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Resolution Determination through Level of
Aggregation Analysis

Brian R. Calder*

Abstract—In order to accommodate significantly varying
depths within a survey area, and the consequent data density
changes, variable-resolution depth modeling technologies are
now being deployed. A core question for such technologies is
how to determine the appropriate spatially-varying resolution
at which to estimate or model the seafloor in a computa-
tionally efficient manner. Current methods include conversion
from roughly-estimated depth or data density to resolution, or
spatially-recursive sub-division (typically via a quadtree) with an
appropriate similarity metric, typically working on a coarse-to-
fine basis (i.e., starting with the whole survey area, and working
to finer scales as the resolution is determined). All of these
methods require a preliminary pass through the source data, and
make various assumptions about its structure. Computational
efficiency and level of assumptions are therefore important for
implementation.

As an alternative to these techniques, this paper describes a
fine-to-coarse method based on a “level of aggregation” metric
which makes no assumptions about the structure of the data,
allowing it to be used equally on acoustic, lidar, or random point
data. This method is methodologically direct and simple, data
adaptive, readily parallelized, and automatically determines both
the rate at which resolution is changing and the final resolution
within this structure.

The method is illustrated in the context of processing Riegl
VQ-880-G high-resolution shallow lidar data, and mixed-sensor
acoustic data from a NOAA survey, with particular attention to
parallel and distributed implementation. A direct corollary of
estimating resolution is the ability to assess whether a given data
set can meet survey specifications, which effectively provides a
measure of how “surveyed” an area is. This is illustrated on an
archive collection of random data from the U.S. Atlantic Margin
in the context of Seabed 2030.

Index Terms—Resolution Determination, Bathymetric Pro-
cessing, Hydrography, Bathymetric Modeling, Digital Elevation
Model, Seabed 2030

I. INTRODUCTION

OR hydrographic data processing systems that estimate

the depth in the survey area, rather than selecting sound-
ings, resolution of representation is a critical issue. While a
depth estimate may be created at any point of interest, and
therefore at arbitrary locations across an area as required by
the surveyor, for reasons of efficiency in computation and
visualization, they are typically arranged in a more structured
order. Early examples of processing systems of this kind (e.g.,
GMT [1] in the geophysical community, or CUBE [2] for
hydrography) typically used fixed resolution grids with the
resolution being chosen by the processor with little or no
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guidance as to what was appropriate beyond some intuitive
feel for what was achievable given the type of survey system.

Resolution is not, however, arbitrary. The type and config-
uration of the survey instrument plays a heavy role: a 400-
beam MBES with a 130-140° swath is liable to support higher
resolution reconstructions of the true shape of the seafloor
than one with 20 beams over the same opening angle, for
example. But the grid also represents a sampled version of
the seafloor and therefore must obey Shannon’s theorem [3],
or suffer from aliasing: it is not possible to accurately represent
1 m cubic features with a grid resolution of 5 m. Crucially for
hydographic practice, arbitrary selection of an inappropriate
resolution may compromise the algorithm’s ability to reliably
represent hydrographically significant detail.

Nor is the appropriate resolution fixed for a given survey
area. Different instruments used in different regions of the
survey area, or the same instrument used in different depths
could cause the achievable resolution to change. For survey
areas with significant depth range, therefore, any choice of a
fixed resolution at which to work is necessarily a compromise:
it will almost surely be over-estimating the achievable reso-
lution in some areas (leading to poor, or sparse, estimates)
and under-estimating in others (leading to spatial aliasing and
poorly defined features).

For these reasons, second-generation computer-assisted hy-
drographic workflows (e.g., CHRT [4], or CHARM [5]) attempt
to use the data itself to predict an appropriate resolution at
which to work, and support either mixed, or truly variable,
resolution across the survey area. Setting aside the question
of how to support a variable resolution data structure, the
principal question is how to reliably and efficiently determine
the appropriate estimation resolution at any given point.

Previous approaches to this problem have typically relied
on translating some summary statistic of the data into an
estimate of resolution; depth [6], data density [4], and com-
plexity [5] have all been used. These proxies, however, have
implementation difficulties (for example, reliably estimating
area ensonified [7] to provide for data density estimates), and
are only approximations to the problem, which leads to the
necessity for empirical calibration constants in making the
translation. They are often also unsuited to match modern
survey standard specifications, which often specify a minimum
number of observations required at each estimation node; the
most commonly used data density-based estimate typically
predicts the mean number of observations, rather than the
minimum unless corrections are made, which may be dataset
specific.

Addressing the same problem, this paper proposes an al-
ternative method of determining resolution that minimizes the



number of assumptions made about the data, is readily scal-
able, and which matches survey specifications for a minimum
observation count. Starting with a simple count of observations
in a high-resolution grid across the survey area, the algorithm
works fine-to-coarse, aggregating at each point a sufficient
number of high-resolution cells until the minimum number of
observations required is achieved. Statistical analysis of this
“level of aggregation” (LOA) allows the algorithm to determine
the maximum size of an analysis box that is required to satisfy
the lowest resolution that is mandated by the data; within each
cell of a grid at this resolution, analysis of the LOA estimates
then allows the algorithm to determine the final resolution of
estimation at each point. This structure provides for several
benefits over previous algorithms. First, since the algorithm is
based purely on the count of observations, it does not rely on
structure of the data and can be applied to MBES lidar, or even
random point data. The structure of the estimation allows for
parallel implementation of the problem, letting the algorithm to
scale effectively without communications overheads. Finally,
since the algorithm directly counts the observations achieved
at each high-resolution grid cell, it is significantly better at
achieving the minimum observation count to mandate reliable
depth estimation.

This algorithm is illustrated on a number of datasets, includ-
ing high-resolution topobathymetric lidar, MBES hydrographic
data, and deep-water mixed random-point and MBES data in
the context of Seabed 2030 [8]. These datasets illustrate the
basic workings of the algorithm, the mechanisms to efficiently
solve the problem at scale, and an alternative view on how to
determine the level of survey completeness in a given area,
respectively.

II. METHODS
A. Level of Aggregation

Consider a fixed, high-resolution, zero initialized, grid im-
posed over the survey area, C'(4,j) € Z>p, 0 < i < N,0 <
J < M with linear mapping to the projected coordinate space
with (x;,y;) = (Ri, Rj) + (xo,yo) for given origin point
(x0,y0) and fixed resolution R. Each cell (i,j) therefore
covers A(i,j) = [@i,it1) X [y;,y541) C R? we assume
that details of automatically extending this array to cover all
of the data read are abstracted from this description, and that
C(i,7) = 0 outside of the given dimensions.

For each data point § = (xg,ys,2s), 0 < s < S, the grid
of counts at (is,js) = (|xs/R], |ys/R]) is updated as

Clis, js) < Clis, js) + 1 1
(i.e., a simple accumulator). The level of aggregation (LOA)
grid L(i,j) € Z>o, 0 <i < N,0 < j < M is then defined
as
it A

L(i,j) =min < \: ZZC(C,T) > Npeq 03 AEZ>o (2)

c=1 r=j

where n.q is the user’s required minimum number of ob-
servations for stable depth estimation (which should include
some allowance for blunders in the input data). The LOA
computation is illustrated in Figure 1.
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B. Refinement Estimation

The LOA grid L(i, j) estimates directly the distance at each
node that the algorithm must consider in order to accumulate
enough observations to reliably estimate depth. It therefore
directly estimates the grid resolution that can be supported by
the data at each point. The spatial variation in the estimate,
illustrated in Figure 2 for a lidar dataset, depends on the
instrument, survey pattern, and bathymetry.

In order to provide for a computationally efficient data
structure that supports variable resolution, the model of CHRT
is adopted [4]. This requires that the code establishes a grid of
appropriate fixed resolution, W, across the survey area which
forms the basis for varying resolution: within each fixed W-
resolution cell, the appropriate depth estimation resolution,
Azx(c,r), for the data is determined, and a refined grid at
that resolution is constructed to fill the cell. In this way, the
depth estimate resolution can be spatially variable (every W
meters) while still maintaining what is essentially a collection
of fixed resolution grids nested within the initial W -resolution
grid cells. This structure is called a piecewise-constant sample
spacing (PCSS) grid.

Instead of a user-defined W, the LOA analysis allows the
spacing to be estimated directly. Consider the probability mass
function (pmf) for the LOA of the survey area, p(\) € R,0 <
A < o0, illustrated in Figure 3. W must be as small as possible
so that Az(c,r) can adapt as quickly as possible to changing
conditions, but must also be no less than the lowest resolution
required by the data, since it is also the minimum refined
resolution possible (i.e., the refinement grid for each cell must
fit entirely within the cell). A reasonable choice for W is
therefore the upper a-percentile (with o = 0.95 — 0.99) of the
probability mass function, W = g, R, where

g = min {x:Zp(A) >a} 3)
A=0

since this will ensure the maximum Az(c,r) for any part of
the survey area will be accommodated while avoiding any
estimation outliers from the LOA.

Once W is determined, the same techniques can be applied
to the fixed, W-resolution, grid to determine a value for
Az(c,r) in each cell. Let each cell (¢,r) of this grid cover
area A(c,r) = [zo + We,x0+ Wi(e+ 1)) x [yo + Wr,yo +
W (r+1)) C R? in projected coordinates. The cells in L(i, j)
that intersect are the neighborhood of (¢, r),

N(c,r) ={(i,7) : AGi,5) N Ale,r) # 0} )

To determine Ax(c,r), form the pmf of L(s,j), (i,5) €
N(c,r) and then find the a-percentile for this pmf as before.
As example refinement grid is illustrated in Figure 4.

III. IMPLEMENTATION
A. Level of Aggregation

Computing the LOA at each cell by evaluating Eqn. 2 would
be extremely time consuming. Constructing the auxiliary func-
tion

p)\(iaj) = L)\(Z,]) — Nyeq ()
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(a) Base LOA (level 0)

(b) Incremented LOA (level 3)

Fig. 1. Estimation of Level of Aggregation. The LOA increases, taking in more and more soundings, until the number of soundings encompassed exceeds
the user’s minimum count (including any allowance for points expected to be lost to blunders if the computation is based on raw, rather than edited, data).

Fig. 2. Example of the LOA values, converted to meters using R = 0.125m
and nreq = 5, associated with a 500 m x 500 m section of a lidar dataset from
a Reigl VQ-880-G topobathymetric lidar in Key West, FL. Data courtesy of
NOAA RSD.

demonstrates that this is essentially a root-finding problem,
since the preferred solution is the value of A just larger than
the (single, because Ly (i,7) is monotone increasing) root of
p(i,7), Figure 5. Any appropriate root-finding algorithm may
then be applied, but since gradients of p(7, j) are not known,
bisection search [9] is used in the example implementation.
As a practical matter, care must be taken to select the next

bisection point where the right-hand end of the solution range
is a valid LOA estimate. In a simple implementation, the next
point selected would tend to the right-hand side and therefore
never converge. A number of ad hoc solutions are possible, but
moving the right-hand endpoint to the left by a fixed amount
and testing again for solution was found to be most efficient
in practice. There is also some efficiency to be had by using
a near, previous, solution (e.g., L(i — 1,j) or L(i,j — 1),
as appropriate) as a starting point, since there is significant
correlation between solutions.

The cost of evaluating Ly(4,7) can be ameliorated by
recognizing that this can be implemented through a Summed
Area Table [10] (SAT), which can be evaluated with complexity
O(1) rather than O(N?). The cost of constructing the SAT can
be reduced by recognizing that each L(i, 7) is independent of
all others given the counts table C(i,7), and therefore that
the computation can readily be done in parallel. For example,
in a multi-threaded environment, each row L(-, ) could be
handed to a different thread in turn (although for efficiency, a
job quantum of a few rows is more useful).

B. Refinement Resolutions

As with the LOA computation, the refinement spacing W
and depth estimate resolution Axz(c,r) are independent given
the L(7,j), and therefore can be computed in parallel as be-
fore. There is a small efficiency to be had by accumulating the
pmf of L(%, j) as each cell is being evaluated in parallel, rather
than doing so as a separate step. Two practical complications,
however, occur.

First, the counts C'(i,7) are therefore the LOA L(i,j) are
spatially quantized at scale IR. The pmf estimated to determine
W and Ax(c,r) is therefore also quantized [11] and can
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Fig. 3. Probability mass function for the lidar LOA shown in Figure 2, converted to meters using R = 0.125 m. Finding the 99% centile for the distribution
can be used to set W, the analysis window width; analysis of the LOA within each WW-resolution cell then sets the depth estimate resolution, Ax(c, 7).

Fig. 5. Cartoon illustrating the root-finding solution for LOA determination,
the range of valid solutions (i.e., meet or exceed the number of observations
required), and the preferred solution, which is always immediately to the right
of the root location.

suffer from aliasing. Choosing a sufficiently small R (e.g.,
one quarter of the smallest depth estimate spacing expected)

Fig. 4. Computed depth estimation resolutions for the lidar LOA shown in resolves this issue.

Figure 2.
Second, due to the quantization of L(i, ), the value of ¢,

is likewise quantized, and it is difficult to determine a good
estimate for W or Az(c, ). Interpolation of the pmf can be
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used to resolve this; in theory, sinc interpolation is optimal,
but in practice linear interpolation was found to be sufficient.

C. Large-Scale Structure

The preceding description assumes that the LOA for the
entire survey areas if computed as a single entity, and that a
global value for W is determined. While this is possible, it may
not be optimal for regions with extreme depth range (e.g., from
shoreline to mean ocean depth, as sometimes happens around
volcanic islands). In such areas, the value of W determined
would reflect the sparsest data available, and therefore would
likely be relatively large. This has the consequence of reducing
the rate at which resolution can be changed, which can be quite
important in shallow areas, or on steep slopes.

A simple work-around for this is to break the survey area
into smaller tiles, and determine a value of W for each tile.
This also allows for spatial adaptation of R to reduce the
effects of quantization in C(3, j) described previously. Smaller
tiles can also assist in active memory management [12].

IV. APPLICATIONS
A. General Depth Estimation

The use of LOA to determine depth estimation resolution in
lidar data has already been demonstrated in Figures 2—4 during
development of the methods. Since the method relies solely
on the observation counts, however, it is equally appropriate
for MBES surveys, or mixed source surveys (SBES, MBES, and
lidar), as illustrated in Figures 6—8. Note that obtaining stable
resolution estimates such as these with prior methods [4] is
quite difficult, and requires many special cases and approxi-
mations; here, it drops immediately from the computation, a
significant advantage.

B. Survey Completeness

Although primarily intended to estimate supportable depth
estimation resolutions in a spatially-varying manner, the LOA
argument may also be reversed to address survey complete-
ness. That is, given a survey specification for a depth resolution
to be achieved, potentially as a function of depth, evaluation of
Azx(c,r) determines whether there is sufficient data available
in the area to meet the specification. Practically, the survey
would continue (with the estimates being updated as new data
is added) until this was the case everywhere in the area of
interest, or until it was demonstrated that adding more data
had no material effect.

This method can also be used to assess data gaps. Con-
sider, for example, the Seabed 2030 initiative [8], which
aims to generate high-resolution maps of the whole world
ocean by 2030. Recognizing that achievable resolution of
gridded representation is a function of depth, Seabed 2030
requires a resolution of 100m above 1,500 m depth, 200 m
from 1,500-3,000m, 400 m from 3,000-5,750m, and 800m
below 5,750 m.

Availability of data to support this can be readily addressed
using the LOA analysis. Figure 9 shows the data inventory held
at the National Centers for Environmental Information (NCEI)

Fig. 6. Example LOA values from an intermediate depth region of MBES
data in Ernest Sound, AK. Note the different patterns with respect to Figure 2
due to the differences between MBES and lidar instruments. Data courtesy of
NOAA HSD.

Fig. 7. Probability mass function for the LOA estimates in the whole dataset
of Figure 6. The distinctly different pattern with respect to Figure 3 is due to
the significant depth range in this dataset.

bathymetric databases for the region in an eight-degree area
around Bermuda. While compelling, visualizations such as
these are often misleading, since even a singlebeam trackline
of passage soundings must be drawn as at least one pixel in
order to be visible—which may be a significant size if the
visualization is zoomed out to sufficiently small scale. This
tends to make it look like there is more coverage of data than
there really is. The estimated achievable resolution, Figure 10,
at W = 3,125 m demonstrates readily just how much of the
area is effectively unsurveyed. Using the depth estimated by
the CHRT algorithm for the area, Figure 11, it is then possible
to determine the Seabed 2030 required resolution, and thence
for which areas of the region the database contains sufficient
data to be considered complete, Figure 12.

Note that this estimate is intentionally pessimistic. The
algorithm here has been configured for npy, = 5, with the
assumption that 20% of the raw data used for the analy-
sis will be blunders, which increases the total observation
count required proportionately. This is significantly more than
Seabed 2030 requires, but is not unreasonable when dealing
with raw acoustic echosounding data (a formal assessment of
data blunder levels in this case was not conducted). What this



Fig. 8. Depth estimation refinement resolution computed by the algorithm for
the LOA estimates in Figure 6. This is raw data, hence the “noise” around the
edges; this method compares very well to previous best-in-breed estimates.

example demonstrates, however, is that even MBES data might
not be sufficient for an area to be considered complete in
the modern sense. For example, there are a number of cases
where MBES tracklines are partially meeting the requirement,
and even some where none of the data meets the current
requirements (see, for example, the northwest corner of the
area in Figure 12). This MBES data is a legacy of first-
generation commercial deep-water MBES systems from the
1980s, where there were many fewer beams across the swath
than is now typical, and therefore lower data density to support
higher resolution depth estimation. Significantly, none of the
areas covered by SBES lines are considered complete under
these assumptions (although sparse depth estimates are still
generated because the algorithm will construct a depth given
even a single observation).

Finally, observe that the LOA solution, since it is com-
puted from the count grid, can be readily updated as new
data is added to the database, so long as the count grid is
preserved. For scale, although allowing that computation time
will vary significantly with implementation and hardware, the
full refinement computation (post count-grid construction) in
the example implementation was approximately 17.5s (based
on an Intel Core i7 processor, running at 4 GHz, with 32 GB
memory, and an SSD-fronted hard disc), for Figure 10, with
dimensions N = 35,623 and M = 41,864. Clearly, the
algorithm can be implemented with low overhead (the time
required to read the raw data in order to create the count grid is
significantly longer than the computation time), which makes
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re-running the refinement resolution computation occasionally
a low-cost event.

V. SUMMARY

Careful selection of the resolution of representation is
essential for a DTM to faithfully model the source data. Due
to changes in depth, or instrument, however, this resolution
is not necessarily constant across a survey area, and choosing
a single resolution runs the risk of over- and under-sampling
the surface in different areas. Either option has unfortunate
repercussions.

This paper outlined a new method for estimating the appro-
priate resolution at which to process raw survey data, which
has a number of advantages over other proposed methods. In
particular, it directly assesses the stability of depth estimation
in order to predict resolution, it automatically calibrates the
resulting data structure to the data’s behavior, it makes few
assumptions about the structure of the raw data and can
therefore be used for almost any sounding source, and it scales
readily to a parallel implementation for efficiency.

In addition to its primary application in determining the
resolution at which the data supports depth estimation, the
algorithm can also be used to investigate whether the data
so far collected meets the (possibly depth dependent) survey
specification for resolution, and therefore can be used to assess
completeness of surveys.
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