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Parallel & Distributed Performance of a Depth
Estimation Algorithm

B. R. Calder

Abstract—Expansion of dataset sizes and increasing complexity
of processing algorithms have led to consideration of parallel
and distributed implementations. The rationale for distributing
the computational load may be to thin-provision computational
resources, to accelerate data processing rate, or to efficiently reuse
already available but otherwise idle computational resources.
Whatever the rationale, an efficient solution of this type brings
with it questions of data distribution, job partitioning, reliability,
and robustness.

This paper addresses the first two of these questions in the
context of a local cluster-computing environment. Using the CHRT
depth estimator, it considers active and passive data distribution
and their effect on data throughput, focusing mainly on the
compromises required to maintain minimal communications
requirements between nodes. As metric, the algorithm considers
the overall computation time for a given dataset (i.e., the time lag
that a user would experience), and shows that although there are
significant speedups to be had by relatively simple modifications
to the algorithm, there are limitations to the parallelism that
can be achieved efficiently, and a balance between inter-node
parallelism (i.e., multiple nodes running in parallel) and intra-
node parallelism (i.e., multiple threads within one node) for most
efficient utilization of available resources.

Index Terms—Distributed Processing, Parallel Processing,
CHRT, Data Scheduling, Spatially-Aware Data Distribution,
Bathymetric Estimation

I. INTRODUCTION

ONE consistent trend in hydrographic data capture within
the last decade has been a consistent increase in the

density and volume of data being captured in the field. While
this can significantly improve the quality of the representation
of the seafloor that can be achieved, it comes at a price in
terms of data storage, manipulation and archival. Although the
performance of computers, discs and networks have improved,
and there are now a number of algorithms that can assist
in processing the data, the total processing time for larger
datasets is still significant. In fact, the use of more algorithmic
approaches to hydrographic data processing has meant that
much of the work is now done by algorithms, but in practice
this can mean that the user is free only to watch the progress
bar advance between inspection cycles. In addition to reducing
the computing lag, faster processing methods have additional
benefits. For example, if the processing is sufficiently fast that
a significant portion (ideally, all) of the data can be reprocessed
in a human-scale time (say, on the order of a second or so),
then the data inspection task could be made interactive, with
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the results of modifications to the data being reported in real-
time. This would significantly improve the efficiency of the
data inspection task, since the user would not have to maintain
a mental picture of the data during compute cycles. Faster
compute cycles would also allow the user to experiment with
‘what if’ scenarios, changing, e.g., the patch-test solution to
investigate motion sensor anomalies. Or, it could be possible to
use the output of a computational algorithm as the objective
function in an optimization scheme to automatically adjust
some of the solution parameters to give the best possible
solution. Clearly, there is a need to improve the performance
of the algorithms in use.

Setting aside rebuilding the algorithm, there are a number
of potential opportunities for improving the performance by
running it in parallel. Most processors currently in use have
more than one processing core, and even low-end desktop
machines typically have four. If the algorithm in question can
be adapted to run segments in multiple processes, or threads,
then it is possible to improve the overall performance to some
extent. It is also now common to have multiple machines on a
sufficiently fast network to consider distributing a large scale
processing task across multiple machines and thereby improve
the overall performance (taking into account the extra commu-
nications costs that this entails). If most of the machines are
idle for much of the time (e.g., because they are used for in-
termittent tasks, or because they are primarily IO bound) then
these machines need not even be dedicated to the processing
task, which can utilize their otherwise unused compute cycles.
A dedicated cluster of machines to carry out processing is not
impossible, however, since the material cost of such clusters
has dropped substantively, particularly for blade server clusters
(i.e., a collection of identical computers without cases mounted
in a single chassis with network connectivity and hard discs).
Such clusters also help with robustness, since it is easy to
hot-swap computers and to maintain a standard disc image
that can be used to restore them to a well-known state in case
of any corruption. Finally, the rise of cloud computing, such
as Amazon EC21, Rackspace2, Google Compute Engine3 and
Microsoft Azure4 among others, mean that for shore-based
processing centers, it may be possible to deploy computational
tasks over an essentially unlimited compute resource, given
sufficiently fast data ingestion processes.

The question, of course, is how to organize both the
computational structure of any given algorithm to take ad-
vantage of the available computational resources, and how

1http://aws.amazon.com/ec2
2http://www.rackspace.com
3https://cloud.google.com/products/compute-engine
4http://www.windowsazure.com
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to best distribute the data and computational effort to avoid
bottlenecks and inefficiencies. Parallel versions of algorithms
are intrinsically more complex than serial, and must pay
attention to problems of fair access to resources, deadlocks
(i.e., where two or more sub-tasks need two or more resources
to continue, but each is allocated only part of the requirement)
and shared correctness (in the sense that multiple sub-tasks
accessing the same resource without care can interfere with
each other and generate incorrect results, although both appear
to complete correctly). Considering the problem purely on the
basis of efficiency, the primary difficulty is the elimination,
or reduction, of bottlenecks. Any depth estimation algorithm
contains a mixture of computational elements and data access.
Often, the processing resources of a single machine are under-
utilized, which can be improved if the task is split into multiple
segments and run in parallel; if this parallelization increases
the required data throughput to the stage that either the disc,
the primary bus, or the local cache are exhausted, however,
the performance may in fact be reduced. When distributed
over multiple machines, these problems grow in scope and in
addition the problem of where to place data become important.
That is, it is better to think of the machines in the cluster
as discs with computers attached, rather than as computers
with discs attached. Then, the focus of the algorithm design
becomes ensuring that the data is clustered appropriately so
that all of the data required for a sub-task is available at one
location, and then how to distribute the sub-tasks so as to
minimize data motion between machines.

In the face of the difficulties entailed by distributing a depth
estimation algorithm within a single machine, or across multi-
ple machines, this paper investigates some of the problems
that are likely to be encountered, and how they might be
resolved. It proposes two variants of the CHRT algorithm [1],
one for use within a single machine, and one for distribution
across multiple machines. It then considers the limitations of
running within one machine, the data distribution problem
(where the requirements for placement are not fully known
until the first phase of the computation is carried out), aspects
of the efficiency of the data distribution process (such as
how long it takes to compute an optimal distribution, the
equitability of the achievable distributions of data, etc.) and the
potential efficiency improvements, at the user level, given the
proposed solutions to all of these problems. The primary goal
is to assess the potential for gain in such an implementation
of the algorithm, and gain some insight into the relative
importance of the various issues that will be faced in the full
implementation of the distributed version of CHRT.

This paper is therefore organized as follows. Section II
considers the basic problems of the design of the algorithm,
including an overview of the serial version of the algorithm,
which is used as a base. It also considers the design issues
involved in ensuring data availability at multiple machines in
a cluster, and in determining how to distribute the data across a
given set of machines. Section III examines the performance
of the single-machine version of the algorithm, highlighting
the bottlenecks that become apparent and their implications
for scalability, while section IV considers the time complexity
and distribution efficiency for the computation to split up the

DATA

S
U

P
E

R
G

R
ID

E
S

T
IM

A
T

E
S

SUPERGRID

ESTIMATION

REFINEMENT

CUBE

FINALISATION

USER INSPECTION

USER INSPECTION

Fig. 1. Data flow for the CHRT algorithm, with additional feedback loops
to allow for operator interaction. This flow assumes that all of the data are
available for processing, but similar flows can be constructed for the case
where data capture is episodic, and real-time.

primary task into sub-tasks, and to distribute the data across the
cluster as the algorithm commences. Section V examines the
effective efficiency of the proposed distributed algorithm for
various different methods of data distribution, using a model of
the computational time that takes into account pre-fetching of
data and computation/IO overlap. Finally, section VI considers
the implications of the results reported, and in particular what
they mean for a composite algorithm, and section VII provides
a summary of the primary conclusions.

II. DESIGN ISSUES

A. Segmenting the Algorithm

The CHRT algorithm [1], used for these experiments, is
a hierarchical, data-adaptive, extension of the CUBE algo-
rithm [2] for processing high-density, high-resolution multi-
beam echosounder data. The core concept of the algorithm
is to use a first-pass over the raw data to estimate the data
density, and hence the resolution supportable by the data, and
then construct a piece-wise regular grid on which to compute
the CUBE algorithm in the second-pass over the raw data. The
algorithm estimates the data density on a coarse grid (typically
on the order of 30 m spacing, called the ‘SuperGrid’), and then
refines each cell of this grid with an embedded fine-scale grid
once the estimation resolution is determined. The overall data-
flow for the algorithm is shown in Figure 1.

The advantage of this construction is that each SuperGrid
cell is independent of the others, and therefore does not need
to communicate with them about data. It is therefore trivial to
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split up the computation of the CHRT algorithm on a SuperGrid
cell edge, since each segment of the overall grid can be
considered essentially independent of the others. In theory,
therefore, the task should be very highly parallelizable, since
there is no communications overhead. Of course, in order to
avoid edge effects, source survey lines that impinge on the
edges of a region of the whole grid must still be available to
the computation, and therefore each sub-grid must be provided
with the data around it, as well as the data inside it, and there
is some overhead in the sub-grid computations that reduces the
effective speedup that can be achieved. In principle, however,
so long as the overall grid can be partitioned into non-
overlapping sub-grids, the algorithm can be parallelized simply
by running each segment of the partition on a separate thread,
or a separate processor.

The first phase of the algorithm, to determine the data
density, is relatively straightforward. Within each SuperGrid
cell, the algorithm constructs an estimate of the area of the cell
used by all source survey lines that pass through it, and counts
the number of soundings that impinge on it. It is relatively
simple to combine partial estimates within each SuperGrid
cell, and therefore the first phase can be split up purely on
the basis of the size of the source lines, with no concern
for spatial context. The data distribution goal for a distributed
version of the algorithm is therefore to spread the data onto the
computation nodes such that each node has approximately the
same number of soundings, and therefore the same amount
of work. This ensures, Figure 2, that the computation takes
about the same time on each node, and therefore that all of
the nodes will finish computation at the same time, with no
wasted effort.

The second phase, however, construct CUBE estimates of
depth at the fine-scale embedded grids, and it is not as simple
to merge partial results. It is therefore essential that each
SuperGrid cell is computed by only one sub-grid task. To
ensure that this is the case, the whole computation is split into
segments, each of which should have approximately the same
number of soundings. Consider the diagram in Figure 3. As a
by-product of the first phase of the computation, the algorithm
obtains a count of the number of soundings in each SuperGrid
cell, and therefore for any north-south or east-west split of the
grid, it is trivial to compute the number of soundings which
it contains. Given the number of nodes, P , onto which the
second phase of the computation is to be split, the question
becomes how to cut the whole grid into P segments, each
of N/P soundings (approximately). There are any number of
possible solutions to this problem, but to keep the complexity
of the decision-making process in check, the algorithm only
considers partitions that are aligned either north-south or east-
west through the area. For P processors, and assuming an
initial north-south split, there are P − 1 possible split points,
corresponding to N/P to the west of the split point, and
N(P − 1)/P to the east, 2N/P to the west and N(P − 2)/P
to the east, and so on until the last possibility of N(P −1)/P
to the west and N/P to the east. (For an initial east-west
split, the same options are possible, with ‘north’ and ‘south’
substituted.) After the first split, each segment can then be
further split either east-west or north-south, and therefore the
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Fig. 3. Logical structure of the partitioning process. The goal is to split the
overall computational task into a fixed number of sub-tasks (here, four) such
that the number of soundings in each sub-task is approximately equal (i.e.,
as in the top right, rather than the top left). To keep things simple, the splits
are made either north-south or east-west, but even this can lead to significant
complexity (bottom panel) for higher numbers of sub-tasks.
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Fig. 4. Tree-structure diagram for all possible splits of a grid into four
segments, starting with a north-south split. Note that many of the splits are
equivalent, which can be used to advantage to reduce the amount of time
required to find the optimal split.

total set of all possible splits forms a strongly structured tree,
Figure 4.

The number of possible splits quickly increases with the
number of nodes, and therefore it quickly becomes impossible
to enumerate all of the potential splits and their relative
merit (measured by how close the sounding counts are to the
nominal N/P ). The redundancy evident in Figure 4 means
that not all of the potential splits have to be considered,
however, and it is possible to construct a branch-and-bound
algorithm [3] to evaluate a minimal sub-set of possibilities,
which considerably improves the run-time of the algorithm.

A secondary consequence of the requirement that any
SuperGrid cell only be computed by one sub-task is that
it is impossible to perfectly partition the data used in the
computation. The requirements for data around the edges
of the sub-grid under consideration mean that one source
survey line may be required for two different sub-grids, and
consequently that it will most likely be required at more than
one processor node. This implies that the algorithm must have
the capability to obtain the data for any survey source line at
any node, that the lines must have a consistent representation
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Fig. 2. First phase scheduling of lines to nodes. Since the first phase of the algorithm does not require any spatial context, and can combine partial results
at the SuperGrid cell level, no special precautions on distribution are required except to keep the distributions relatively even so that there is no idle time in
the computation (bottom panel).

across all of the nodes in the cluster, and that it would be
a good idea to distribute the data lines for the first phase of
the algorithm, and the sub-grids for the second phase so as
to minimize the data movement required to allow the second
phase to execute. These requirements are considered in the
next two sub-sections.

B. Ensuring Data Availability

The simplest solution to ensure that each node had access to
all survey source lines would be simply to have all of the lines
sourced from a single data store, typically a Storage Array
Network (SAN). This would have limited scalability, however,
since the network bandwidth available would eventually form a
bottleneck. The alternative adopted here is strongly influenced
by the Hadoop5 model of a distributed file system [4], although
significantly simplified for the current application, Figure 5.
(Note that Hadoop itself is not an option due to some source
library dependencies in third-party software.)

In this model, one of the nodes in the cluster is considered
‘special’ and runs a variant of the software that maintains a
database of which survey source line is available on each
node, and provides consistent naming services so that each
source line is available with the same name on each node

5http://hadoop.apache.org/

(this name is a unique identifier, not necessarily the reference
name of the line; the lead node maintains a lookup table for
translation). The lead node also provides the ultimate source
of data from the external data store, and provides the user
interface. In the context of the CHRT algorithm, full name
lookup is not a required service, since the lead node knows
at each time exactly which survey source lines are going to
be distributed to each processor node and where they are
located; each assignment of a survey source line to a processor
node can therefore be augmented with all of the information
required for the processor node to find the source line from one
or more of its peers (due to the consistent naming scheme).
This ensures that each processor node can access data from
one of its peers when required, greatly increasing the network
bandwidth through the adoption of a mesh rather than bus
network topology.

In practice, it is often the case that the lead node will
know all of the survey source lines that will be processed
by a particular sub-grid task before they are assigned (e.g., if
the lines for a dataset are presented as a batch). In this case,
the lead node can pass out this information to the processor
nodes early, allowing them to pre-fetch the required data in the
background as the primary computation proceeds. Depending
on network congestion, line order and size, this may be able
to avoid some pipeline stalls that would otherwise occur in the
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Fig. 5. Structure of the data distribution requirements for CHRT. The lead node maintains a database of which survey line is available on each node, and
provides consistent naming for all data; the ultimate source of survey data is a large external store which is reflected into the cluster by the lead node. Each
processor node is supplied with a copy of all of the lines required for its computation (orange and green rectangles), but can fetch them from peer processor
nodes, rather than having to obtain them from the external store (in this example, a SAN).

computation, and therefore improve the overall performance.

C. Distributing Data

The logical model of processors here is discs with com-
puters attached: the processing follows the data, so that all
processing works on data that is local to the CPU. The
algorithm, therefore, needs to be able to determine how to
distribute the data to the nodes, and then how to distribute
the sub-grid processing tasks so as to maximize data affinity.
Ideally, the distribution should cluster data that is likely to
be used by the same sub-grid processing task; unfortunately,
however, the data has to be distributed in the first phase of the
algorithm, and the survey source lines required for each sub-
grid task are not know until after the first phase has completed.
Consequently, the algorithm is by necessity approximate.

Distribution of data or tasks to multiple processors is a
very well studied problem in computer science, and numerous
variants of scheduling algorithms exist depending on the con-
straints of the problem (e.g., limited capacity on any one pro-
cessor, maximum number of processors that can be committed,
sequence of processing steps that must be achieved, etc.) [5],
[6]. The scheduling problem, however, is NP-hard, meaning
that it is very difficult to derive an algorithm that determines
the optimal schedule in a reasonable (meaning polynomial)
time. Many approximate algorithms therefore exist, such as the
Longest Processing Time algorithm [7] which in this context
would sort the survey lines by number of soundings (which

is known a priori) and then assign them in order to the
processing node with the minimum of currently committed
soundings to process. A more useful variant is MULTIFIT [5],
[8], which sorts the survey lines as before, but then assigns
them to the processing nodes so as to minimize the maximum
processing done at any node. Which scheduling algorithm to
use in this case is not clear, particularly in attempting to
construct clusters of source lines on a processor node, and
forms the subject of the experiments reported in section IV-B.

Assignment of the sub-grid tasks to the processor nodes is
a very similar problem, since each sub-grid should ideally be
assigned to the processing nodes such that the data migration
required to compute its solution is minimized. For even a
few sub-grid tasks, the number of possible permutations of
assignments grows very quickly, and therefore the simplest
solution is to use a sub-optimal ‘greedy’ algorithm which
makes the assignments so as to minimize at each stage the
expected run-time of any sub-grid on any processor node,
eliminating both sub-grid and node from further consideration
afterwards. Since the lead node knows which source lines
are available at every processor node, and the set of lines
required to compute each sub-grid task, it can readily estimate
the expected run-time for the algorithm, assuming that the
pre-fetch algorithm described previously will be running, and
will attempt to fetch all available lines required as quickly as
possible. Ignoring network delays, the algorithm can compute
a matrix of runtimes for each sub-grid task and processor node,
and therefore the assignment problem becomes simply a matter
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Fig. 6. Data processing rate per thread committed in thousands of soundings
per second. The processing rate per thread decreases as more threads are
added due to resource contention within the processor.

to picking, at each step, the minimum element of the matrix,
and keeping track of the assignments.

III. MULTI-THREADED PERFORMANCE

To investigate the performance of the algorithm when run-
ning in multiple threads on a single platform, a small test
dataset was subject to processing on increasing numbers of
threads. The data was a conventional NOAA survey, consisting
of approximately 9.26 × 106 soundings from the NOAA Ship
FAIRWEATHER, collected in 2009 using a mixture of Reson
8101, 8125 and 8111 multibeam echosounders. The raw data
were converted into a binary input format for the research
reference implementation of CHRT, and were then processed
on a iMac (2.93GHz Intel Core i7 processor, 8GB main
memory, 7200 rpm 1TB Western Digital hard disc, running
MacOS 10.7.5). The first phase of the algorithm was run in
serial mode for simplicity, and the second phase in parallel.
The number of threads for processing was increased from 2
to 20, and the time taken to process the data was recorded in
each case. (Note that the processor has only four cores with
two hyper-threading units per core; software checks that avoid
adding more threads than cores were disabled in this case.)

The mean processing rate per thread for the second phase
of the algorithm is shown in Figure 6, while the total pro-
cessing rate for the computation (i.e., the aggregate over all
threads) is shown in Figure 7. It is clear that the mean
processing rate per thread decreases continuously as more
threads are added, primarily because of increasing competition
between the threads for the resources of the processor (disc
access, memory bandwidth, cache space and eventually core
residency). The overall processing rate does still increase
in general, however, although the pay-back per thread after
approximately six threads are committed is relatively slight.

These results suggest that while it is possible to improve
the performance on a single processor by a relatively modest
amount (the best-case speedup here is approximately 3.6),
the contention for resources severely limits the performance
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Fig. 7. Total data processing rate (over all threads) in millions of soundings
per second. The total processing rate increases steadily for small numbers of
threads, but then slows down and eventually stops increasing after approxi-
mately six threads are used.

improvement. Distributing the computation over multiple pro-
cessor nodes, where this contention is more limited, is more
likely to improve the performance. In a distributed system, the
contention is typically for network bandwidth to access data
from a remote location. With the implementation as described
here, however, the mesh-topology of the data access network,
where each processor node can obtain data from its peers,
means that this is unlikely to be a significant concern. Note
that these results do still confirm that the performance of the
algorithm can be improved by multi-threading. In practice,
it is likely that a hybrid model will be most effective. For
example, the algorithm might distribute the sub-tasks to to
multiple processor nodes but run a small number of threads
on each sub-task within the node, leaving some space to allow
for the pre-fetch task, and the OS.

IV. PARTITIONING EFFICIENCY

A. Time Complexity and Efficiency of Partitioning

The performance of the algorithm in the second phase is
only part of the computational cost. Determining how to split
up the overall task into sub-grid tasks can be computationally
demanding, as outlined in section II-A and Figure 3. In order
to test this, the time taken to determine the optimal split in
the experiment of section III was recorded as a function of
the number of segments in the partition. The results, Figure 8,
show that the computational cost increases rapidly beyond a
certain threshold, as the number of possible splits that have
to be considered grows enormously. (Note that the cost does
not appear to increase for small numbers of segments because
the time is dominated by the time to extract the sounding
counts, and then deal with the partition results after they are
computed.)

These results further emphasize the diminishing returns that
can be obtained by further and further segmentation of the
overall task: when the sub-grid task count increases beyond 14
in this example, the time to compute where to partition the sub-
grid tasks is higher than the time to do the computation. This
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Fig. 8. Computational cost of determining the optimal partition of the overall
task into sub-grid tasks. Note the logarithmic scale on the time (vertical) axis:
the computational cost increases dramatically for larger numbers of segments
in the partition.

suggests that there are a limited number of processors that are
useful for a given size of task, after which working out what
to do with them takes longer than the actual computation. This
implies, of course, that the current algorithm has to be used
to optimally partition the overall task, and it is possible that
a sub-optimal partition that was quicker to compute might be
more effective. Note that there is no evidence of a significant
growth of ‘edge effect’ increases in processing (i.e., where
dealing with extra soundings around the edges of smaller sub-
grids causes extra work) as a function of sub-grid task count,
suggesting that this is not a factor in the decision on how many
sub-grid tasks to allocate.

B. Data Distribution

As illustrated in Figure 2, determining an even distribution
of work to the processing nodes is essential if they are to
complete their computation at approximately the same time,
and therefore avoid wasted compute cycles while one or more
of the processors idles while the others complete. In order to
test the ability of the algorithm to achieve this, an experiment
was conducted using the MULTIFIT algorithm (as defined in
[8]), measuring the performance of the assignment of survey
lines to nodes through the difference between the node with
the largest assigned workload and that with the smallest (and
through the time taken to compute the schedule). Workload
was approximated by the number of soundings assigned to
the node, on the assumption that the processing in the first
phase of the algorithm is approximately proportional to the
sounding count. The experiment repeated the measurement for
different numbers of processing nodes, and different numbers
of lines, running the experiment 100 times for each pair. The
same dataset as described above was used, uniformly sampling
with replacement to synthesize datasets of variable numbers
of lines.

The maximum/minimum workload difference is shown in
Figure 9 as a percentage of the maximum load. Clearly, the
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Fig. 9. Estimate of mean difference between maximum and minimum
workload per node, an estimate of how evenly data has been scheduled for the
first phase of the algorithm. These results are for the MULTIFIT algorithm, and
are estimated over a Monte Carlo run of 100 samples for each combination
of processor node count and source line count. Note the logarithmic scale on
the vertical axis.

more lines there are to be scheduled, the better the algorithm
is at evening out the workload balance, primarily because the
minimum scheduling quantum is a single line: with small
numbers of lines, this can lead to large differences simply
due to which line is placed last. (MULTIFIT assigns larger
lines first in order to avoid this as much as possible.) There
is also an obvious trend with the number of processor nodes,
which can be explained by the same observation: given more
processor nodes for the same source line count, a single line
quantum can have a much larger effect. Note, however, that
the unevenness is very small: the worst case is approximately
0.4% of the maximum.

The time to compute the schedules is shown in Figure 10.
Here the trend is less obvious, except that the computation time
is a stronger function of the number of lines being assigned
than it is of the number of processor nodes over which they are
assigned. The computational requirements are also low given
the likely processing times for the size of problem considered
here, so that the time taken to compute how to distribute the
source lines is unlikely to be a significant percentage of the
total computation time.

These results suggest that it is relatively inexpensive to
compute a potentially sub-optimal, but very good, schedule for
the distribution of the lines for the first phase of the algorithm.
The relative insensitivity to the number of processor nodes also
suggests that this computation time is not a major factor in
selecting the number of processor nodes to use for a particular
overall task.

V. RUN-TIME PERFORMANCE

In order to investigate the potential performance of the
second phase of the algorithm given the data distribution used
for the first phase, a simulation model of the computation was
constructed. From the experiment in section III, the list of
survey source lines that were required in each segment of the
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Fig. 10. Time to compute the schedule as a function of processor node count
and source line count. The time required is generally small compared to the
computational time, and a much stronger function of the number of source
lines than the number of processor nodes.

partition was extracted, along with the number of soundings
from each line that were used in the computation within
the segment (this can be different for the same source line
used in different segments). The survey source lines were
then assigned to variable numbers of processor nodes in the
range 2–20 using three different algorithms, and the sub-grid
tasks were then assigned to the processor nodes to best match
the available lines using the greedy algorithm outlined in
section II-C. Finally, the runtime for the second phase of the
algorithm on each processor node was estimated assuming that
the data processing rate and data transfer rates were constant
(i.e., ignoring network congestion) as computed from measure-
ments of a typical processing system and SAN data transfer
rate, and that the source lines required were pre-fetched as
quickly as possible once the computation started. The estimate
assumes that source lines that are already assigned to the
processor node are available immediately the processing starts,
but that those that must be transferred are transferred in order,
and become available over time. The processing of source lines
at each processor node must also complete in the assigned
order, and therefore if the required source line is not available,
the algorithm will stall until it is transferred. The number
of lines that were required to be fetched on all processor
nodes, the total transfer time required, stall time and wall clock
computation time were all recorded.

Three algorithms were used. First, as a control, a completely
random assignment of survey source lines to nodes was used.
Second, a weighted random assignment was used, so that
as each source line was considered (in descending order of
estimated work), it was assigned according to a probability
density designed to even out the accumulated work associated
with all of the processor nodes (i.e., processor nodes with less
work are more likely to receive a new source line). This can
be considered as a stochastic variant of the LPT algorithm [7].
Finally, the MULTIFIT algorithm was implemented, which
assigns survey lines (in descending order of estimated work) to
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Fig. 11. Total number of source lines moved on all nodes during the second
phase of the algorithm. Better distributions of source lines would be expected
to reduce the number of line movements, but there is little to choose between
the three algorithms used in this experiment.

the lowest numbered processor node that has capacity to accept
it, minimizing the maximum work assigned for all processor
nodes.

One way to estimate the efficiency of the distribution is to
track the number of source lines which must be transferred
in order to support the second phase of the algorithm. The
results, Figure 11, show that there is little to choose between
the three algorithms: all of them require more source lines
to be redistributed as the number of processor nodes grows,
simply because each segment of the work partitioned is smaller
(spatially) and therefore they share more source lines. (Note
that the average number of source lines moved per node does
decrease with increasing numbers of processor nodes.)

Analysis of the worst-case time spent transferring data
between nodes shows that the MULTIFIT algorithm has a small
advantage over the other algorithms, Figure 12, due primarily
to its more efficient placement of source lines, which the sub-
grid task placement algorithm can exploit. The difference,
however, is relatively small, and somewhat masked in the
overall performance by the pre-fetch algorithm.

This masking effect is reflected in the worst-case stall
times observed, Figure 13. Here, it is clear that the stall
times generally increase with the number of processor nodes
(although the correlation is more likely with the number of
source lines to be transferred), with the exception of the
anomalies about 8–10 processor nodes. This is thought to be
due to a particularly advantageous partition of the overall task
into sub-grid tasks.

Finally, the wall-clock time for the second phase of the
processing is shown in Figure 14. As might be expected given
the other results, there is very little difference given the place-
ment algorithms, all of which have an anomalous reversal of
performance at 12–14 processor nodes. This is believed to be
due to a particularly bad configuration for the sub-grid tasks,
but further investigation is required. It is more illustrative to
consider the same data as a speedup, Figure 15, which shows
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Fig. 12. Worst-case data transfer between nodes during the second phase of
the algorithm. The MULTIFIT algorithm has a slight advantage in the worst-
case, particularly when smaller numbers of processor nodes are concerned.
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Fig. 13. Worst-case processor node stall time (i.e., total time the sub-grid
task spends idle waiting for data) during the second phase of the algorithm.
The differences between the algorithms are likely insignificant, although the
MULTIFIT algorithm has a small advantage for smaller processor node counts.

almost linear increase in performance up to 10 processor
nodes, and then a slow tail off (ignoring the anomalous
results for 12–14 processor nodes), with maximum speedup
on the order of 12 times at 20 processor nodes committed
to the computation. This corresponds to an aggregate speed
of 3.68 × 106 soundings/s, although this is only for a single
thread of execution within each processor node. If the results
of the previous section could be replicated, we might expect
a performance more on the order of 13.3 × 106 soundings/s.
(Note that the results of Figure 15 show an apparent super-
linear speedup for low numbers of processor nodes; this is not
expected, and may be due to a timing anomaly in the serial
version of the algorithm used as a baseline.)

These results appear to suggest that the method used to place
the source lines on the processing nodes prior to the first phase
of the algorithm does not strongly control the performance
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Fig. 14. Worst-case wall-clock time (i.e., time for the slowest node to
complete) during the second phase of the algorithm. The differences between
the algorithms are very slight; the anomaly about 12–14 processor nodes is
believed to be due to a bad configuration of the sub-grid tasks.
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Fig. 15. Speedup for the second phase of the algorithm as a function of data
placement algorithm and number of processor nodes. The differences between
the algorithms are small, giving a maximum speedup of just over 12 times
with 20 processor nodes committed.

of the second phase of the algorithm. That is, the processor
nodes appear to transfer approximately the same amount of
data, have roughly approximate worst-case data transfer, stall
and wall-clock times, leading to similar performance metrics.
Note, however, that none of the algorithms currently tested
take into account spatial coherency between the source lines
when deciding where to place them, and therefore do not
necessarily optimize for placement of the sub-grid tasks. This
is taken up further in section VI, below.

VI. DISCUSSION

The experiments conducted here were intended to investi-
gate the likely performance of a parallel and distributed version
of the CHRT algorithm as a means to adjusting the design
before final implementation. Among other things, they show
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fairly clearly that there are significant performance gains to
be wrung from operating in parallel, although it appears that
there is more to be gained from the distributed version than the
parallel version. Neither version, however, appears to achieve
the nominal linear speedup that would be preferred.

Some of the results are counter-intuitive. As more processor
nodes are added to the computation, and the sub-grid tasks
thereby cover smaller areas, it seems logical that the edge
processing required should increase (since there are more
edges). The evidence is, however, that the difference is so
small as to be negligible. Similarly, the details of the distri-
bution of data during the first phase of the algorithm might
be expected to have a significant effect on the performance of
the second phase, which relies on having all of the right data
in the right place at the right time. The evidence is, however,
that even the random reference placement method performs
more or less equivalently to the carefully balanced (and more
computationally expensive) MULTIFIT algorithm. Partly, this
is because none of the algorithms take advantage of the known
spatial correlations between the source lines, and therefore
that the distribution, while balanced in terms of the workload
per processor node for the first phase, is essentially spatially
random. For this reason, it is tempting to say that all of the
algorithms are equally bad, rather than equally good.

Solving the scheduling problem where there are constraints
between the objects being scheduled (in this case the source
lines) is more difficult. For example, the ideal situation would
be for all of the source lines for a sub-grid task to be available
on a single processor node, which might be accomplished
by placing lines with preference according to their distance
apart in space. Until the first source line is associated with
a processing node, however, the ‘cost’ involved in placing
a subsequent source line (that might be required for the
second phase computation that also uses the first source line)
on another processor node cannot be computed. It may be
possible to extend the results of Woodside and Monforton [8]
to fit this problem, however. Here, the MULTIFIT algorithm
is extended to include communications costs associated with
pairs of tasks; that is, once you place a task on a node, if
it communicates with another task not on the same node,
there is an additional cost (in the referenced model, this is
to simulate the cost of communication between the nodes
using a shared bus). The situation with the distributed CHRT
algorithm is similar, although the direct costs come from
concerns about even distribution of data during the first phase,
and the communications costs come from concerns about data
movement in the second phase. A practical difficulty is that the
specific clustering of source lines required to support any given
sub-grid task is not known until the first phase is complete,
so that placement will be at best approximate. One plausible
model for this is to consider the communications costs between
source lines to be probabilistic, in the sense that any two source
lines will be required on the same node only if they are close
together in space, and the closer they are, the more likely it is.
Assessing a (subjective) probability that one source line will
require another to support the computation of a sub-grid task
may allow the algorithm to operate on the basis of expected
rather than deterministic costs, although this is a subject of

much further research.
The observation that the computational cost of determining

the optimal sub-grid split of the overall task increases dra-
matically with the number of processor nodes has a number
of implications for the design of the algorithm. First, it
suggests that arbitrarily large clusters of processor nodes may
be counter productive: it could take much longer to work
out how to use them than the computation itself. Of course,
this is likely to depend strongly on the size of the problem
being computed, which has not been considered here. This
in turn suggests that it might be useful not to have a fixed
number of processor nodes into which any given task should
be molded, but to allow the algorithm to determine how many
processor nodes would make sense for a given task, and adjust
accordingly. This would require more flexibility in a cluster
monitor to implement, but may have efficiency gains sufficient
to be worth the cost.

Second, limitations on the number of processor nodes that
can be effectively assigned in a reasonable amount of time
suggests that a hybrid scheme might be more appropriate.
Consider, for example, that instead of assigning a sub-grid
task to a single processor node, it is assigned to a group of
them. Each group of processor nodes might act as a mini-
cluster, splitting up the sub-grid task into smaller jobs, and
then executing them. If the mini-cluster of processor nodes
shared a common disc sub-system (e.g., multiple processors
on a single blade server with common disc), then this should
not generate more significant traffic, but would limit the size
of the partitioning problem at both levels, allowing them to be
computed more readily. Multi-threading within the processor
nodes could then be used to improve the local performance
by sub-dividing the jobs again. The sub-division into jobs,
and then into threads, is likely to be sub-optimal; the question
is whether it can improve the overall throughput nevertheless.

In general, the work here has focussed on the performance
of a single version of the algorithm, but in practice it is
likely that there should be multiple versions that are adapted
according to the implementation environment. This has the
advantage that the solution can scale to the user requirements,
but would require algorithms that would be able to adapt to
their computational environment. The interactions between the
various components of the algorithm, the implementation of
the computational structure and the data being processed can
be subtle, but very impactful. Making the algorithms auto-tune
for their environment given these interactions is likely to prove
challenging.

VII. CONCLUSIONS

It is clear from the results shown here that there is great
potential for improved performance of the CHRT algorithm by
suitable use of parallel and distributed processing techniques.
The subtleties of obtaining the best performance from such
systems, however, are exacting. The results here suggest that
it may not be productive to have very large clusters of
processor nodes associated with any one task, which implies
that the overall performance improvement might be limited
(although still substantial), and that it is likely that an efficient
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implementation will need to blend inter-node and intra-node
parallelism to provide the highest overall performance. The
scheme considered here would be suitable for implementation
within a single processor (with limited speedup), within a
local cluster (or on multiple loosely coupled machines on a
local network, to lesser effect), or potentially within a cloud
service, given a sufficiently rapid method for data ingestion
into the instance. The algorithm’s performance is predicated
strongly on the interaction with the particular hardware in
use, however, and therefore performance tuning—and possibly
auto-tuning—will be a significant concern in the future.
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