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Abstract 

Recognition of marine debris represents a difficult task due to the extreme variability of the 

marine environment, the possible targets, and the variable skill levels of human operators. The 

range of potential targets is much wider than similar fields of research such as mine hunting, 

localization of unexploded ordnance or pipeline detection. In order to address this additional 

complexity, an adaptive algorithm is being developing that appropriately responds to changes in 

the environment, and context. The preliminary step is to properly geometrically and 

radiometrically correct the collected data. Then, the core engine manages the fusion of a set of 

statistically- and physically-based algorithms, working at different levels (swath, beam, snippet, 

and pixel) and using both predictive modeling (that is, a high-frequency acoustic backscatter 

model) and phenomenological (e.g., digital image processing techniques) approaches. The 

expected outcome is the reduction of inter-algorithmic cross-correlation and, thus, the probability 

of false alarm. At this early stage, we provide a proof of concept showing outcomes from 

algorithms that dynamically adapt themselves to the depth and average backscatter level met in 

the surveyed environment, targeting marine debris (modeled as objects of about 1-m size). The 

project is embodied in a modular software library, called MATADOR (Marine Target Detection 

and Object Recognition). 

Introduction 

This paper presents the status of development of a target detection and recognition library 

focused on marine debris. This library has been developing as part of a larger two-year research 

project that the Center for Ocean and Coastal Mapping is leading. The main aim of the overall 

project is to “develop, test, and evaluate new and alternative processing and analysis tools and 

procedures” for quickly and effectively process data in case of major disaster as Super Storm 

Sandy (NOAA, 2013). 

In October 2012, Sandy deposited extensive debris along the East Cost (FEMA, 2013). Among 

the many negative consequences of her passage was the deposition along the coastline of an 

extensive amount of debris of different size, shape, and materials (Blake et al., 2013; Trembanis 

et al., 2013). Debris mainly ends up in shallow coastal water, which could threaten navigation, 

natural resources, or human safety. Almost any natural disaster such as Super Storm Sandy 

causes the deposition along the coastline of an extensive amount of debris due to the associated 

strong winds, heavy rainfall, and storm surge (Lin et al., 2014). Future climate warming may 
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intensify the expected impacts of future events (Holland and Bruyère, 2014; Liu and Pang, 

2012). 

Effectively and quickly processing large amount of hydrographic data, collected using 

commercial systems, for detection and classification of marine debris would represent an 

effective contribution in case of similar events (e.g., tsunami, hurricane) to the necessary 

removal operations (Lebreton and Borrero, 2013). The Marine Target Detection and Object 

Recognition (MATADOR) project is focused on submerged marine debris, in contrast to most 

studies of marine debris, which have focused on floating or near surface objects. 

Related works and other sources of information 

Since the detection of underwater objects is an active topic of research, existing research done in 

similar fields was first examined. This showed that in most fields there is a more constrained 

range of target variability relative to the marine debris problem. For instance, in mine hunting 

there is often information about the target shape as well as the material, and mine detection 

algorithms often look for high backscatter objects of a given size over the natural acoustic 

background backscatter. An analogous concept also occurs in localization of unexploded 

ordnance, where the research criteria are often constrained to objects of specific shape. For 

pipeline detection, there is often additional information such as the pipelines being mostly linear, 

with a well-known maximum radius of curvature (Li et al., 2000; Stack, 2011; Telfer et al., 

1994). 

Unfortunately, the search for marine debris has fewer constraints. In fact, the definition of 

marine debris is often quite vague. As reported on the NOAA Marine Debris program website, 

marine debris can be “anything man-made” and made of “plastic, glass, metal, wood, […]” 

(NOAA, 2014). The direct consequence of this definition is that marine debris can be a 

substantial superset of possible types of objects, with different shapes, materials, roughness, etc. 

This, summed with the extreme variability of the marine environment, may represent a limitation 

in the creation of a model for the algorithms that are being implemented (particularly with 

respect to robustness). In personal communications, Marine Debris Program experts suggested 

that they are usually interested in debris bigger that one cubic meter. This value will be used, at 

this first stage, as a lower size bound. 

Conventionally, submerged marine debris has been identified through the subjective evaluation 

of sidescan sonar records by a human operator. Understanding what criteria human operators 

use, therefore, is important for guidance of this research. Using the data being collected by 

NOAA contractor surveys, provided through NOAA/OCS, generic criteria are being evaluated so 

that they can be emulated (without the subjectivity) in software, if possible. 

From the analysis of the targets selected so far, several common selection patterns emerged. For 

instance, a first group containing a rounded shape and/or a jump in seafloor reflectivity was 

common to many of the several hundred targets examined. A second group was based solely on 
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bathymetry evaluation. A third group comes from an integrated analysis of the Digital Terrain 

Model (DTM) and the acoustic backscatter. Finally, although such data can now be readily 

collected on many systems, there are no examples of debris selection based on water column 

data, although the extent of availability of this data (and appropriate tools) to the observers is 

unknown. Although the probability of false alarm based on a combined analysis of multiple data 

sources is expected to be generally lower than when a single source is used, there are particular 

cases where a particular object might only be observable within a single data source. For 

example, a semi-buried target, or one with a flattened shape, might only be visible through 

acoustic backscatter. A careful analysis of the benefits of different algorithms and different data 

sources is therefore indicated. 

An important source of inspiration for the MATADOR library is represented by the Automatic 

Contact Detection tool developed specifically for sidescan sonar data and based on such machine 

learning techniques as the multilayer perceptron network (Quintal et al., 2010). This work shows 

the feasibility of automated methods to reduce manual processing time required in detection of 

contacts of interest, maintaining high probability of detection and low false alarm rate. 

Selected approach 

From these observations, it appears that operator debris detection was mainly based on the 

bathymetry and the reflectivity of the seafloor, assuming any deviation from the ‘natural average 

background’ as hints of possible debris. From that consideration and given the intrinsic 

complexity of the targets, it is likely that a single algorithm will not be successful for robust 

marine debris detection. The proposed solution will therefore be based on multiple algorithms to 

process different sources (bathymetry, backscatter and water column data for acoustic systems, 

as well as lidar data), fused together so as to be adaptive to the environment, the context, and a 

priori knowledge (if available) of the possible targets. The goal is to use a collection of 

algorithms working at different levels (e.g., through per beam, single swath, snippet and pixel 

level operators), which are then fused by the core engine. One of the primary advantages of this 

approach is operating over different data with independent algorithms can reduce inter-algorithm 

cross-correlation and therefore the probability of false alarm. 

Algorithms overview 

The first of these algorithms has been developed based on a simple model of the detection of 

anomalies from the background acoustic backscatter, following the observation that operators 

regard anomalies against the generic background as potentially debris. This algorithm is based on 

an acoustic backscatter mosaic, and takes advantages of previous NOAA-sponsored work at the 

Joint Hydrographic Center to properly geometrically and radiometrically correct the collected 

data (Fonseca and Calder, 2005). The resulting mosaic is segmented into areas with similar 

reflectivity values through a clustering analysis, and a histogram of backscatter values as a 

function of angle of incidence is then computed for each clustered area (effectively forming a 3D 
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histogram). A simple Bayesian classifier is subsequently used to identify areas in each segment 

where the statistics of a small window do not match that of the overall background distribution 

(as characterized by the appropriate marginalization of the histogram constructed previously). 

Areas of low probability of background membership are identified as potential marine debris. 

Subsequent edge detection and hierarchical filtering are applied to remove misdetections along 

the mosaic boundaries. The result (Figure 1) is quite promising, showing an appropriately limited 

number of detections that are similar to the results from a human evaluation of the mosaic. 

 

Figure 1 – Stages in the Bayesian analysis of backscatter anomalies. The sub-images show, left to right: 
the geometrically and radiometrically corrected backscatter mosaic; the clustered mosaic (clustering is 

based on simple backscatter values in the mosaic); the probability map for membership of each analysis 
window in its surrounding background (high values indicate lack of membership); edge detected 
segments indicating potential objects; and hierarchically filtered objects showing those likely not 

associated with edge effects in the mosaic. The limited number of detections is promising (from the point 
of view of limiting false alarms), and corresponds well to operator inspection of the mosaic. 

This algorithm represents just one branch of the proposed workflow. Other areas being explored 

include the angular response for each acoustically clustered area (i.e., detecting anomalies from 

the average angular response, which is quite different from the mosaic response where angular 

differences are removed), and evaluation of the half-swath patch (i.e., stacking a certain number 

of successive pings to stabilize the statistics and reduce the noise), again looking for anomalies in 

the angular response of the immediate area. (In the past, the Center has developed an approach 

targeted to the identification of the sediment types based on the angular dependence of 
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backscatter from a swath; here, the idea is inverted.) It seems likely that addition insights can 

come from the analysis of the spatial distribution of snippets (backscatter samples centered on 

the bottom detection) using, for example, a measure of texture (itself a well-studied field). In 

fact, simply increasing the bin size (that is, lower the resolution of the final product) generates 

more stable statistics, and then many additional features useful to describe the dataset (e.g., 

median, variance, kurtosis, GLCM energy, GLCM homogeneity) may be explored (Masetti and 

Calder, 2012). 

Not all of the calculated features need necessarily be directly used by the detection algorithms. 

Several of them might be used, for example, to increase the overall confidence in the output 

coming from the fusion algorithm. A basic example of this approach is presented in Figure 2, 

where two features (gradient and intercept) calculated from the angular response of the acoustic 

patches are plotted against each other. In the resulting plot, two patches (showed in green and red 

and covering an area characterized by the presence of a marine debris) are located far from all 

the remaining patches. A quantitative measure of that distance can be used as indicator of areas 

with possible presence of marine debris. 

 

Figure 2 – Bivariate plot of acoustic backscatter-derived features computed from a half-swath patch of 
MBES data.  The red/green indicated half-swaths have distinctly different behavior (as measured by the 
slope and intercept of a line fitted to the acoustic backscatter angular response in the patches) from the 
other patches, an indication of anomalous behavior.  Use of multivariate combinations of features can 

help to clarify detections and reduce false alarm rates. 
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Data collection requirements 

Analysis of the requirements for the techniques adopted by MATADOR algorithms to be 

successful has led to some caveats on the data being used, and the processing being applied. In 

particular, the acoustic system used should be fully understood, with particular attention to the 

internal backscatter processing, otherwise the appropriate corrections cannot readily be made. In 

addition, the system used to collect the data should be calibrated, and the resulting calibration 

parameters correctly applied (in real time or post processing), or the results may be misleading. 

Finally, the environment should be properly characterized (e.g., absence of issues with the sound 

speed profiles, correct absorption coefficients, etc.) for the corrections being done to be effective. 

Missing one or more of the above requirements may affect the developed algorithms, at least 

with respect to performance, emphasizing the need for careful survey planning and management. 

System calibration is mainly required by the fact that elements in the receive array do not usually 

have absolutely identical characteristics or mounting position (Meurling and Volberg, 2007). The 

resulting differences in magnitude and phase must be taken into account to relate the received 

data to absolute values of backscattering strength with the level of accuracy required by those 

MATADOR algorithms based on a physical model. Similarly, any signal distortion on the 

backscatter time series collected around the seafloor detection point should be reduced / avoided. 

At the same time, in case of availability of pre- and post-disaster datasets, relevant insights may 

come from a comparative approach. However, proof that the seabed changes (e.g., presence of 

marine debris) are not related to instrumental and integration artifacts requires confidence in the 

absolute accuracy of both the bathymetric and backscatter output of the integrated sonar system 

(Hughes Clarke, 2012; Mayer et al., 2007). The relevance of the accuracy tends to increase with 

the reduction of marine debris size (e.g., spatial scale of decimeters), and it often lies at the limit 

of many acoustic systems used to collect disaster-driven datasets. A possible consequence of the 

described situation is the appearance of features in a dataset not present in the pre-disaster 

products due to a better ‘focusing’ of the used instrument (e.g., higher operational frequency), in 

case different systems are in use, or to different settings (e.g., operational modes) where the same 

system is in use. 

More generally, important information that should be properly evaluated both in the selection of 

the system for data collection and in the assessment of the MATADOR results is the achievable 

resolution of a specific system, and its variability as a function of the settings selected in the 

field. In fact, even if specific performance is theoretically achievable based on the manufacturer 

product specifications, all systems have fundamental constraints and trade-offs that are a 

function of operational frequency, resolution, and range of transmission (Mayer et al., 2007). 

The resolution directly influences the size of detectable marine debris. In case of a MBES, the 

resolution is strongly related to the beam footprint which is characterized by the transmit (along-

track resolution) and receive beamwidth (across-track resolution), and the equivalent length of 
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the transmitted pulse, properly projected on the seabed (Lurton, 2010). In case of detection based 

on phase measurement, features can be discerned at lower grazing angles at a scale significantly 

finer than the beam footprint dimension (Hughes Clarke, 2012). Another factor that influences 

the minimum size of detectable marine debris is represented by the beam forming approach. The 

approaches most commonly in use are equiangular, equidistance, and high definition modes. The 

last of these, although not implemented by all sonar manufacturers, usually represents the best 

trade-off among the beam spacing in the nadir region and the required additional detection 

solutions at lower grazing angles (where multiple soundings are defined within a single beam) 

(Kongsberg, 2013c; Masetti and Calder, 2012). Alternatively, a similar result can be obtained by 

increasing the number of beams in equidistance mode (Meurling et al., n.d.). Another common 

solution to the same issue is having multiple pings in water at the same time (with slightly 

different frequencies) (Hughes Clarke, 2012). 

In general, it is highly desirable that the data density within all the acquired dataset is uniform, 

both in the along- and in the across-track direction. Irregular sounding density coming, for 

instance, from not properly compensated pitch and yaw may result in undetected features. A ‘full 

sea floor search’ of the survey area should be not simply based on the assumption that everything 

within the bounds of the edge of the swath is ‘covered’ (IHO, 2008). In fact, a lack of local data 

density can drastically reduce the reliable detection of small targets that is based on the 

assumption that the seafloor is sampled at a scale significantly finer than the target dimension to 

be resolved (Kongsberg, 2013a). 

The common target of maintaining three swaths on any given target is a useful rule of thumb, 

and more swaths per target should be maintained where possible. Assuming roll and pitch 

stabilization (offered by almost all manufacturers) a yaw-stabilized MBES system may be 

advantageous where available. In fact, given a 1-meter cube as the assumed lowest bound for 

debris size, the along track spacing among swaths in shallow waters can require particularly low 

speed for small boats, usually characterized by higher yaw rates than larger vessels at low engine 

regime (Kongsberg, 2013a). Simply increasing the data density does not necessary imply better 

data quality, but it often provides a wider margin for data filtering and statistic tools application. 

The data density along-track for single-ping MBES system is mainly controlled by the two way 

travel time required by the outermost area of each swath to be received. The main implication is 

that any attempt to improve the swath coverage reduces the ping rate (and then the along-track 

distance between each ping increases). 

MBES along-track beamwidth is usually much wider than that used by conventional sidescan 

sonars (SSS), so that SSS imagery tends to be better quality (Pohner et al., 2007). However, 

unless the SSS is hull-mounted (which has its own difficulties) variable distortions are usually 

introduced due to the uncertainty in the towing fish position and weakness of the flat-seafloor 

assumption. A better solution, when feasible, is to integrate accurate MBES bathymetry and high 



Canadian Hydrographic Conference April 14-17, 2014 St. John's N&L 

8 
 

resolution SSS imagery. In such a case, the SSS-based mosaic can also take advantage of being 

properly geometrically corrected by using the MBES-based DTM. 

Together with the resolution, it is also important to reduce all the possible sources of Total 

Propagated Uncertainty (TPU) and absolute accuracy. Since a large part of the MATADOR 

algorithms are based on products that combine different survey lines (e.g., mosaic, DTM), the 

areas of overlap (that is, each node whose final value is based on the integration of data coming 

from more than a single survey line) will be variously affected by any introduced ‘corruption’ 

(e.g., ray tracing with incorrect sound speed profiles, inaccurate tide reduction, loss of GPS 

differential corrections, time delays between the different sensors in use) with the double risk to 

mask the presence of marine debris (defocusing) and to create false detections driven by 

artifacts. The adoption of commonly used patch test procedures before and after the survey (as 

well as after any variation in the vessel configuration) usually helps to reduce and track many of 

the possible issues (Eisenberg et al.; Wheaton, 1988). However, there could be residual 

misalignment or mistiming of sensors relative to each other that may produce both static biases 

and dynamic residuals, called wobbles (Hughes Clarke, 2003). This latter can be confused with 

or mask the presence of marine debris. 

Similar issues arise comparing products built with the same identical parameters (e.g., grid 

spacing for DTM), but with different uncertainties and accuracies. In such a case, only scales of 

seabed change larger than the combination of the accuracies characterizing the compared surveys 

will become detectable (Hughes Clarke, 2012). 

The characteristics of the water column are continuously changing both in time and in space 

(Burdic, 1991). As a consequence, there is not a simple direct relationship between the time 

since, and the distance from, the sound speed measurement in use. The measurements of sound 

speed must be taken often enough to capture both the actual spatial and temporal variability 

(Beaudoin et al., 2009). If an underway profiler is available, an adequate sampling interval 

should be adopted (Wilson et al., 2013). 

As an additional consideration, it is of overall importance to know and/or have experience with 

the adopted system so that the best settings will be adopted for target detection. In fact, many 

manufacturers have specific bottom detection algorithms and operation modes for this type of 

survey where the requirements are different than a standard bathymetric survey (Kongsberg, 

2013b). 

The MATADOR library has been developing to take advantage, when available, of well-collected 

and calibrated hydrographic data. Nonetheless, thanks to a variable system of weights for the 

available algorithms (in fact, some of them are less affected than others by improper data 

acquisition), marine debris detection will still be possible, with expected increased false alarm 

rates, even in the event of lack of some of the above described best practices. 
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Library development and products 

The MATADOR library consists of a primary library, and a number of auxiliary libraries and other 

software. In order to provide for consistent development, the code is being developed in a cross-

platform, portable manner, primarily in modern C++11. The code uses HUDDL (Hydrographic 

Universal Data Description Language) to manage input data, a project that is in parallel 

development to this effort at CCOM (Masetti and Calder, 2014). 

The library is being designed to be flexible in data requirements. That is, the best results are 

expected to be obtained with properly calibrated and collected data; however, in case this type of 

data are not available, different weights will be used for the algorithms (in particular, the ones 

that are model-based) so that outputs are still robust in marine debris detection at the expenses of 

the probability of false alarm.  

In order to make the developing library as useful as possible, the data format to store MATADOR 

products was carefully evaluated. The selected approach is to support the most commonly used 

formats rather than to attempt the definition of some specialty format. For this reason, the library 

has been extended to export raster data in many different and commonly used formats (from 

plain ASCII to Geotiff). This also represents an important outlet to continue the processing for 

any given dataset with existing commercial and open source software (e.g., Caris BDB, ESRI 

ArcMap, GRASS, QGIS, QPS Fledermaus Suite). 

In addition, the library can also export a ‘hyper mosaic’, this data container is simply a 

multilayer GeoTiff where the mosaic represents one of the available layers, and the other layers 

are used to capture more information about the survey dataset.  Easily loadable by existing 

commercial software, the hyper mosaic was developed with the intent to provide means for 

quickly comparing new data with existing surveys. At the same time, this type of output is 

suitable for applying many of the techniques commonly used in signal processing for hyper-

spectral image exploitation (e.g., Karhunen-Loeve transform, Reed-Xiaoli anomaly detector) 

from spatial, spectral, radiometric, and temporal perspectives (Lo and Ingram, 2008; Masetti and 

Calder, 2012; Shaw and Manolakis, 2002). 

At the same time, vector outputs are being supported (e.g., ESRI shape file, S-57, GML, DWG, 

KML) so that the data are ready to be imported in decision support systems, environmental 

databases (e.g., the PPMS GeoDB) (Masetti and Calder, 2013) and other external GIS tools 

(Figure 3). Among the existing systems, particular attention is provided to support the interaction 

with the Environmental Response Management Application (ERMA), a web-based GIS platform 

capable of interfacing both static and real-time data sets accessible simultaneously to a command 

post and assets in the field with an open source internet mapping server (NOAA, 2012). This 

platform is well suited for integration with MATADOR products (that can be directly loaded by 

ERMA technical users) both for specific planning and for general understanding in case of 

natural disasters (Jacobi et al., 2008). 
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Figure 3 – Interface from MATADOR to ERMA. The MATADOR library, embedded inside a research version of 
the extended and refactored GeoCoder application (used for backscatter corrections, mosaic 

construction, and analysis), is designed to output results of the marine debris analysis process in a variety 
of formats, including well-known vector formats such as KML, GML, ESRI Shapefile, and S-57, and a 

number of raster formats (where appropriate). These are readily adoptable into applications such as 
ERMA, as well as other GIS-style tools. 

High-resolution multibeam sonar and state-of-the-art data processing and visualization 

techniques have been used to quantify the degree of burial of instrumented mines and mine-

shapes (Mayer et al., 2007). It has been largely documented that the presence of mine-like 

objects produce scour pits with its long axis nearly perpendicular to the predominant incoming 

wave direction (Traykovski et al., 1999; Trembanis et al., 2007). Some techniques used to 

characterize the bedform morphology (e.g., Skarke and Trembanis, 2011) could be adapted to 

obtain relevant insights for marine debris detection. 

Conclusions 

A modular software library, called MATADOR, has been developing with the main aim to provide 

a fusion adaptive algorithm able to quickly and effectively detect and recognize the possible 

presence of marine debris from large datasets collected with commercial systems after a major 

disaster like a tsunami or a hurricane. 

One of the main issues of this project is about the consistent nature and definition of marine 

debris together with the extreme variability of the marine environment, and the variable skill 

levels of human operators. This condition requires efforts for the correct adoption and 
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implementation of different techniques developed in similar fields of research such as mine 

hunting, localization of unexploded ordnance or pipeline detection. 

During the first phase of library development, many of the radiometric and geometric corrections 

developed in recent years at the Center for Coastal and Ocean Mapping have been evaluated and 

integrated in a common framework. These corrections represent the preliminary step for properly 

linking the physical aspects related to the collected data with some of the mostly used statistical 

techniques for pattern recognition and anomaly detection. 

The MATADOR core engine ensures the proper fusion of the increasing number of algorithms. 

Each algorithm works at different levels (swath, beam, snippet, and pixel), using both predictive 

modeling (that is, a high-frequency acoustic backscatter model) and phenomenological (e.g., 

digital image processing techniques) approaches. The expected outcome of this fusion approach 

is the reduction of inter-algorithmic cross-correlation and, thus, the probability of false alarm. 

Future developments will investigate the addition of techniques based on DTM analysis, water 

column backscatter, and lidar data. 

The integration of the MATADOR products with existing commercial and open source software 

and decision support systems is one of the development milestones. Support of the most common 

raster and vector formats is provided. An additional data container, a multilayer Geotiff called a 

hyper mosaic, has been identified as an output to capture more information about a survey 

dataset than a simple mosaic or DTM. 
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