Estimate range-specific distribution of num-

ber of signals corresponding to each detection. SNR

for each detected signal is calculated from the RL and NL mea-

surements associated with each signal (SNR¼RL – NL).

Detection probabilities of each detected signal are estimated

using the detector characterization curve, and the range-specific

distribution for each detection is divided by the estimated detec-

tion probability. Using the Horvitz-Thompson-like approach,

the estimated number of signals in the population “represented”

by a signal detected with a given SNR is 1=PðSNRÞ. Hence,

the range-specific distribution of number of signals correspond-

ing to a particular detection is given by

Nc kjRL;NL; hð Þ ¼ Pr kjRL; hð Þ
P SNRð Þ : (7)

Stage 5. Estimate spatial density of signals. At each

bearing and range interval, the estimated number of signals are

summed. This yields a spatial abundance surface, but one that

is not necessarily smooth because of random variation in detec-

tions. Given a long monitoring period, the true distribution

of calls around the sensor likely is smooth, so precision can

be gained by smoothing the raw estimates using a GEE

model (Hardin and Hilbe, 2012), which accounts for spatial

autocorrelation. The response variable is the estimated signal

abundance, assuming an overdispersed quasipoisson error dis-

tribution and using a log link function. Explanatory variables

are the location of the centre of the bearing and range interval

in (x,y) space [two-dimensional (2D) Cartesian coordinates].

To account for the fact that intervals at larger ranges represent

a larger area, the area of each interval is included as an offset

in the model. To account for spatial autocorrelation, spatial

blocks of 100 km � 100 km are created through the study area

and an independent working correlation structure implemented;

model residuals can therefore be correlated within blocks but

are assumed to be independent between spatial blocks. The

spatial GEE is fitted using CReSS (complex region and spatial

smoother; Scott-Hayward et al., 2014) and SALSA (spatially

adaptive local smoothing algorithm; Walker et al., 2011) meth-

ods, allowing a flexible surface with spatially varying smooth-

ness to be modeled. Model fit is assessed using concordance

correlation and marginal R squared values (in both cases, val-

ues close to 1 indicate good fit). A predicted density surface is

created by predicting abundance on a regular (x,y) grid, and

dividing by the area of each grid cell.

Stage 6. Estimate animal density. The predicted den-

sity surface of signals is converted to a predicted animal den-

sity surface by multiplying by ð1� ĉÞ=Tr̂ , where c is the

false positive proportion, T is monitoring time, and r is the

cue production rate. False positive proportion is estimated

from the manually validated sample of data. Monitoring time

should be known as part of the survey protocol. Furthermore,

the NL measurements of the detections can be compared to

ambient NL measured throughout the dataset to determine a

NL threshold, above which total acoustic masking is likely to

occur. Time periods of data where ambient NL exceeds the

maximum NL associated with a detection are omitted from

the monitoring time, T. Cue production rate must come from

auxiliary information and is often not known, in which case

density of calls can be estimated but not density of animals.

Average density can be computed by taking the average

across the prediction surface. To increase robustness, grid

cells far from the sensor, where detection probability is low,

may be excluded from this averaging. A Horvitz-Thompson-

like estimator is known to produce positively biased esti-

mates, particularly when some of the P̂i values are small

(Borchers et al., 2002) as is the case for more distant calls.

To mitigate this, a simulation study can be used to determine

at what range bias may be minimised and this can be used to

truncate the range over which average density is inferred.

C. Variance estimation

The delta method (Seber, 1982) is used to combine the

coefficients of variation (CVs) for each random variable

used in the density estimator to estimate the overall CV for

the resulting density estimate. Note that the encounter rate

also contributes to the overall variance of a density estimate,

and is denoted by CVðncÞ in Eq. (8). All other density esti-

mator inputs such as K, T, and w are known constants and

therefore do not have an associated variance,
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CVðD̂Þ2 ¼ CVðncÞ2 þ CVðĉÞ2 þ CVðP̂aÞ2 þ CVðr̂Þ2;
(8)

where P̂a¼ overall mean probability of detection, defined as

nc

� Xn

i¼1

1=P̂i

 !
: (9)

In surveys with multiple samplers (i.e., monitored lines or

points), between-sampler variance in encounter rate is usually

estimated. With only one monitoring point as in this study,

there is no spatial variance in encounter rate and, instead, vari-

ance in encounters is linked only to the detection process.

Following guidance in Buckland et al. (2001), the encounters

are assumed to follow an overdispersed Poisson distribution.

Therefore, encounter variance can be estimated using the

Poisson expression for variance [multiplied by a factor of 2 to

acknowledge assumed aggregation in the encounters; Eq.

(10)], which can then be used to calculate the CV,

varðncÞ ¼ 2nc: (10)

The false positive proportion and call production rate have

weighted means (see Sec. III for details) so variance is esti-

mated using Cochran’s approximation (Cochran, 1997, rec-

ommended by Gatz and Smith, 1995). Detection probability

variance is estimated using parametric bootstrapping of the

SL and NL distributions, the coefficients of both the logistic

regression, and GEE spatial models, then taking the empiri-

cal variance of the resulting bootstrapped signal densities.

As these signal densities are uncorrected for false positives,

the only parameter used in their estimation is P̂i, and so the

signal density CV will be equivalent to CVðP̂aÞ.

III. CASE STUDY—FIN WHALES IN THE PACIFIC
OCEAN

The pilot study focused on fin whale calls recorded in

the Pacific Ocean. Fin whales, the second largest cetacean,

occur globally and are currently listed as “endangered” in

the IUCN Red List (Reilly et al., 2013). Fin whales produce

a low-frequency pulsed call, the “20-Hz” call (Watkins

et al., 1987), which has been widely utilized to investigate

fin whales’ distribution and density through passive acoustic

monitoring (e.g., �Sirović et al., 2015). In particular, a study

of fin whales near Oahu, Hawaii, was an early example of

using passive acoustic data to estimate density (McDonald

and Fox, 1999). Multipath arrivals and the passive sonar

equation were both used to estimate ranges to calling ani-

mals. However, neither detection probability nor non-calling

animals were explicitly accounted for, so the resulting esti-

mates were interpreted as a minimum number of animals

(McDonald and Fox, 1999).

Data from the CTBTO International Monitoring System

(IMS) station at Wake Island (station identifier: H11) in the

Equatorial Pacific Ocean were used (1) as a basis for simula-

tion studies to test the efficacy of the method and (2) to dem-

onstrate a pilot analysis using fin whale 20 Hz calls. Data

from peak seasonal detections from Dec. 1, 2007 to Feb. 29,

2008 were used, and details of data processing and auxiliary

analyses are given throughout the rest of this section.

A. Wake Island CTBTO IMS station

The Wake Island station is composed of two three-

element triangular arrays with 2.5 km spacing between ele-

ments, with three hydrophones located to the north of the

island (Fig. 1) and three to the south. These cabled hydro-

phones are suspended in the deep sound channel. The three-

month pilot study used data from the northern array (hydro-

phone depths were 731 m, 732 m, and 729 m). The average

water depth at the array was 1068 m (estimated from Amante

and Eakins, 2009). Sound levels were recorded continuously

at a 250 Hz sampling rate and 24 bit analog-to-digital (A/D)

resolution. The hydrophones were calibrated individually

prior to initial deployment in January 2002 and re-calibrated

while at sea in 2011. All hydrophones had a flat (within 3 dB)

frequency response from 8 to 100 Hz. Information from indi-

vidual hydrophone response curves was applied to the data

to obtain absolute values over the full frequency spectrum

(5–115 Hz). Data less than 5 Hz and from 115 to 125 Hz were

not used due to the steep frequency response roll-off at these

frequencies.

B. TL of a fin whale call

The TL due to range-dependent propagation between a

vocalizing whale using a 20 Hz call and one of the northern

FIG. 1. (Color online) Map showing the location of Wake Island (coordi-

nates: 19.30,166.63) and the northern hydrophone array. Water depth con-

tours (1000 m, 2000 m, and 4000 m) are also depicted.
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hydrophone receivers (labeled N1) at 731 m depth was mod-

eled along 360 bearings at 1o resolution using the OASIS

Peregrine parabolic equation model out to 1000 km from N1

(Heaney and Campbell, 2016; Fig. 2). The TL was modeled at

1 km range steps over the three-month study using seasonal

sound speed profiles obtained from The World Ocean Atlas.1

It was assumed that the source was at a depth of 15 m, in keep-

ing with results about fin whale calling behavior (Stimpert

et al., 2015). The bathymetry was taken from the global

bathymetry database ETOPO1 (Amante and Eakins, 2009).

Surface loss was negligible due to the low frequency of sig-

nals. Sea floor parameters of soft sand sediment were used

representing a global average of deep ocean sediment. Details

of the geoacoustics parameters in the specific Wake Island

region are not known but should not affect propagation in this

environment due to direct path/sound channel propagation.

C. Ambient NLs

Mean spectral levels within the 10–30 Hz band were cal-

culated for each minute of the three-month dataset, resulting

in spectral levels with units of dB re 1 lPa2/Hz. Ambient NLs

were calculated in the targeted 10–30 Hz band to directly

overlap with the frequency range of the fin whale 20-Hz

pulse. Mean spectral levels were calculated using a Hann win-

dowed 15 000 point discrete Fourier transform with no over-

lap to produce sequential 1-min power spectrum estimates.

Note that these measurements included fin whale calls, where

present; it was important that the NLs reflected all noise sour-

ces that each fin whale call could be exposed to, which

included calls by conspecifics.

D. SL estimation

A sample of fin whale calls were localized using the

northern array so that a SL distribution could be estimated. SL

estimates of detected fin whale vocalizations were computed

using the passive sonar equation [Eq. (11)] that incorporated

environmental NLs present at the time of the call within the

RL of the vocalization,

SL ¼ RLþ TL� DIþ DT� PG: (11)

As the low-frequency calls are omnidirectional, the directivity

index (DI) was set to zero. Processing gain (PG) and detection

threshold (DT) are accounted for in the calibration of the

recording system. RLs were calculated for individual vocal-

izations recorded at N1 using a custom MATLAB (Mathworks,

2018) code. Spectrograms were calculated using a 512-point

fast Fourier transform (FFT) and 93.75% overlap. Calls were

then manually detected, with a human analyst selecting the

upper and lower frequency and time bounds of an individual

call. The rms (root-mean-square) RL of the call was then cal-

culated from the selected spectral data.

The TL of a signal of a given frequency is dependent on

the range, bearing, and depth of the vocalizing animal. The

time difference of arrival (TDOA) between each hydrophone

pair was found by cross correlation of received signals and

was supplemented with manual inspection due to dispersed

waveforms. 2D hyperbolic localization was then used to find

the range and bearing of the vocalizing animal. Location

information was then input into the site-specific, seasonal

TL models to back calculate the SL of each identified vocali-

zation. The depths of the sources were unknown but assumed

to be at a depth of 15 m following results from Stimpert

et al. (2015). For comparison, SLs of the same sample of

calls were also calculated using simple spherical spreading

instead of the more complex Peregrine TL model.

E. Automated fin whale call detection

Fin whale calls were detected from the N1 hydrophone

using the automatic detection feature of Ishmael, an open-

access bioacoustic analysis software package (Mellinger,

2002). The spectrogram correlation method was utilized for

the full three-month dataset, cross-correlating the spectro-

gram of the dataset with a synthetic call kernel. The kernel is

a template that indicates the time and frequency endpoints of

the desired call. To prepare the dataset for autodetection,

time-waveform data were first passed through a 10–30 Hz

bandpass filter. Spectral data were then calculated using a

512-point FFT with a 93% overlap, and a 22–14 Hz 1-s

downsweep call kernel was applied.

Results from the automatic detector were compared with

the manually detected calls from a subset of data. The three-

month dataset was divided into six-hour sections, and a sys-

tematic random sample of these sections was taken. Every

11th 6-hour section was selected under the sampling scheme,

resulting in 32 6-hour sections. All calls within the 32 selected

sections were manually detected, and a receiver-operator curve

was generated for the automatic detector that compared the

false positive proportion (the number of false positives divided

by the total number of automatic detections) with the propor-

tion of missed calls (the number of missed calls divided by the

total number of manually detected calls, i.e., false negative

proportion) for a range of DTs. The Receiver Operating

Characteristic (ROC) curve indicated that the optimal DT had

FIG. 2. (Color online) TL of a 20 Hz signal propagating to Wake Island N1

at a depth of 15 m. The model was run for every bearing between 0 and 359

degrees at 1 km range steps. In this plot, 0 degrees indicates north.
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a 10% false positive proportion and a false negative proportion

of 59%. The mean false positive proportion was weighted by

the number of detections checked in each six-hour section.

F. Bearing measurements

Bearings were calculated using the TDOA of received

signals. Using the known distances between receivers and

the seasonal sound speed, an estimated bearing was calcu-

lated for each pair of hydrophones,

u ¼ arcsinðs � s=dÞ; (12)

where s represents the TDOA of a signal between a hydro-

phone pair, d is the distance between a hydrophone pair, and

s is the speed of sound.

Left-right ambiguity of each bearing estimate could be

resolved by comparing with the other two estimates. The

median bearing was then selected. An acceptable bearing is

one where the three bearings resulting from the three pair

combinations all produced bearings within ten degrees of each

other. TDOA between each pair of hydrophones (N1 and N2,

N2 and N3, N3 and N1) were found through three different

methods, as described in order of application below. If the

cross-correlation method failed to produce an acceptable bear-

ing, manual estimation was performed. When manual estima-

tion using the start point of each call failed to produce an

acceptable bearing, a band energy analysis was performed.

The first step of all methods was to pass the signals through a

10–30 Hz bandpass filter. Bearings were rounded to the near-

est integer, to correspond with the resolution of the TL model.

1. Cross correlation

Once the data were filtered, a simple cross correlation was

performed in MATLAB to determine time delays. Characteristics

of the environment cause dispersion in the waveforms travel-

ing from distant ranges. As a result, a simple cross correlation

was not a viable option for many of the distant calls.

2. Manual estimation

TDOA was found by manually selecting the start of

each call from the time waveform. Manual inspection elimi-

nates the discrepancies that arise from the modal dispersion.

Manual selection also provided reliable results for calls with

a low (<6 dB) SNR, which is not always possible with auto-

mated methods. Manual detections were feasible for a lim-

ited pilot study, but this method would not be appropriate for

large datasets.

3. Band energy analysis

Filtered data from N1 were analysed in 3 Hz bands with

1 Hz overlap, starting at 10 Hz, finding the peak in each

band. The first band with a peak of at least 5 dB SNR was

then selected. The time index of the first peak in this fre-

quency band for each sensor was then noted and time delays

were calculated from the identified time index.

G. Detector characterization

All calls were manually detected in the subsampled six-

hour sections. The rms RL of each call was measured, and the

SNR of the call was calculated using a NL measured from the

second of data preceding the call (in the same frequency

bandwidth as the measured call rms RL). Whether or not the

call was detected by the automatic detector was also noted.

The detector characterization curve was modeled using the

statistical analysis software, R version 3.3.1 (R Core Team,

2016). A GAM (Wood, 2006) with a binary response and

logit link function was fitted to the data.

H. Call production rate

No call production rate data were available for fin

whales occurring near Wake Island, but call production rate

data from the Southern California Bight in the North Pacific

Ocean have been published (Stimpert et al., 2015). The fin

whale data from southern California were collected in sum-

mer months, and so it is possible that this cue rate is biased

for the fin whales calling near Wake Island in the winter

months. Cue rates from Stimpert et al. (2015) were applied

here as a proof of concept only, and resulting animal density

estimates must be treated cautiously.

IV. SIMULATION STUDIES

A. Simulation overview and input data

The primary aim of the simulation studies was to inves-

tigate whether the method returned unbiased (1) detection

probability estimates and (2) distribution maps under a range

of scenarios. To that end, call density only was estimated in

the simulations (i.e., a false positive proportion and call pro-

duction rate were not considered).

Ambient noise and SL information, as well as the detec-

tor characterization curve, were measured directly from the

Wake Island dataset. The SL distribution (assumed to be nor-

mally distributed and summarized on the dB scale) had a

mean of 177.7 dB re 1 lPa2/Hz at 1 m (standard deviation:

3.30, n¼ 79) using the Peregrine TL model and 177.6 dB re

1 lPa2/Hz at 1 m (standard deviation: 3.03) using spherical

spreading to predict propagation loss. Further, estimated SL

decreased significantly as a function of range when using the

Peregrine model (linear regression coefficient¼�2.20, p-

value< 0.001, n¼ 76 due to the removal of three outlying

data points using Cook’s distance measures). Estimated SLs

assuming spherical spreading also decreased slightly with

range, though not significantly (linear regression coef-

ficient¼�0.62, p-value¼ 0.27, n¼ 76; Fig. 3). Given that

the means and standard deviations of the two SL distribu-

tions were almost identical, the SL estimates using the more

complex, bathymetry-dependent Peregrine model were used

for all simulations and analyses (though see Sec. VI for a

discussion of the regression results). The mean of the NL

distribution (also assumed to be normally distributed and

summarized on the dB scale) measured in association with

manually detected calls was 92.5 dB re 1 lPa2/Hz (standard

deviation: 2.74, n¼ 1484). The detector characterization

curve was estimated using 1484 manually detected calls,
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which were found in 20 out of 32 manually checked 6-hour

sections (12 sections contained no calls). The mean SNR of

automatically detected calls was 13.98 (standard devation:

7.09, n¼ 612) and the mean SNR of calls missed by the auto-

matic detector was 4.45 (standard deviation: 1.59, n¼ 872).

The fitted GAM predicted that the majority of calls with an

SNR greater than 10 dB were certain to be detected (Fig. 4).

Simulation TL data were based on TL data from Wake

Island but were modified due to extreme TL encountered in

the real Wake Island data (see Sec. V). Wake Island TL data

were extracted at a depth of 15 m to reflect realistic fin whale

calling behavior. TL ranged between 71.70 dB and 286.46 dB.

For the simulation studies, the minimum TL value (71.70 dB)

was subtracted from all TL values resulting in simulated TL

values that ranged between 0 and 214.76 dB.

Three call spatial distributions were tested via simulation,

designed to reflect differing calling animal distributions (Fig.

5): calls were distributed (1) uniformly throughout the study

area, (2) limited to the northeast, and (3) limited to the south

of the hydrophone. The simulation was set up as follows:

(1) Calls (with a specified density or abundance) were simu-

lated through the study area; call distribution were

changed by drawing x- and y-coordinates from either a

uniform or scaled beta distribution, depending on the

desired spatial call pattern (Fig. 5).

(2) Each simulated call was assigned a SNR based on the

passive sonar equation; each call was assigned a SL and

NL by drawing values from normal distributions with

mean and standard deviations as measured from the

Wake Island dataset, which were then combined with the

bearing- and range-specific TL value for that call, taken

from the modified TL data.

(3) Each call’s detection probability was evaluated from the

detector characterization curve and a Bernoulli trial was

used to determine whether a given simulated call was

detected or not.

(4) The TL value above which no calls are detected was

determined using the approach described in Sec. II.

Following the simulated detection process, the simulated

RL, NL, and bearing values for each simulated detected call

were used as inputs for analysis instead of using measure-

ments from real recordings. All simulations were run 500

times in R. The maximum detection range of the recording

system was specified as 1000 km in all cases. In both simula-

tions and analyses, the maximum detection range is set as an

upper limit for a given instrument but may be reduced when

the monitored area is defined (step 2, Sec. II A). In each of

the three simulation scenarios, the initial abundance was

altered so that the number of detected calls was similar across

all scenarios. The estimated call density was compared to the

known true value by calculating the median percentage bias

(with associated 2.5% and 97.5% percentiles). Additionally,

because the true number of simulated calls was known at

increasing range steps from the array, the percentage bias as

a function of range from the array could also be assessed by

comparing the true number of simulated calls and the pre-

dicted number of calls within each range step. The maximum

range at which the percentage bias of call density was mini-

mised was calculated for every iteration (in some cases, the

same minimal bias was calculated at multiple ranges, so the

largest range was selected). The distribution of these ranges

could then be assessed after all iterations were run to see

FIG. 3. SLs estimated from 79 calls

using TL derived from (left) the

Peregrine model and (right) assuming

spherical spreading. Both plots show a

fitted linear regression model (black

line) with associated 95% confidence

intervals shaded in gray.

FIG. 4. Detector characterization curve (with 95% confidence interval) pre-

dicting detection probability as a function of SNR for known fin whale calls

(n¼ 1484).
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whether there was an optimal prediction range, beyond which

percentage bias was likely to become larger, decreasing the

robustness of the final predicted density. This feature of the

simulation algorithm may be useful for analysts to decide

whether to restrict the area of inference following an analysis

to potentially reduce bias in the reported density estimate.

However, it is important to note that the simulation relies on

an assumed distribution of animal calls, which is likely to be

different from the true, and unknown, animal distribution, so

a reduction in bias in analysis results is not guaranteed.

B. Simulation results

The simulations performed well—results from all scenar-

ios had median percentage biases less than 2% (Table I).

Percentage bias did not exceed 5% in any of the simulations.

In some scenarios, assessing the bias as a function of range

showed that bias in call density estimates could be substan-

tially reduced when call density was inferred over a reduced

range. Bias was negligible for the uniform and southern distri-

butions at median ranges of 678 km and 360 km, respectively,

suggesting that these ranges were the optimal prediction ranges

for these scenarios. The northeastern (NE) distribution results

were not improved by reducing the range of prediction. Spatial

model fit across scenarios varied, with uniform distribution

models displaying the poorest fit and the NE distribution pro-

ducing spatial models with the best fit (median marginal R
squared values: 0.51, 0.79, and 0.92; median concordance cor-

relation values: 0.68, 0.88, and 0.96, for uniform, southern,

and NE distributions, respectively). However, all spatial mod-

els produced density maps that replicated the initial distribu-

tions (Fig. 6).

V. PILOT STUDY

A. Pilot study overview and input data

The pilot study analysis estimated fin whale density

based on the detected calls (and associated SNR and bearing

measurements) from three months of data. A simulation was

also run to investigate the level of potential bias in the analy-

sis results, and whether inferring density over a smaller area

may reduce any bias (as discussed in Secs. II B and IV A).

Calls were uniformly distributed through the simulated study

area and the steps of the simulation setup were the same as

those described in Sec. IV A, except for the TL data used.

FIG. 5. Examples of distributions of simulated signals [from top: uniform,

northeastern (NE), and southern distributions]. The black dots denote signals

within the 1000 km maximum detection radius. Gray dots show signals out-

side the maximum detection range.

TABLE I. Simulation results from three scenarios with different call distri-

butions. Simulations were run 500 times and all results report the median

value, and the 2.5 and 97.5 percentiles are in parentheses.

Scenario

Uniform

distribution

Southern

distribution

Northeastern

(NE) distribution

Number of

detections

7243 7597 7408

(7147,7354) (7484,7714) (7389,7427)

Percentage bias �1.52 �1.88 0.01

(�3.13,1.12) (�3.96,0.97) (�0.45,0.86)

Minimised

percentage bias

�1.93�10�4 �0.02 �0.01

(�0.98,0.32) (�0.67,0.70) (�0.38,0.32)

Range at which bias 678 360 1000

minimised (km) (50,993) (235,1000) (45,1000)
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A key difference between the simulations described in

Sec. IV A and the pilot study analysis and simulation was that

unmodified TL data were used in the pilot study, reflecting

the true environmental conditions at Wake Island (Fig. 7).

Inputs for the analysis were the following: number of

detections, nc, was 6552. The automatic detector detected

6658 signals, but the SNR of 106 signals fell below the lower

SNR limit of detected calls in the detector characterization

analysis (2.24 dB) and so were removed to prevent model

extrapolation when estimating detection probability using the

detector characterization curve. Of the remaining detections,

3086 (47%) had measurable bearings, which ranged between

1.69 and 359.40 degrees (Fig. 8). While detections occurred

at all bearings around N1, the quadrant with the greatest num-

ber of detections occurred between 90 and 180 degrees.

The highest NL associated with a detection was

123.89 dB re 1 lPa2/Hz. Of the 91 days of continuous moni-

toring, 27 min had an average NL of 124 dB re 1 lPa2/Hz

or above. Therefore, it is possible that high NLs in these

minutes could have prevented any detections taking place,

so these periods were considered “off effort” and were

excluded from the time spent monitoring, T.

The false positive proportion, ĉ, was 0.097 (standard

error: 0.05). The maximum detection radius, where detection

probability was assumed to be negligible, was set to 1000 km

and a total of 2183.55 h were analysed (excluding 27 min of

recordings where ambient noise was assumed to be too high

to successfully run the automatic detector).

Call production rate was determined from Stimpert et al.
(2015). Deployment duration and number of calls recorded

were reported for 18 digital acoustic recording tags (DTAGs;

Johnson and Tyack, 2003) records. Ten animals were tagged

with a version of the DTAG (v3) that enables calls from the

tagged animal to be identified from other calls made by non-

tagged conspecifics. It is crucial when estimating call produc-

tion rate that only calls from the focal animal are included

in the analysis, so the other eight animals tagged with v2

DTAGs were omitted from the analysis. The v3 DTAGs were

deployed between 1.60 and 6.30 h. Six tags did not record any

calls, while the number of calls produced by the remaining

four tagged whales ranged between 23 and 942. The mean

call production rate, weighted by tag deployment length, was

45.08 calls hr�1 (standard error: 22.31).

B. Pilot study results

The pilot study simulation was run 500 times assuming

a uniform distribution with an initial starting abundance of

5eþ6 calls, and a maximum detection range of 1000 km. The

median number of observations was 238, and the resulting

median percentage bias in estimated density was �56.37%,

but decreased to �10.76% if density was only estimated up to

a range step of 10 km. The median estimated density surface

showed that the area within which the calls were predicted

to originate was very restricted, compared to the detection

area initially considered (�12� 106 km2) and is fragmented

[Fig. 9(a)].

The pilot study analysis estimated initial average call den-

sity over the three month period from Dec 2007–Feb 2008 to

be 0.014 calls hr�1 km2 (CV: 0.15). Applying the call produc-

tion rate from the Southern Californian Bight resulted in an

average fin whale density of 0.32 animals/1000 km2. The CV

for the density estimate was 0.52. The overall monitored area

FIG. 6. (Color online) Distribution maps of signal density (signals/km2) pre-

dicted by a GEE. Initial simulated distributions were, from top uniform, NE,

and southern distributions. The depicted maps are the median estimated sur-

face from 500 simulations.
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for both the pilot study simulation and analysis (once spatial

acoustic masking was taken into consideration) was 973 km2

[Fig. 9(b)]. Based on the results of the simulation, the pilot

analysis results were re-analysed so that density was only

inferred up to a range step of 10 km. There was no way to

determine which of the detections without bearings would

have been detected within 10 km, so it was assumed that the

relative abundances of the two detection types (which could

be calculated from the initial analysis across the whole survey

region) was not altered by making inference over a smaller

area. Therefore, an additional multiplier, b, was used to scale

the estimated density based on detections with bearings

(b¼ 1.22). The resulting call density estimate was 0.02 calls

hr�1 km2 (CV: 0.15), which resulted in a density of 0.54 ani-

mals/1000 km2 (95% confidence interval: 0.21–1.40 animals/

1000 km2). The CV associated with the density estimate was

0.52.

VI. DISCUSSION

There are already several existing methods that can be

used to estimate animal density from acoustic data. However,

the large variety of acoustic hardware and instrument configu-

rations continue to present new surveying challenges and

require current density approaches to be adapted. The CTBTO

dataset presents such a case; there are six hydroacoustic sta-

tions similar to Wake Island situated in the Pacific, Atlantic,

and Indian Oceans (CTBTO, 2018), which have provided a

wealth of baleen whale recordings (e.g., Stafford et al., 2010;

Samaran et al., 2013; Le Bras et al., 2016). Each site is config-

ured in a similar way to Wake Island, with two triads of cabled

hydrophones, one located to the north and one to the south of

a land-based station that collects data around the clock.

However, to date, it has not been possible to utilize CTBTO

data fully for cetacean density estimation. Distance sampling

is not a suitable method for CTBTO data: only two monitoring

points would be formed by the two triads at each site, which is

too few for distance sampling (due to the animal distribution

assumption discussed in Sec. I). In addition, the array spacing

within triads only enables call localization using traditional

TDOA methods at close ranges, meaning that detections from

greater distances would have to be omitted from an analysis.

Given that the large detection ranges due to the deep sound

channel moorings are an advantageous feature of CTBTO

hydrophones, distance sampling would not be an optimal anal-

ysis method in cases where the majority of signals were origi-

nating from distant locations and could not be localized

(recently, however, Le Bras et al., 2016, presented an alterna-

tive location methodology using bearing and amplitude infor-

mation in a Bayesian framework to estimate calling animals’

locations from CTBTO data, which may extend the localiza-

tion capabilities of these arrays). The array design at each site

is also not configured well for an SECR analysis. Although

six hydrophones are available per site, acoustic masking is

expected between the northern and southern arrays, creating

an acoustic barrier (Pulli and Upton, 2001). Furthermore, the

close spacing of the hydrophones in each triad would likely

lead to many detections being recorded by all three instru-

ments. SECR depends on a variety of capture histories to infer

the location of calling animals; in this case, the array design

FIG. 7. TL of a 20 Hz signal propagat-

ing to Wake Island N1 at a depth of

15 m, averaged across 360�. The main

plot shows mean TL values up to the

maximum range (1000 km). The inset

plot shows the same data plotted up to

200 km; this inset shows the decrease

in TL at �50 km.

FIG. 8. Histogram of measured bearings (in degrees) from the three-month

pilot study dataset (n¼ 3066). In this plot, 0 degrees indicates north.
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may provide limited information (i.e., scenarios where all

instruments are ensonified on each occasion yields little spatial

information about the calling animals).

Therefore, data from the CTBTO arrays required a den-

sity estimation approach that used auxiliary data. Although

Monte Carlo simulations have been used to estimate call den-

sity of blue whales in the Indian Ocean using CTBTO data

(Harris, 2012), the method presented here used the additional

distributional information available in the measured bearings.

The more empirical data about animals’ locations that can be

collected during the acoustic survey, the fewer methodological

assumptions are required during the analysis. Although this

method was developed specifically for CTBTO data, there are

other instrument systems that record similar information. For

example, DIFAR (directional frequency analysis and record-

ing) sonobuoys record bearings and have been used to detect

blue whales at distances over 100 nautical miles (e.g., Miller

et al., 2015).

The simulations demonstrated that the method performed

well under the three different simulated animal distributions

(though with less extreme propagation conditions as modeled

at Wake Island). In two of the three cases, bias was further

reduced when density was predicted over a smaller area than

the detection radius originally set for the simulation. For

example, in the median surface plot of the uniform distribu-

tion scenario, an area on the periphery of the detection radius

has some negative bias [as shown by the darker region to the

south of the array in Fig. 6(a)] and the simulation results

recommended that density only be predicted out to 678 km.

The same issue was also encountered during the pilot study.

Running a simulation specifically for the pilot study sug-

gested that the initial estimates were likely to be negatively

biased and inference was restricted to a smaller area. In this

case, restricting the area nearly doubled the point estimate

(from 0.32 to 0.54 animals/1000 km2). In summary, the simu-

lation code provides a tool for users to explore optimal detec-

tion ranges for their given target species, survey location,

and automated detection software. A natural extension to the

work would be to incorporate more complex animal distribu-

tions into the simulation algorithm.

The pilot study analysis demonstrated how most of the

required auxiliary data for this approach can be generated using

subsampled data from the main three-month survey. It is crucial

that all parameters in the density estimator have been estimated

accurately for the time and place of the main survey, otherwise

resulting density estimates may be biased. SLs, NLs, TL, the

proportion of false positives, and the detector characterization

curve were all estimated specifically for the Wake Island data-

set. The SL analysis suggested that, while the choice of TL

model made little difference to the SL distribution parameters

used in the simulations and analyses, the negative relationship

between estimated SL and range of the call from the hydro-

phone when using the Peregrine TL model warrants further

investigation. Parabolic equation models can have limitations

at high incidence angles (i.e., small ranges in this case; Jensen

et al., 2000), which could result in the discrepancies seen

between the two sets of SL results. Further, a fixed source depth

of 15 m was assumed for all TL data used in both the simula-

tions and analyses; an extension to this work would be to see

whether changes in source depth (or using a distribution of

source depths) significantly affects the Peregrine TL (and there-

fore SL) results. The one parameter that could not be estimated

from the collected data was call production rate. In the absence

of any other available data, call production rates from the

Southern Californian Bight collected during summer months

were applied to the estimated call densities. It is highly proba-

ble that the call production rates of fin whales around Wake

Island and southern California are different; cue production

rates do show spatiotemporal variation (e.g., Warren et al.,
2017). Therefore, the fin whale densities estimated around

Wake Island should be considered a “ballpark” estimate at

best.

FIG. 9. (Color online) Distribution maps of signal density (signals/km2) pre-

dicted by a GEE based on the pilot study data inputs. (a) The median esti-

mated surface from 500 simulations. (b) The map from the analysis of fin

whale calls from the three-month pilot study (signals/km2).
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The pilot study also demonstrated the flexibility of den-

sity estimation methods. In this case, bearings could not be

measured for all detections, but all detections (except those

with SNR values below the lower SNR limit of the detector

characterization curve) could still be incorporated into the

analysis. It should be noted, however, that the estimated distri-

bution map was based on those detections with measurable

bearings only. In order to interpret the resulting distribution

map as the predicted spatial distribution of calling fin whales,

an assumption must be made that the measured bearings repre-

sent the spatial distribution of all detections. In any method

that makes assumptions, it is important to assess whether

the assumptions are reasonable, or whether they may have

been violated. Therefore, consideration should be given as to

whether there are any oceanographic or bathymetric features

of the study area that may result in certain bearings being diffi-

cult, or impossible, to measure (other than high TL values,

which are accounted for by identifying areas of acoustic mask-

ing at the start of the analysis). In these cases, the resulting

map would not depict the distribution of all calling animals.

The most striking result of the pilot analysis was the fact

that the monitored area at Wake Island for fin whale calls

was much smaller than originally anticipated. �Sirović et al.
(2007) estimated detection ranges of fin whale calls in the

Antarctic Ocean up to 56 km, though their instruments were

not moored in the deep sound channel. Previous work inves-

tigating detection range of blue whale calls at CTBTO sites

in the Indian Ocean (Samaran et al., 2010; Harris, 2012) pre-

dicted that blue whale calls could be detected hundreds of

kilometres away, facilitated by the deep sound channel.

However, the pilot study results are supported by previous

work that predicted detectability of low frequency signals at

Wake Island to be lower than at Diego Garcia (Miksis-Olds

et al., 2015). The results of all simulations and pilot analysis

also demonstrated that the monitored area may be an irregu-

lar shape, or even fragmented, as seen in the pilot study. The

fragmentation of the monitored area in the pilot study is

most likely caused by fluctuations in TL with range; the TL

decreases at approximately 50 km (Fig. 8, inset), which cor-

responds to the fragmented regions. Monitored areas with

unusual shapes should not lead to biased density estimates,

as long as the results are not extrapolated to areas outside the

defined monitored area.

The pilot study has demonstrated the importance of

quantifying the size and shape of the monitored area (by esti-

mating detection probabilities of the target species) during

acoustic surveys. The same site may show temporal variation

in detection probability as oceanographic conditions change

through the year. Geographic variability in detection probabil-

ity between sites, caused by local bathymetric and ocean con-

ditions, should also be considered, even if the acoustic system

is the same. Detection probability may also alter if the behav-

ior of the target species changes, e.g., if animals increase call

SLs in certain behavioral contexts. Investigating such spatial

and temporal variation in detection probabilities at Wake

Island and another CTBTO site, Diego Garcia in the Indian

Ocean, will comprise the next stage of this research. Another

natural extension to this work would be to analyse the south-

ern site at Wake Island to investigate whether the same

monitoring conditions are present at a site �200 km from the

focal instrument in this initial study.
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