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ABSTRACT 
 

QUANTIFYING VERTICAL UNCERTAINTY AND THE TEMPORAL 
VARIABILITY OF THE SEAFLOOR TO IDENTIFY HYDROGRAPHIC SURVEY 

PRIORITIES  
By: 

Cassandra Bongiovanni 

University of New Hampshire, December 2018 

 

 

As the area of U.S. coastal waters vastly exceeds the capacity of annual hydrographic surveying, 

prioritization is necessary to optimize survey benefits. Obtaining new survey coverage over the 

most vital locations allows for an efficient use of funds; however, identifying these locations is a 

complex task. The current model to address survey prioritization, called the Hydrographic Health 

Model (or HHM), was created by personnel at the National Oceanographic and Atmospheric 

Administration (NOAA), the authoritative agency tasked with chart maintenance and 

hydrographic survey collection. While the HHM incorporates potential sources of bathymetric 

change, it does not include nor lend itself to the inclusion of actual measured changes associated 

with these sources. In order to integrate quantified estimates of change, the HHM fundamental 

equation must be adapted. Here we introduce the Hydrographic Uncertainty Gap (HUG) model 

as an adapted version of the HHM. Fundamental to HUG is the quantification of hydrographic 

survey uncertainties and changes to bathymetry, the calculations of which are outlined and 

performed for Chesapeake Bay and surrounding areas. Ultimately, we argue that the HUG model 

survey priorities are more realistic and more constrained than those from the HHM. 
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CHAPTER 1 
 INTRODUCTION 

 

1.1.1 History of Hydrography 

Nautical charts document the depth and physical characteristics of the seafloor to improve 

navigational safety at sea. The first nautical charts were created as early as the 13th century with 

only simple navigational directions as a guide. Over the centuries, the details and accuracy of 

charts have improved immensely due to increases in the amount and availability of hydrographic 

survey data. The International Hydrographic Organization describes hydrography as: 

“That branch of applied sciences which deals with the measurement and description of 

the features of the seas and coastal areas for the primary purpose of navigation and all 

other marine purposes and activities, including –inter alia- offshore activities, research, 

protection of the environment, and prediction services.” (IHO Pub. S-32, 1994)  

Hydrographic data have been collected for official purposes for the United States of America 

since the early 1800’s when NOAA’s original predecessor, the Survey of the Coast, originated 

through “An Act to provide surveying the coasts for the coasts of the United States.”  

For the first approximately one hundred years of hydrography in the United States, the standard 

depth collection method used lead-lines. This process measured depths using lead weights 

attached to a calibrated line (rope) and thrown from the side of a boat, sinking until it reached the 

bottom. The depth would then be read from the line and a depth and location would be recorded 

on the survey sheet. This process was not only slow and arduous but was prone to error due to 

drift from wind and currents (Van Der Wal and Pye, 2003). To account for these errors, depths 

were typically rounded down (making them shoaler) to the nearest fathom (Van Der Wal and 
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Pye, 2003; Calder, 2006). More significant than measurement inaccuracies are measurement 

frequency and density. Lead line techniques only obtained individual points along the vessel 

track, leaving the intervening seafloor unmeasured and unknown. Nevertheless, lead-lines 

continued as the primary method of depth measurement until sonic echosounders were 

introduced in the 1930s bringing quicker and continuous depth collection methods into the 

process (Hawley, 1931; Adams, 1942). The mid-1900s also brought advancement in geospatial 

positioning, moving away from sextant measurements towards electronic positioning in the 

1950s and later satellite positioning in the 1990s. These improvements helped shape the 

performances of both the deep water multibeam systems in the 1980s and the shallow water 

multibeam systems in the 1990s (Wong et al., 2007).  

The profiling echosounder significantly increased hydrographic surveying capabilities by 

collecting a constant data stream of depths recorded directly under a boat as it moves along a 

track or course. With the invention of sidescan sonars and multibeam echosounders (MBES), 

two different types of survey designs became the standard: complete sidescan imaging and 

complete bathymetric coverage.  

NOAA defines complete coverage as 100% of the seafloor is ensonified in one of two ways: 

either by a multibeam or by concurrent sidescan imaging and multibeam or single beam sonar 

(NOAA SPECS 2018) The sidescan sonar method collects data from larger swaths than 

multibeam sonars but are not capable of measuring depths. The exceptions to this rule are phase 

measuring bathymetric sonars (PMBS) that concurrently collect bathymetric and sidescan 

imaging from one system. However, PMBS systems are not frequently used in hydrography 

since their extremely large raw datasets require extensive manual filtering and have greater 

potential for errors. Traditional sidescans are more prevalent in the hydrographic community and 
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are primarily used to identify possible dangers to navigation that require additional investigation. 

Thus, significant areas of the seafloor are left without measured depths. 

While the increased functionality of modern hydrographic systems allows users to do much more 

than ever before, it conversely increases the risk of unintentionally inaccurate data practices. To 

ensure only the highest quality data is used for chart products, the International Hydrographic 

Organization (IHO) created a standard (S-44) in 1968 outlining data quality requirements for 

charting purposes.  The Standard has since been frequently updated to include appropriate 

handling of modern advancements and problems (IHO S-44, 2008), and is currently undergoing 

revision again.  

In recent years, the hydrographic community has begun shifting towards electronic navigational 

products including electronic navigational charts (ENCs) and with these advancements has come 

a large push to reevaluate how data uncertainty and quality is assigned and portrayed for the 

mariner. Specifically, the Category of Zones of Confidence (CATZOC) levels outlined in S-57 

(IHO S-57, 2014) are being reassessed and expected to be included in the new S-101 standards 

for ENCs (IHO S-100, 2015). Since S-101 is not officially released as of the date of this writing, 

the work discussed herein is based on S-44, S-57, and current NOAA and international 

standards. 

 

1.1.2 International Uncertainty Standards 

The CATZOC concept introduced a consistent methodology of assessing data quality by 

assigning each area on a chart a CATZOC level (Table 1). A CATZOC level is determined based 

on the vertical and horizontal uncertainty and type of coverage obtained by the underlying survey 
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and represents the confidence level in the data’s accuracy. While the use of CATZOC, S-57, and 

S-44 standards allows for quality assurance of international nautical chart products, it also limits 

the extent by which data uncertainty is displayed and communicated to end-users (Calder, 2006; 

Calder, 2015). For raster chart products, data quality is limited to a source diagram that groups 

and labels the charted region by survey data collection year. More modern ENCs now include 

MQUAL (quality) polygons attributed with the CATZOC level describing the data used to 

compile any given area on the chart. While the latter approach theoretically allows for a more 

direct assessment of the confidence of charted soundings, it still has room for improvement. 

Specifically, the assignment of uncertainty attribution of less-than recent full coverage surveys.  

 
Table 1: The International Hydrographic Organization (IHO) S-44 quality standards for assessing survey uncertainty later applied 
through S-57 Category of Zones of Confidence (CATZOC) Levels. Depth and Position accuracies are at a 95% confidence interval. 

 

Current NOAA and IHO S-57 procedure dictates that MQUALs are to be established for each 

charted hydrographic survey (IHO S-57, 2014). This process inherently assigns a CATZOC level 

and associated uncertainty to the entire survey area, whereas that uncertainty only truly pertains 

to the seafloor that was ensonified. For example, collection of data using other than full-coverage 

methods discussed above will survey a larger area more quickly with fewer resources but can 

leave bathymetric coverage gaps with tens to hundreds of meters between survey lines due to the 
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use of the sidescan in lieu of multibeam. This leaves the only estimation of depth in gap areas to 

come from either previously collected data (sometimes over one hundred years old) or a modeled 

estimate from available data (like the NCEI/NGDC Coastal Relief Model, 1999). In this 

example, the data collected might be of the highest quality and fit the uncertainty requirements of 

A1, but the survey coverage would cause it to be downgraded to a lesser CATZOC level. 

Conversely, if the data collected was of worse quality and 100% coverage, it would still result in 

a lower CATZOC level assignment. Thus, one of the main issues with this process is the inherent 

assignment of uncertainty to the entire survey area that does not accurately describe the area. 

 

1.1.3 Survey Prioritization 

NOAA operates four survey ships and several small survey launches which collect new 

hydrographic data within U.S. waters, an area of over 3.4 million square nautical miles. Within 

NOAA, the Office of Coast Survey (OCS) is the program office responsible for the collection 

and analysis of these hydrographic data that contribute to over 1000 U.S. charts. NOAA 

estimates that their ships obtain only 3,000 square nautical miles of new coverage annually 

(Gonsalves et al.,2015; Keown et al., 2016; Fandel et al., 2017; Hicks et al., 2017) and 

contracted survey work accounting for an additional similar amount making it impossible to keep 

all their charts up to date.  

Many alternative strategies have been suggested and are being explored to improve the current 

challenge of maintaining NOAA’s chart quality. One such proposal suggests NOAA utilize 

outside-source and crowd-source bathymetric data in order to lessen the load placed on their 

ships and increase the frequency at which charts are updated. However, these data will only 
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result in small incremental increases in survey coverage. Thus, internal survey prioritization will 

remain an absolutely essential component of the OCS mission.  

 

1.1.4 Previous Work 

NOAA does not currently have a standard way to account for survey degradation over time, 

entrusting the task of prioritization to their experienced hydrographers (Schultz, 2015). In recent 

years, attempts have been made to estimate survey degradation through a number of models from 

hydrographic agencies worldwide. Dorst (2009) performed time series analysis of bathymetric 

data in the Netherlands to determine survey priorities. The Canadian Hydrographic Service 

(CHS) started out with a weighted GIS-based model by Grenier and Hally (1991) which later 

evolved into their current model, the CHS Priority Planning Tool (CPPT), that combines a GIS 

and matrix approach to identify charts that need updates (Chenier et al., 2018). Other approaches 

have been attempted within the U.S., including NOAA’s current model called the Hydrographic 

Health Model (HHM), the offspring of an Alaska chart assessment outlined in Gonsalves et al. 

(2015).  

The HHM is a risk-based approach to approximate the current state of the charted data that relies 

primarily on survey quality assessments (Figure 1) and the associated risks to these vessels with 

out-of-date soundings. While the HHM heuristically accounts for some environmental change 

factors such as storms, tides, and marine debris, it could be improved with the quantification of 

more dynamic and area specific estimates of change. Specifically, the inclusion of quantifiable 

hydrodynamic variables could refine the accuracy of the HHM and resultant risk factors as they 

likely drive regional and nearshore sediment transport patterns.   
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Figure 1: NOAA Hydrographic Health Model equations and inputs are outlined. Blue boxes describe the Initial Survey Score inputs 
based on IHO CATZOC levels. Green boxes outline the Decay Coefficient inputs for a number of change terms. (Keown et al., 
2016; Fandel et al., 2017; Hicks et al., 2017) 

 

1.1.5 Thesis Overview 

This thesis presents an alternative methodology for estimating the hydrographic gap based on 

bathymetric change estimates and will address the problem in the following ways: chapter one 

discusses the uncertainty of archive (sparse) hydrographic data, chapter two outlines updates to 

the Hydrographic Health Model, and chapter three addresses conclusions and recommendations 

for future studies and implementations.  
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CHAPTER 2 
A METHOD FOR QUANTIFYING THE VERTICAL UNCERTAINTY OF LESS-

THAN FULL COVERAGE HYDROGRAPHIC SURVEY AREAS 
 

2.1 SUMMARY 
The National Oceanographic and Atmospheric Administration (NOAA) and its predecessor 

agencies have been responsible for the production and upkeep of the United States nautical charts 

since the nineteenth century. These charts are critical for the safe navigation of marine traffic. 

Essential to effective charting is curating accurate and up-to-date bathymetric information through 

cyclical and timely hydrographic surveys and approved analytics. Currently, incoming NOAA 

hydrographic surveys are attributed with a CATZOC (or Categorical Zone of Confidence) level 

for charting purposes determined by the limiting factor between survey coverage and vertical 

uncertainty requirements. Through these categories each survey area is attributed with a CATZOC 

level that only truly pertains to areas of the seafloor that were ensonified. This practice can lead to 

the underestimation of vertical uncertainty associated with less-than full coverage hydrographic 

surveys, ultimately introducing biases on the chart and skewing chart health model results. Here 

we describe a method using analytics to constrain and quantify the vertical uncertainty of 

unsurveyed seafloor within less-than full coverage survey areas along the central East Coast of the 

U.S. with the intention to incorporate estimates of uncertainty of the results into future 

hydrographic health models. 

 

2.2 INTRODUCTION 
Accurate nautical charts are essential for mariner safety and international commerce. The 

National Oceanographic and Atmospheric Administration (NOAA) is the U.S. authoritative 

organization responsible for producing up-to-date nautical charts for all U.S. coastal waters since 
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the early nineteenth century. Each chart is made up of hydrographic data layers that describe the 

seafloor depicting bottom type, depth, identification of obstructions, etc. all designed to limit 

mariner risk. This is taken further by periodic surveys, shoal-biasing, and referencing depths to 

Mean Lower Low Water (MLLW) so that every charted sounding is near shoalest possible depth 

any given area could be (Van Der Wal and Pye, 2003; Wong et al., 2007). However, limited 

resources restrict NOAA’s ability to obtain materially significant new hydrographic data each 

year resulting in a significant over-reliance on old, sometimes substantially outdated, surveys.  

Therefore, contributing data on a chart may have been collected as far back as the mid-1800s 

(Van Der Wal and Pye, 2003; Wong et al., 2007; Masetti et al., 2018).  During this extensive 

period, many technological advancements have been made which have altered the field of 

hydrography allowing for progressively more accurate data positioning, increased depth data 

collection, processing, and archiving capabilities.   

While each charted survey utilizes the best possible technology and processing techniques 

available at the time, there are clear improvements in accuracy achievable with more modern 

survey techniques. Similar to modern procedures, the quality of archived hydrographic data were 

assessed upon collection with regards to standards in place at the time and addressed in 

descriptive reports (DRs) for each survey. However, no quantitative assessment of individual 

data points was recorded, or at least, not included in the DRs or migrated to electronic data 

storage (Ladner et al., 2017). Instead, the surveys were simply designated as “meets standards” 

or “did not meet standards”. Thus, when NOAA reassessed thousands of archived surveys for 

uncertainty, the most reasonable assessment (in regards to time and resources) was to use the 

coverage requirements associated with international hydrographic organization (IHO) CATZOC 

levels (Table 1) as a way to address confidence.  
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CATZOC attribution is maintained even with modern surveys and is more accurately established 

by the limiting factor between survey coverage and uncertainty requirements. As precisely 

identifying the horizontal and vertical uncertainty of each data point collected is now mandatory, 

modern attributions of CATZOC more closely align with the IHO’s intended purpose.  

For both historical and modern surveys, CATZOC levels are assigned for the entire survey area, 

unintentionally implying that seafloor contained within the bounds of each survey polygon meets 

the corresponding level uncertainties. However, this is not always the case. CATZOC levels are 

assigned based on the limiting factor between bathymetric coverage and the vertical and 

horizontal uncertainties of the data. As the uncertainty of hydrographic data is only known where 

data exists and cannot accurately be extrapolated between data points, it is not uncommon for 

data to have larger uncertainties than can estimated without accounting for geophysical processes 

(Calder, 2006). Additional attention is therefore required to accurately quantify the vertical 

uncertainty of the entire survey area of less-than full coverage surveys.  

It is understood that the uncertainty between data points increases with increased spacing (Oliver 

and Webster, 2014). For sparse datasets like many archive surveys, uncertainty between data 

points is essentially unknown making it impossible to know precisely where the seafloor is. 

Having said this, we can identify where the seafloor depths are at least not presenting a hazard to 

navigation, given that vessels have successfully traversed certain areas without groundings for 

many years.  If groundings had occurred, the charts were immediately updated to reflect the 

change. Therefore, using vessel drafts recorded in vessel tracking Automatic Identification 

System (AIS), it becomes possible to constrain the vertical potential uncertainty between data 

points (Figure 2). 
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Figure 2: A flat portion of the seafloor is sparsely surveyed with ensonified points. The vertical uncertainty increases with increasing 
distance between points. Deep vessel drafts can be used to constrain these uncertainties where they pass. This could be particularly 
effective in shallower waters where the drafts make up a larger percentage of water depth. 

 

To clarify, uncertainty is traditionally understood to be an upper (positive) and lower (negative) 

limit around a data point or value. For this study, the vertical uncertainty with which we analyze 

only refers to the upper limit (shallower) of the range as it is the only half that is navigationally 

significant. For the remainder of this thesis, we discuss uncertainty as the location of the upper 

limit. 

Here we outline a methodology for calculating the uncertainty for an entire survey area with 

archive data sets, constraining that uncertainty where appropriate using available vessel AIS 

data, and assess the resulting area uncertainty. To accomplish this, a robust survey archive and an 

abundance of modern datasets were necessary, making the Chesapeake Bay and surrounding 

Delmarva area an ideal study area to test this approach. The central East Coast of the United 

States is known for vast amounts of sediment moving along its coastline, resulting in near 

constant surveying in some areas to keep up with a dynamic seafloor. Additionally, this region is 

heavily trafficked by recreational boaters and industrial shipping as a number of major ports are 

within the bounds of Chesapeake and Delaware Bay, thus providing a wide range of physical 
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observations to incorporate into the analysis. We anticipate that the methods outlined herein 

(summarized in Figure 3) could be used to better estimate bathymetric uncertainty on a national 

scale (discussed further in Chapter 4). Additionally, we expect the final results of this work to 

not only improve our understanding of currently charted data, but also be included in survey 

prioritization models (discussed further in Chapter 3). 

 
Figure 3: The complete workflow used to calculate and constrain vertical uncertainty of archive datasets using AIS vessel drafts. 
This workflow was completed using ESRI ArcGIS 10.5.1 and MATLAB 2017b. 

 

2.3 METHODS 
2.3.1 Calculating Uncertainty 

All bathymetric data (XYZ and BAG formats) in and around Chesapeake Bay, Delaware Bay, 

and the Delmarva Peninsula were downloaded from the NOAA’s National Center for 

Environmental Information (NCEI – formerly NGDC) (more information detailed in Appendix 

A). All data were analyzed and processed in ArcGIS ArcMap version 10.5.1. Due to the 

extensive archive of data in this area, a layered approach was taken.   
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• Bottom Layer - Any survey that covered a unique section of the seafloor for the first time 

was considered part of the bottom layer, even if a portion of it overlapped with another 

survey.  The bottom layer includes over 250 surveys and 4.5 million points. The bulk of 

this layer was primarily collected between the 1940s and 1950s, though some surveys 

were collected as recently as 2002. 

• Upper Layer  - Any uncertainty-attributed BAG survey, generally more modern surveys 

(119 surveys)  

• Middle Layer – Any remaining surveys between the bottom and upper layers, or any 

modern data not in BAG format (45 surveys).  

All bottom layer XYZ data were imported as point files into ArcMap and additionally attributed 

with survey name and age. These data were then combined into five groups based on physical 

location: Upper Chesapeake Bay, Central Chesapeake Bay, Lower Chesapeake Bay, Offshore, 

and Delaware Bay. This allowed for quicker processing time as well as more realistic 

interpolation outputs by focusing only on the data pertinent to each group since the same 

geophysical processes that affect the offshore area do not necessarily influence Central 

Chesapeake Bay. Additional attention was focused on the mouth of Chesapeake Bay, and a sixth 

group was created to focus on those surveys. 

Similarly, the mid-layer was divided into a few groups: Upper Chesapeake Bay, Lower 

Chesapeake Bay, and Delaware Bay. A few individual surveys in the mid-layer were too far 

removed from other surveys to be included in a group but were still included in the evaluation. 

All data were then analyzed using the ArcGIS ‘Geostatistical Wizard’ in the Geostatistical 

Analyst Toolbox to determine the appropriate interpolation (kriging) parameters for each group, 

or individual survey (Table 2). While the Wizard automatically takes the residuals of the data 
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and suggests parameters for optimum computing time, these suggestions were not used. Instead, 

parameters were chosen for optimum interpolation with little regard for computing time. It is 

possible that the other parameters could result in better interpolation outputs, especially if the 

universal kriging method is used. That said, the results outlined in Appendix C show a good 

correlation, a standardized RMS close to 1, and a low standard error.  

Group Method Model 
Lag Size 

(dd) 

Major 

Range 

Partial 

Sill 
Nugget 

Search 

Radius 

Cell Size 

(dd) 

B. Upper Ches Ordinary Exponential .000342 .01708 8.3787 0 Variable .000342 
B. Central Ches Ordinary Spherical .000345 .01725 9.1699 0 Variable .000345 
B. Lower Ches Ordinary Spherical .000334 .00734 4.4965 0 Variable .000334 
B. Offshore Ordinary Gaussian .000349 .01782 11.164 0.281134 Variable .000349 
B. Delaware Ordinary Spherical .000293 .01393 .40044 0.070199 Variable .000293 
B. Mouth Ches Ordinary Gaussian .000311 .13037 6.5551 0.307554 Variable .000311 
M. Upper Ches Ordinary Circular .000315 .01259 4.2793 0 Variable .000315 
M. Lower Ches Ordinary Gaussian .000314 .01088 7.3967 0.10388 Variable .000314 
M. Delaware Ordinary Gaussian .000314 .01287 6.1201 0.07364 Variable .000314 
M. H12559 Ordinary Gaussian .000314 .01350 0.7487 0.029121 Variable .000314 
M. D00052 Ordinary Spherical .000314 .00973 7.4114 0 Variable .000314 
M. H11088 Ordinary Gaussian .000314 .01228 23.252 0.02325 Variable .000314 
M. H10934 Ordinary Gaussian .000314 .00942 0.9071 0.02656 Variable .000314 
M. H10193 Ordinary Gaussian .000314 .00932 21.474 0.34237 Variable .000314 

Table 2: Kriging parameters used for each bottom and middle layer group based on ESRI ArcGIS Geostatistical Analyst toolbox. 
Parameters were input into ESRI ArcGIS Kriging tool included in the Spatial Analyst toolbox. Kriging was based on the residual 
depths of each group and the output cell size is in decimal degrees. ‘B’ designations stand for bottom-layer groups while ‘M’ 
designates mid-layer surveys and groups. 

 

In this study, we use kriging to interpolate depths into unknown areas based on the depths of 

surrounding points.  The kriging interpolation method originated from Daniel Krige in 1955 and 

is now a widely used geostatistical method to predict missing values based on spatial variance. 

Kriging not only produces estimates of bathymetry, but also calculates the variance associated 

with each estimation which is readily translated into uncertainty. It is a fairly standard practice 

within the field of ocean mapping and remote sensing to interpolate between sparse data points 

using kriging algorithms (Calder, 2006; Dorst, 2009; Bailly et al., 2010; Aykut et al., 2013) and 

the kriging implementation in ArcGIS (discussed in Oliver and Webster, 2014) was found to 



15 
 

provide the necessary statistical analysis tools for the purposes of this study. Additional details 

on the kriging interpolation are discussed in Appendix C.  

  
Figure 4: (Left) The bottom-layer krigged depths. The black boxes delineate the six groups: Upper Chesapeake Bay, Central 
Chesapeake Bay, Lower Chesapeake Bay, Chesapeake Bay Mouth, Offshore, and Delaware Bay. (Right) The bottom-layer 
combined krigged uncertainties. 

 

The kriging parameters for each group in the bottom layer were input into the ‘Kriging’ tool in 

the ArcGIS Spatial Analyst Toolbox and the option for a variance output was selected. The 

output raster for each group were then masked to the study area and mosaicked together with the 

‘Mosaic to New Raster’ tool using the following supersession order: Chesapeake Bay Mouth, 

Offshore, Lower Chesapeake Bay, Central Chesapeake Bay, Upper Chesapeake, and Delaware 

Bay (Figure 4). This process was performed for both the bathymetry and variance raster outputs. 

The square root of the combined variance raster was calculated to obtain the uncertainty. Both 

the bathymetry and uncertainty rasters had a cell size of ~40 m.  
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The kriging process was also performed on the mid-layer groups and surveys. However, as the 

purpose of the kriging interpolation was to estimate bathymetry and uncertainty gaps in 

coverage, the upper layer surveys were excluded from this processes since the BAG file format 

can include both bathymetry and uncertainty determined for each survey. Once both bathymetric 

and uncertainty estimates are obtained, the next step is to identify the area between data points 

and attempt to constrain the uncertainty. 

 
Figure 5: Bottom-layer gap bathymetry – areas between actual data points. A close-up near the mouth of Chesapeake Bay is outlined 
in the black box and shown in the bottom left to highlight the preservation of survey track lines. 
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2.3.2 AIS Analysis 

To achieve constraint for uncertainties between bathymetric data, these gap areas must first be 

isolated from where true data exists. Thus, the bathymetric point datasets (XYZ) for each group 

were converted into 30 m cell-size raster grids populated with the recorded depth of each point. 

Due to sparseness of these archive bathymetric data, a 30 m grid resolution maintained the true 

point nature of the data and avoided the appearance of complete coverage which would be 

inherent with larger cell sizes. The ArcGIS ‘Aggregate Point’ tool was used to delineate 

coverage (or outline) polygons for each area, with a radial search distance of 1.5 nautical miles. 

Each outline polygon was attributed with an arbitrary value of ‘-999’ that was then used to 

populate an overview raster grid of each area at a resolution of ~25 m using the ‘Polygon to 

Raster’ tool.  

Both bathymetric and overview grids were mosaicked together using the ArcGIS ‘Mosaic to 

New Raster’ tool, with priority cell population going to the bathymetry. This process attributes 

the gaps between soundings with the arbitrary value of -999, making them easier to identify. 

Using the ArcGIS ‘Extract by Attributes’ tool, the gaps were extracted into separate rasters and 

mosaicked together for the entire study area. A bathymetry raster of only interpolated depths was 

produced by using the ‘Extract by Mask’ tool to the bathymetric values from the kriging 

interpolation (discussed in the previous section) (Figure 5). 

Publicly available AIS tracklines for 2011 and 2013 were then downloaded from Marine 

Cadastre1, brought into ESRI ArcGIS as shapefiles, and clipped to the study area. The attribute 

table for each year was exported as an Excel table and brought into MATLAB 2017b 9.3.0. It is 

                                                 
1 Marine Cadastre website: http://marinecadastre.org 
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commonly understood that the AIS data has inherent errors due to uncontrolled user input fields. 

More specifically, the errors pertinent to this project result from incorrect units where the 

required units are meters but are commonly recorded in feet. These unit errors are scattered 

throughout the data and are easily identified when large values are recorded (~25 m) but can be 

hard to identify when they fall within a normal range (< 3 m vs. < 3 ft).  

 
Figure 6: Combined raster surface of MATLAB edited AIS draft values from 2011 and 2013. The raster cell assignment was based 
on deepest draft values. 
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For this reason, we normalized these data, limiting these errors, by filtering the recorded draft 

values through a MATLAB script (Appendix B) that compared AIS recorded vessel type and 

corresponding draft depths with a list of maximum allowable drafts (Appendix B). If a maximum 

allowable draft was not identified for any vessel type, the maximum depth of the study area (16 

m) was used instead (described further in Appendix B). Any draft values that exceeded the 

maximum allowable draft for a given vessel type were assumed to be recorded in feet instead of 

meters, and appropriately converted. Draft values less than or equal to the maximum allowable 

were not altered through this process and assumed to be reasonable.  

After the drafts for both years were normalized and edited, they were combined and imported 

back into ArcGIS to populate a 20 m raster grid based on the deepest recorded drafts (Figure 6). 

To identify the areas where uncertainty can be constrained, we need to establish how the AIS 

drafts compare with the sea floor. These values can then be directly compared with the 

uncertainty values already established (Figure 4) and areas susceptible to constraint can be 

identified. These steps are depicted in Figure 7. 

 

Figure 7: Draft comparison with bathymetry results in a curve (red) that can be compare with the uncertainty curve (black) and 
ultimately identifies the areas where the uncertainty curve can be constrained by AIS drafts. 
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As such, the combined AIS draft surface was compared with the bathymetric gap raster to 

determine the distance between the draft and seafloor. However, negative values indicated 

recorded drafts that exceeded the bathymetry and were removed from the study due to ambiguity 

outlined in the discussion section (Figure 8). The remaining values were then compared to the 

uncertainty raster to identify areas that could be constrained. The resulting values identified areas 

that could be constrained by AIS drafts and were differenced with the uncertainty to produce an 

updated uncertainty estimate. Finally, the updated uncertainty values and the original uncertainty 

were mosaicked together with the updated values having priority (Figure 9). In short, the 

measure of the draft of a boat passing over a given area constrains the uncertainty providing 

higher certainty of a minimum depth (Figure 7). 

  
Figure 8: Bottom-layer (left) and mid-layer (right) AIS draft/bathy comparison. Negative vales are red and signify that the AIS 
drafts exceed estimated bathymetry and were removed. 
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This process was repeated for the mid-layer surveys. Since this AIS analysis and uncertainty 

constraint procedure serves to better estimate gaps in bathymetric coverage of the seafloor, the 

upper layer surveys (BAG) were excluded as they are essentially point data with known 

bathymetry and uncertainty. As such, the upper layer survey uncertainties were mosaicked 

together with the most recent survey taking priority. A final uncertainty layer was produced from 

all updated uncertainty layers by mosaicking them together – with priority (or supersession) 

increasing from the bottom, middle, and top layers (Figure 10). This order was chosen as it is 

theoretically how data is prioritized on the chart. The result is in an updated uncertainty picture 

of charted data within the study area.  

 
Figure 9: AIS updated lower-layer uncertainties (left). Close ups of the Chesapeake Bay and Delaware Bay mouths shown on the 
right. 

 

Mouth of Delaware Bay 

Mouth of Chesapeake Bay 
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2.4 RESULTS 
2.4.1 Kriging Interpolation 

An estimate of uncertainty for the entire study area was achieved through kriging. As mentioned 

previously, the lowest layer data were broken into groups to increase processing speed and 

interpolation accuracy. Different parameters were used for each group to match the variability 

within each dataset, and ultimately to create a complete bathymetric surface. Through the 

interpolation process, the true data point values are not necessarily maintained as data density 

and output cell size can influence the final result (Oliver and Webster, 2014). For example, a 

cluster of five points within a 20 m x 20 m area, and a designated output cell size of 20 m results 

in only one value that will populate the single cell that covers those points.  

A point-to-point comparison was performed to determine how much change occurred to the true 

data points. Using the ‘Extract Multi Values to Points’ tool in ArcGIS, the depth value generated 

from kriging was extracted at the location of the measured data points and added to their attribute 

table. Both the true depth and interpolated depth were plotted, a trend established, and standard 

deviation was calculated (Table 3). The largest changes to true depth values occurred in the 

Upper Chesapeake Bay and Offshore regions, with the lowest differences found in the Mid-

Layer data and Delaware Bay. It’s possible these differences could result from spatial biases in 

the kriging calculation which could be rectified through universal kriging (that uses a variable 

mean) as opposed to ordinary kriging (that uses a stationary mean). This is discussed further in 

the discussion.  
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Group Trend Equation 
Standard 

Deviation 
# of Points 

Survey Year 

Range 

B. Upper  y=0.9980x+0.0610 0.5746 m 945,966 1897-2002 
B. Central y=0.9948x+0.0244 0.4150 m 1,498,972 1860-1974 
B. Lower y=0.9921x+0.0527 0.5078 m 391,519 1886-1980 
B. Offshore y=0.9917x+0.1567 0.5864 m 1,234,166 1934-1999 
B. Delaware y=0.9949x+0.0276 0.3246 m 256,761 1971-2002 
B. Mouth y=0.9876x+0.1334 0.5079 m 276,826 1886-1990 
M. D00052 y=0.9987x+0.0143 0.1093 m 3,149 1985 
M. H10193 y=0.9887x+0.1567 0.4311 m 10,341 1986 
M. H10934 y=0.9901x+0.1239 0.1325 m 27,899 2000 
M. H11088 y=0.9967x+0.0480 0.2581 m 42,718 2004 
M. H12559 y=0.9961x+0.0355 0.1943 m 18,775 2013 
M. Lower y=0.9937x+0.0764 0.3102 m 718,462 1965-2013 
M. Upper y=0.9935x+0.0726 0.3389 m 770,427 1965-2013 
M. Delaware y=0.9967x+0.0498 0.3313 m 222,031 1965-2013 

Table 3: Kriging point to point validation results for each group of the bottom and middle layers. Variance and standard deviation 
was calculated for the differences between the measured and kriged depths. 

 

 

2.4.2 AIS Filtering 

The first stage of filtering ignored 22% of drafts for each AIS year (2011 and 2013) as draft data 

had simply not been entered. The MATLAB code (Appendix B) edited 7.3% of the 2011 drafts, 

with the majority coming from the tug boats vessel class (Figure 11). Similarly, 12.7% of the 

2013 drafts were edited and a majority contribution coming from tug and pilot vessel classes 

(Figure 12). Further, a combined 10% of the publicly available AIS draft data were edited using 

the maximum draft by vessel category approach. 

The second stage of filtering was performed by differencing the combined edited drafts with gap 

bathymetry. For the lower layer, 12% of the drafts exceeded estimated bathymetry and were 

removed. For the mid-layer, 24% of the drafts exceeded the bathymetry. The removed AIS data 

for both layers was primarily isolated to nearshore areas and within current designated 

navigation channels. Both regions could be explained by physical changes to the seafloor that 
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occurred in the time between each survey and AIS data collection and is explored further in the 

discussion section. 

 

2.4.3 Final AIS-constrained Uncertainty 

Two percent of the lowest layer uncertainties were constrained by AIS drafts. The surface overall 

has an average uncertainty of 0.6 m and a standard deviation of 0.17m. Over 85% of the lowest 

layer has an uncertainty over 0.5 m, but only ~4% of that area is greater than 50% of the water 

depth indicating that most of the larger uncertainties are confined to deeper areas. This is not 

unexpected as deeper areas with less navigational influence tend to have sparser datasets and 

larger uncertainties. However, the ~4% that is greater than 50% of the water depth is confined to 

nearshore regions where depth measurements are more difficult to obtain (Figure 13).   

Three percent of the mid-layer uncertainties were constrained using AIS drafts. The average 

uncertainty for the mid-layer is 0.34 m with a standard deviation of 0.18 m. Only 3% of the mid-

layer had uncertainties over 0.5 m, although these areas were not confined to the nearshore areas. 

The majority of the large uncertainties are isolated to two surveys with minimal survey coverage: 

D00052 (1985) and H10193 (1986).  

A total of 2% of the combined study area uncertainty was updated through the AIS draft 

analysis, and a complete chronological estimate of uncertainty was achieved for Chesapeake Bay 

and surrounding areas. In comparison, current CATZOC methodologies would use kriged 

bathymetry and the IHO uncertainty variables for each 95% confidence interval per CATZOC 

level (Table 1) to calculate vertical uncertainty. A direct comparison between the CATZOC 

output and the uncertainties calculated here show that 96% of our uncertainties are smaller than 
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CATZOC (Figure 14). Additionally, the larger uncertainties come from two main sources: 

modern multibeam surveys and an edging effect resulting from resolution differences between 

the two models. As coarser grids populate large geospatial areas with single values, finer grids 

allow for more variability to be captured and comparing the two can result in large differences 

particularly on the outer edges of each grid. 

 

 
Figure 10: Final merged uncertainty surface with AIS constraints. Temporally prioritized cell assignments – the newest surveys 
having priority over archive surveys. 
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Figure 11: 2011 AIS composition of MATLAB edited drafts. 

 

 
Figure 12: 2013 AIS composition of MATLAB edited drafts. 
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2.5 DISCUSSION 
2.5.1 Kriging Interpolation 

Previous attempts to analyze archived hydrographic surveys have focused on their comparison 

with modern coverages (Calder, 2006; Wong et al., 2007; Dorst, 2009).  Calder (2006) found the 

ambiguity from spatial aliasing hard to capture through kriging, even after accounting for 

inaccuracies with historic hydrographic techniques. However, considering the Wizard-decided 

optimum lag size equated to > 250 m, the vast amount of archived data utilized in this study 

allows coverage gaps from one survey to be covered by another, capturing smaller-scale spatial 

fluctuations during interpolation and permitting a lag ~35 m. This is particularly true for the 

lowest layer bathymetry and uncertainty estimates where the inclusion of hundreds of surveys 

results in significant survey overlap.  

On the other hand, some surveys had to be individually kriged in the mid-layer as they were not 

near other surveys. For these surveys, the uncertainties produced have higher probabilities of 

suffering the same issues outlined by Calder (2006), particularly H10193 and D00052. Both of 

these surveys were collected in less than 45 m of water with over 100 m between survey lines. 

While they may have included feature investigations, they were flagged with extreme uncertainty 

values due to the lack of coverage and large spacings.  

It should also be noted that each kriging group exhibits high spatial variability in part due to their 

size, but also the kriging method choice. Ordinary kriging was chosen for this study as it is 

designed to work well in most situations (Oliver and Webster, 2014), but with a trend, more 

accurate results could be achieved through universal kriging.  
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Figure 13: Lower-layer uncertainties as percent water depth. Larger uncertainties (in red) are constrained to nearshore 
environments. 

 

2.5.2 AIS Filtering 

AIS drafts are required by the U.S. Coast Guard to be input in meters, yet U.S. customary units 

are in feet. Thus, it is not surprising that AIS datasets contain errors. The MATLAB draft editing 

discussed in the Methods section of this chapter (and outlined in Appendix B) set the absolute 

maximum allowable vessel draft to be 16 m (~52.4 ft) to be close to the maximum maintained 

channel depth of 52 ft. This method could introduce skewing as the chart datum is MLLW and 

not mean sea level (MSL). Additionally, this does not account for tides that allow larger vessels 

to successfully pass than would otherwise be possible at higher tides. While the tides are only 
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maximum 1 m above MLLW and 0.5 m above MSL at the Chesapeake Bay Channel, this is still 

enough to change the output uncertainty raster. The method outlined in this chapter would 

ultimately produce more conservative uncertainty estimates by accounting for tides and datums. 

However, allowing for an increased maximum draft more reflective of true maximum vessel 

drafts would likely increase the amount of ambiguous data found in the differencing of AIS 

drafts and the bathymetry. 

Additionally, AIS vessel tracking was not mandatory in the U.S. until 2009. Since then, only a 

few years have been made public, and of those, only two include vessel tracklines (2011 and 

2013). Therefore, the differencing of AIS drafts and early bathymetry (described previously) use 

data that are from two different time periods separated by an average of 50 years. The resulting 

areas that show AIS drafts exceeding the interpolated bathymetry could result from other 

sources. First, the AIS draft could still have been recorded using standard U.S. units of feet 

instead of the required input of meters despite the MATLAB filtering outlined previously. 

Second, the seafloor could have been dredged allowing for deeper draft vessels to move where 

they formerly could not (and vice versa). Finally, the bathymetry could have been recorded 

incorrectly as the available technology at the time was conducive to larger geospatial errors than 

modern systems. However, distinguishing the true cause of the ‘error’ was impractical, and thus 

these data were ignored. 
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Figure 14: In comparison with current methods: 96% of the uncertainties calculated in this study have smaller uncertainties (in teal) 
than achievable through CATZOC estimates. Larger uncertainties (in purple) result primarily from edging effects and modern 
surveys. 

 

2.5.3 Final AIS-Constrained Uncertainty 

Final uncertainty grids were mosaicked together sequentially with more recent BAG survey 

uncertainties superseding kriged uncertainties of archived surveys. This order was chosen to 

approximate the charted data order; although there are arguments to be made for both a 

minimum or maximum value cell assignment as realistic chart order is more complex than 

simply age. In particular, a minimum value supersession approach could more closely capture 
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the charted order. However, the uncertainty values identified in this study are almost entirely less 

than those identified through standard CATZOC estimations, indicating that our minimum value 

might not be the same as the CATZOC minimum used for charting. Alternatively, using a 

maximum value approach would show the worst-case scenario for a given region, which is also 

how charts are compiled. This does not mean that the worst bathymetric data is used, but instead 

that the higher uncertainties are included in the charting process to provide the mariner the most 

conservative estimates. Nonetheless, temporal supersession accounts for technological and 

procedural advancements and were deemed the most appropriate choice.  

 

2.6 CONCLUSIONS 
A methodology that produces a complete coverage uncertainty estimate for the entire study area 

was calculated through kriging. Of these uncertainties, 2% were successfully constrained using 

publicly available AIS drafts from 2011 and 2013, totaling ~420 km2.  While 2% improvement 

in confidence constraints might seem fairly minor, the maximum annual coverage area for the 

NOAA fleet is less than 0.1% of US waters, a small fraction of what this analysis has produced.  

Further, this analysis is a proof of concept.  Gaining access to more accurate AIS data through 

the Coast Guard or private crowdsourcing companies could also increase the final percentage of 

constrained uncertainties. Ninety-six percent of the uncertainties presented here are smaller than 

those obtained from current authoritative uncertainty calculations. The few larger uncertainties 

result primarily from an edging effect and more modern datasets, implying an over-estimation of 

archive surveys and an under-estimation of modern surveys. Future work should focus on 

including additional years and sources of AIS data and accounting for tides.  
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CHAPTER 3 
ESTIMATING SEDIMENTATION RATES NEAR CHESAPEAKE BAY AND 
DELMARVA PENINSULA AND THE ASSOCIATED IMPLICATIONS FOR 

SURVEY PRIORITIES  
 

3.1 SUMMARY 
There is no standard methodology for assessing the validity of survey data and charted information 

as they age. NOAA’s current approach uses the Hydrographic Health Model (HHM) which is a 

risk-based methodology aimed at determining hydrographic survey priorities. The HHM 

incorporates a number of crucially important maritime variables including heuristic changeability 

terms (based on the seabed sedimentary material), history and frequency of large storms, tidal 

currents, and anthropogenic obstructions. We propose an enhanced approach that supports 

quantifiable estimates of chart health by modeling the sedimentation and erosion rates determined 

by successive bathymetric surveys, sediment cores, and numerical algorithms. This model can 

more accurately identify rapidly degrading regions that exceed acceptable IHO standard 

variability. The proposed enhancements are evaluated in the Chesapeake Bay and Delmarva 

Peninsula where frequent hydrographic surveys are required to monitor significant sediment 

transport in heavily trafficked regions. This work creates a link between hydrodynamic models 

and hydrographic survey priorities more objectively prioritizing current and future survey needs 

and investments. 

 

3.2 INTRODUCTION 
Survey prioritization is fundamental to nautical chart maintenance and fiscal management by 

identifying which coastal U.S. areas are more “at risk” and in need of modern coverage than 

others. This decision making has primarily been based on knowledge of groundings, wrecks, 

current coverage and survey age, stakeholder requests, and boat scheduling with significant 
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weight put on the presence or absence of modern survey coverage. With less than 0.1% of new 

survey coverage collected annually, the possibility for out-of-date chart soundings as a result of 

physical changes to the seabed between repeat surveys along the coastal U.S. could be quite high 

in dynamic coastal areas. This implies that survey quality will decay more rapidly with time as a 

result of prolonged exposure to ocean waves and currents.  

Determining how a survey depreciates over time is a complex problem with no uniformly 

applicable procedure. Presently, the National Oceanographic and Atmospheric Administration 

(NOAA) does not have a standard way to account for survey depreciation over time. The task of 

prioritization is entrusted to their experienced hydrographers.  

Due to the importance in safety and commerce, building consensus on the best methodology has 

become a focus of much research in recent years. Hydrographic agencies across the globe have 

begun investigating automated prioritization methods as a more accurate avenue for identifying 

charted areas subject to significant change. The Canadian Hydrographic Service (CHS) initially 

designed a GIS-based model by Grenier and Hally (1991) that weights 19 variables based on 

hydrographic and cartographic needs. Their current model, the CHS Priority Planning Tool 

(CPPT), combines a GIS and matrix approach to identify charts that need updates (Chenier et al., 

2018). Dorst (2009) looked into time series analysis of bathymetric data in the Southern North 

Sea around the Netherlands as a method to determine survey priorities for the Royal Netherlands 

Navy. Calder (2015) created a risk-based approach to mitigating uncertainty in transit on an 

individual ship basis. Additional statistical methodologies have been applied to assess survey 

priorities (Calder, 2016). Other approaches have been attempted within the U.S., including 

NOAA’s current model called the Hydrographic Health Model (HHM), the offspring of an 

Alaska chart assessment outlined in Gonsalves et al. (2015).  



34 
 

The HHM is a risk-based analysis implemented in ESRI ArcGIS that determines the current state 

(or the “health”) of charted data to identify survey priorities at a 500 m resolution. The HHM is 

based on a simple formula  

𝐻𝐻𝑀 = 𝐻𝑔𝑎𝑝 ∑ 𝑅        (1) 

that multiplies the estimated hydrographic risk, ∑ 𝑅, by the hydrographic gap term of a specific 

area, 𝐻𝑔𝑎𝑝, resulting in a health rating from less than 0 to 100, with the healthiest (or most recent 

surveys) scoring near or below 0 (Figure 1). The hydrographic risk is a mathematical weighting 

function that rates consequences and likelihoods on a scale of 1-5 with 5 presenting the most risk 

(Keown et al., 2016; Fandel et al., 2017; Hicks et al. 2017). The hydrographic gap of currently 

charted data is determined by  

𝐻𝑔𝑎𝑝 = 𝐷𝑆𝑆 − 𝑃𝑆𝑆      (2) 

the difference between the estimated present survey score (PSS) and the user-defined desired 

survey score (DSS).  

The PSS and DSS terms are populated with values (0-110) that closely correspond to CATZOC 

level coverage specifications (IHO S-57, 2014; Keown et al., 2016; Fandel et al., 2017; Hicks et 

al. 2017) and depreciate by an exponential decay of the survey’s current score, ζ, based 

empirically on the age of the survey, T, and several empirical changeability terms, C, such that 

𝑃𝑆𝑆 = ζ𝑒−𝐶𝑇       (3) 

While the PSS changeability terms incorporate heuristic estimates of change specifically through 

the parameter C that includes the number of large storms, tidal currents, marine debris, and an 

empirical factor (Keown et al., 2016; Fandel et al., 2017), these variables do not always result in 
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physical change. Similarly, the absence of these changeability variables does not equate to a 

stable environment. This is also true for the calculation of the entire HHM including the ∑ 𝑅 as 

the risk is subjectively established. To truly estimate hydrographic health, both components 

should be quantitatively calculated. However, here we focus on the imperative need to establish a 

quantitative and area-specific approach for change estimates to achieve a robust assessment of 

chart adequacy. Additionally, local hydrodynamic variables drive sediment transport patterns and 

their inclusion could markedly improve the accuracy of predicted chart health estimates. 

However, a direct application of these estimates into the current iteration of the HHM is not 

presently possible. In the present work, an alternative methodology for estimating the 

hydrographic gap (Hgap) is presented. 

Risks due to charted depth inaccuracy can be characterized by quantification of uncertainty using 

annually observed average rates of change (Taylor, 1982). Thus, the modified gap equation 

proposed herein uses the difference between estimated Present Survey Uncertainty (PSU) and 

Maximum Allowable Uncertainty (MAU) terms,  

𝜏 𝐻𝑈𝐺 = (𝜎𝑝𝑟𝑒𝑠𝑒𝑛𝑡 − 𝜎𝑚𝑎𝑥)     (4) 

where σpresent is the PSU and the σmax is the MAU which would take the place of the PSS and 

DSS respectively in (2) and Hgap in (1). Here, the PSU incorporates temporal variability and 

average rates of change through 

𝜎𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = (∆𝑇
∆𝑧

∆𝑡
) +  𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙    (5) 

where σinitial is the initial survey uncertainty (ISU) values, ΔT is the change in time, and Δz/Δt is 

the temporal variability component. The proposed modification to the HHM hydrographic gap 
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term is henceforth referred to as the Hydrographic Uncertainty Gap (HUG). HUG is 

implemented in ESRI ArcGIS 10.5.1. 

Quantifying the total vertical uncertainty (TVU) is a common NOAA practice for each 

hydrographic survey and is referenced in chart compilation by assigning a CATZOC level. 

Unfortunately, these levels are inherently attributed to an entire survey area even if complete 

coverage was not achieved. As discussed previously, the uncertainty of the entire survey area 

must be quantified to truly estimate what the current and future states of hydrographic chart data 

are or will be. Thus, the Initial Survey Uncertainty (ISU, 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙) component of the proposed 

PSU term will use the process outlined in Chapter 2.  

The other key component of the PSU is the quantification of temporal variability; that is, the rate 

of change of seabed elevations. In this assessment, we discuss two methods to account for 

temporal variability. The first is by using sedimentation rates which can be determined from a 

literature review, bathymetric differencing of two surveys separated in time, and/or observations 

from sediment cores. The second method is based on numerical sediment transport models.  

The temporal variability (∆z/∆t) output in (5) is multiplied by a time component (∆𝑇) that 

corresponds to the survey age but can also be used to represent future changes. Understanding 

how a given area will change in the future allows for more comprehensive resource allocation, 

updates to disaster response requirements, and better understanding of climate change scenarios. 

It is important to note that the various temporal variability estimates are not required to be used 

together to establish the overall temporal variability of a given location. Instead, through this 

assessment, we expect to show how to utilize publicly-available data to better estimate 

bathymetric change, and to further outline how numerical modeling could be useful.  
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The MAU (σmax) is a user-defined variable derived purely from the calculated uncertainty from a 

desired CATZOC level using the IHO uncertainty equation 

𝑀𝐴𝑈 = √(𝑎2) + (𝑏𝑑)
2
       (6) 

where ‘a’ and ‘b’ are IHO S-44 order-dependent variables (IHO S-44, 2008) and ‘d’ is depth (in 

meters). Differencing the PSU and MAU estimates the hydrographic uncertainty gap (HUG) of a 

given charted region, and dividing by the water depth (d) can give these results in terms of the 

fraction of water depth. Positive results from this calculation indicate the uncertainty exceeds 

allowable limits, while negative results indicate the area is within the desired uncertainty limit. 

One area of known variability is offshore Virginia near the mouth of Chesapeake Bay (Figure 

15). This area has experienced near-constant dredging over the last thirty years and demands 

frequent hydrographic surveys, indicating sediment is being transported and reformulated in this 

region on a large scale. For this study, the HHM Hydrographic gap (Hgap) component is 

reworked (𝜏𝐻𝑈𝐺, (4)) to better incorporate local sedimentation rates (5) in order to more 

accurately assess the current state of charted data and determine the changes expected under a 

variety of conditions. Through this work, we hope to provide an example of how this concept can 

be applied to a specific area, suggesting a new standard for future application to additional U.S. 

coastal areas. 
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Figure 15: (Left) Bathymetric map of Chesapeake Bay and nearby offshore regions. The arrows denote sediment transport pathways 
identified from previous studies. Orange are riverine and yellow is shelf sediments. The red star is Fisherman’s Island. (Bottom 
Left) Subset of Chesapeake Bay mouth with navigational channels designated in red and Fisherman’s Island designated with a red 
star. (Right) USACE Chesapeake Bay navigational channel dredge history.  

 

3.3 GEOLOGIC BACKGROUND 
Chesapeake Bay is the largest estuary in North America and connects the Atlantic Ocean to a 

number of major rivers including the Potomac, the James, and the Susquehanna Rivers. As there 

are major cities and ports lining Chesapeake Bay’s borders, this region has been heavily 

trafficked by large vessels since early European settlements (Brush, 1984). Studies of sediment 

cores throughout the bay have identified a clear correlation between increased sedimentation 
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York Spit Channel

Cape Henry Channel
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rates and post settlement anthropogenic influence on the land (Brush et al., 1984; Donoghue, 

1990).  Cores have also shown that sedimentation rates are not uniform throughout the bay with 

nearly 80% of sediment coming from the Susquehanna, Potomac, and James rivers (Donoghue, 

1990; Valle-Levinson et al., 2001). Hobbs et al. (1992) reported that the Chesapeake is filling at 

both ends by both sediments discharged by the rivers and sediments coming through the inlet 

from the inner continental shelf and adjacent beaches.  

As the cities along the Chesapeake Bay have grown, so too have the demands of the population 

and the ships that cater to their needs. Multiple deep-draft shipping channels have subsequently 

been created and maintained by the U.S. Army Corps of Engineers (USACE) in both the 

Maryland and Virginia areas of the bay to allow for such activities. These channels are said to be 

maintained to the deep-draft limit of 42 ft (12.8 m) according to current NOAA Charts, although 

various USACE reports indicate the channels are maintained to a minimum of 52 ft (16 m) with 

a request to deepen to 59 ft (18 m; USACE Norfolk Report and Environmental Assessment, 

2017). Regardless of the specific deepest depth, maintaining the channel to an appropriate depth 

has proved to be a challenge. Bi-annual dredging has been performed on a majority of the lower 

Chesapeake Bay channels since their creation (Figure 15- Right), indicating significant sediment 

movement in a short time period.  

Numerous sand wave fields identified in the Chesapeake Bay provide further evidence of 

substantial sediment transport. Perillo et al. (1984) found that the sand waves in the middle of the 

Chesapeake are relics from previous energetic events. Additional studies on turbulence and 

resuspended sediments found that wind-driven currents can have a significant effect on the 

ability to resuspend sediments in the shallower regions of the upper and middle bay (Ward et al., 

1985; Sanford et al.; 1991; Sanford et al., 1993; Sanford et al., 1994) while tidal currents have a 
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lesser effect on these sediments. Conversely, the lower bay (between the mouth of the bay and 

Mobjack Bay) is significantly influenced by tidal fluctuations and currents (Perillo et al., 1984; 

Colman et al., 1988). Studies on the lower bay sand waves found that the sand waves are active 

and move as cohesive units (Colman et al., 1988). The dichotomy of primary sediment forcing 

between the upper (inland) and lower (near inlet) bay areas implies the likely sediment sources 

infilling the navigational channels.  

Identifying these sediment sources and their transport patterns could prove useful for the 

accuracy of nautical charts for this region and, ultimately, the maintenance of the bay channels. 

Skrabal et al. (1991) used sediment cores to determine that Thimble Shoal Channel is primarily 

infilling from the James River discharge sediments rather than shelf sediments owing to a lack of 

illite (an indicator of shelf sediments) in the channel sediments shown in Figure 15 (Left). 

Conversely, the north side of the bay mouth was found to be fed by shelf sediments that extend 

into the bay along the eastern boundary and are driven by a strong longshore current from the 

Delmarva Peninsula (Colman et al., 1988). The proximity of the Cape Henry Channel to the 

active sand wedge off Fisherman’s Island would imply Delmarva coastal sediments are the 

source of its infill. Additionally, Ludwick (1978) found a northward propagating sand stream in 

the coastal region off Virginia Beach with occasional reversals southward as a result of storms. 

The infilling observed at the Atlantic Ocean Channel could be a result of this sand transport 

pattern and ultimately determined by longshore currents in the nearshore.  
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Figure 16: Areal coverage of NOAA hydrographic surveys for Chesapeake Bay and offshore Delmarva Peninsula colored by survey 
year. 

 

The results of these studies indicate a coastal sediment influence on the far north side of the bay 

mouth and a riverine/terrestrial influence on the southern side of the bay mouth. Valle-Levinson 

and Lwiza (1995), Valle-Levinson et al. (2001), and Valle-Levinson et al. (2003) suggested an 

alternate circulation pattern for estuaries with channels. They argued that channel flows are 

opposite to the rest of the estuary and, depending on the wind direction, the bottom transport at 

the mouth of Chesapeake Bay can be in opposition at the north and southern ends. Quantifying 

the complex dynamics associated with estuarine-ocean interactions, their sediment transport 

patterns, and sediment pathways with numerical models could more accurately identify current 

and future survey priorities. 
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3.4 METHODS 
HUG was implemented in ESRI ArcGIS version 10.5.1 along the central eastern coast of the 

United States between the New Jersey-Delaware and the Virginia-North Carolina borders as 

limits (Figure 16). This region was chosen for its high frequency survey and dredging activities 

that occur in response to consistent and significant sediment movement (USACE Norfolk Report 

and Environmental Assessment, 2017). By identifying the state of charted data in this area, it 

becomes possible for NOAA to limit their focus to specific problem areas within this region that 

exceed the allowable uncertainty.   

Publicly available data from Marine Cadastre, the USGS, and many NOAA websites were used 

to calculate all terms in the HUG estimate (Appendix A). The most recent Electronic Navigation 

Charts (ENCs) were downloaded from NOAA Office of Coast Survey’s (OCS) chart catalog2. 

The free ESRI S-57 Viewer version 2.2.0.9 was used to view ENC .000 files and a number of 

polygons were extracted from each ENC, primarily the MQUAL polygons. MQUAL (Meta: 

Quality of Data) polygons are required S-57 survey polygons that are attributed with the 

CATZOC level the survey met upon chart compilation and the survey start and end dates (IHO 

S-57, 2014). Various NOAA hydrographic surveys in the study area were downloaded from the 

National Centers for Environmental Information (NCEI – formerly the National Geographic 

Data Center or NGDC)3. Points, survey area polygons, and grids were created from these NOAA 

surveys (in ASCII XYZ format). A compilation 3 arc-second (~100 m) bathymetric grid of the 

study area was downloaded from NOAA’s Coastal Relief Model (CRM)4.  

                                                 
2 NOAA Chart Catalog website: http://www.charts.noaa.gov/InteractiveCatalog/nrnc.shtml 
3 NOAA NCEI bathymetric database website: https://maps.ngdc.noaa.gov/viewers/bathymetry/ 
4 NOAA Coastal Relief Model database website: https://www.ngdc.noaa.gov/mgg/coastal/crm.html 
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Figure 17: (Left) Sedimentation rates of Chesapeake Bay determined from a literature review (m/yr). (Center) Sedimentation rates 
determined from a bathymetric difference between overlapping surveys separated in time (m/yr). (Right) Combined sedimentation 
rates for the survey area (m/yr). Red indicates larger sedimentation rates across all three figures, yellow and green values are not 
as navigationally significant as they are either stable or erosional (negative). 

 

To calculate the PSU (σpresent) term, the ISU (σinitial) for each survey must first be determined. The 

standard procedure for addressing uncertainty requires CATZOC level assignment to the entire 

survey area regardless of full coverage. To quantify the uncertainty for the entire study area at 

greater accuracy and resolution including areas not fully covered in the surveys, all bathymetric 

data sets were downloaded and kriged to obtain a complete coverage bathymetric grid as well as 

an estimate of uncertainty based on the kriged variance output. Using AIS drafts, these 

uncertainties were constrained and mosaicked together with modern uncertainty-attributed BAG 

surveys to create a full coverage 40 m grid (a 10-fold improvement over current HHM outputs), 

finalizing the ISU term (Figure 10). A more complete outline of the AIS-based methods is 

discussed in Chapter 2. 

To calculate the survey age, all NOAA survey polygons were attributed with a survey year and 

differenced from the current year (2018) in a new attribute field called ‘Survey Age’. The Survey 

Age was used to populate a new raster grid with a 40 m resolution.  
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Finally, the temporal variability components of the PSU were calculated. Chesapeake Bay proper 

has been thoroughly studied over the last forty years, making sedimentation rate estimates from a 

comprehensive literature review readily compiled (Figure 17- Left). Far less research has been 

conducted along the Delmarva Peninsula and into Delaware Bay. Therefore, sedimentation rates 

were acquired using another method. Here, a depth difference between older and more recent 

hydrographic surveys was performed using bathymetry obtained through kriging interpolation of 

bathymetric layers (Figure 17- Center; discussed in Chapter 2). The residuals were then divided 

by differences in acquisition years between these surveys to obtain rough estimates of 

sedimentation (in units of m/yr; Figure 17 – Right). Each component of the PSU term is a 

rasterized grid with a cell size of 40 m (Figure 18). The PSU calculation was performed using a 

simple raster calculation (Eq. 5) and a 40 m resolution was maintained. Note that sedimentation 

rates established through bathymetric differencing capture the changes observed over a certain 

amount of time and assumes it is constant, which may not be always true as some changes are 

oscillatory or migratory. While these estimates are better than nothing, more accurate estimates 

of change can come from numerical sediment transport modelling. However, future 

implementations should include methodologies to account for horizontal changes with no 

vertical changes; this is discussed further later. 

The MAU is a user-defined variable meant to define a maximum uncertainty threshold for a 

specific desired CATZOC level. For this study MAU areas were defined based on NOAA’s 

priorities included in their HHM estimates. To get the HHM desired survey score (DSS) grid into 

a usable format for HUG, a conversion table was created to go between the DSS values and 

CATZOC since the DSS values were based on coverages (outlined in Table 4). Using the 

uncertainty constants that align with the CATZOC levels and the NOAA coastal relief model 
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(CRM) as bathymetry, bathymetric TVU grids were established for the entire survey area. Areas 

with DSS values of 0, 30, 80, 100, and 110 were extracted individually from the HHM to make 

five grids that were used as masks to extract from their respective bathymetric TVU grids. These 

were later mosaicked together and resampled to a 40 m resolution final MAU grid (Figure 19).  

 
Figure 18: (Left) The final PSU calculation where areas shown in red indicate large uncertainties and areas shown in yellow and 
green are negative. (Right) A close up of the mouth of Chesapeake Bay, one of the most dynamic places in the study area. 
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Table 4: Conversion table for HHM DSS values and CATZOC levels. 

 

The final PSU and MAU grids were differenced, so that positive values indicate that an area 

exceeds the maximum allowable uncertainty while negative values are within an allowable 

uncertainty. The final HUG grid has a 40 m resolution (Figure 20). 

 
Figure 19: (Left) The Hydro Health Model Desired Survey Score (HHM DSS) output. (Right) Translation of the HHM DSS values 
to CATZOC confidence levels. Using the NOAA CRM as the depth component, the HUG maximum allowable uncertainties 
(MAU) were determined. 

 

3.5 RESULTS 
3.5.1 Sedimentation Rates 

Sedimentation rates were estimated for the entire study area from bathymetric differencing and 

reported estimates, although bathymetric differencing was only available where repeat surveys 

exist. Combined, the average rate was +2.8 mm/yr and only 16% of the study area have rates 

over 10 mm/yr (Figure 21), the majority of which are found offshore and in Delaware Bay. The 

largest reported rates were observed at the Susquehanna and James Rivers within Chesapeake 

Bay and the largest rates from bathymetric differencing were found at the mouth of Chesapeake 
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Bay. The latter is consistent with the findings presented by Colman et al. (1988) where shoal 

sediments are worked into the bay by Fisherman’s island and into the channels in a south-

western progression. Similar patterns are observed at the mouth of Delaware Bay around Cape 

May.  

Along offshore Delmarva, sedimentation rate patterns are consistent with sediment moving along 

the coast. The presence of positive values (or areas of deposition) contiguous with negative 

values (or areas of erosion) suggest movement from one location to the next. The rates along the 

coast generally fall between ± 20 mm/yr. A triangular region between the two approaching 

Delaware Bay channels more consistently shows depositional rates between 20-30 mm/yr 

(Figure 22). This is unlikely to be a natural feature, but more probably a product of bathymetric 

data error stemming from the modern coverage over the area as this region exactly aligns with 

the H10989 survey. However, it is possible the errors could stem from the surrounding surveys.  
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Figure 20: (Left) The HUG model output where red areas indicate areas that exceed the MAU and blues indicate areas that do not. 
(Right) Focus on the mouth of Chesapeake Bay. 

 

3.5.2 Present Survey Uncertainty 

The average present uncertainty is 0.66 m with a standard deviation of 0.87 m. Over 47% of the 

study area have present uncertainties larger than 0.5 m (Figure 23), but only 15% have 

uncertainties larger than 1 m and only 18% have uncertainties that are larger than 50% of the 

water depth. The largest uncertainties are found in and around the Susquehanna and James 

Rivers and result from large sedimentation rates and survey ages. The values around these rivers 

are extreme (> 10 m) and are likely not realistic but a product of not completely capturing the 

physical processes occurring due to a lack of bathymetric coverage, unrealistic sedimentation 

rates, and not accounting for dredging. It should be noted that all methodologies described in this 

work do not account for dredging operations that remove significant amounts of sediment from 

navigational channels. Nonetheless, these areas are still important as they call attention to a 

region of large change, or at the bare minimum, high uncertainty.  

An area of particular interest is at the mouth of Chesapeake Bay where uncertainties fluctuate as 

a result of sedimentation rates and sediment movement. Even with more modern coverages and 

lower initial uncertainties, the larger sedimentation rates have a more significant influence on the 

uncertainty of this area. The opposite is observed in the majority of inner Chesapeake Bay. The 

bay uncertainties seem to more closely reflect survey age and the ISU, resulting in the 

preservation of survey area outlines. 
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3.5.3 Hydrographic Uncertainty Gap 

The average HUG result is a gap of -0.57 m with a standard deviation of 0.92 m. The lowest 

values are observed primarily in the intertidal zones in central Chesapeake Bay.  The maximum 

values are near navigational channels in both bays, upstream of the major rivers in Chesapeake 

Bay, and the mouth of Chesapeake Bay. Only 13% of the study area exceeds the MAU and are 

identified as survey priorities, which equates to ~2,700 km2 (Figure 24). Eighty percent of these 

areas have HUG values that are less than 50% water depth, although a combined 121 km2 in the 

Susquehanna and James Rivers have uncertainty values that exceed 50% water depth. As stated 

previously, the uncertainty values calculated in the Susquehanna and James Rivers are 

significantly skewed by the ages of their underlying data and assumptions with sedimentation 

rates. While these values can be more or less ignored, their relevance cannot. It is clear that the 

uncertainty of the seafloor in those locations is quite high and the area needs to be resurveyed. 
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Figure 21: The locations in the study area where sedimentation rates are less than 0.01 m/yr (in red) and greater than 0.01 m/yr (in 
pink). Areas of large variability are located at the mouth of Chesapeake Bay and the Delmarva Peninsula. 

 

A direct comparison with the current HHM hydrographic gap (Hgap) estimates is not easily 

accomplished due to the difference with which the changeability terms are calculated. However, 

Hgap values greater than 0 indicate hydrographic “needs” (Keown et al., 2016; Fandel et al., 

2017; Hicks et al. 2017). With that in mind, ~52% of the Hgap estimates exceed the DSS (i.e.. are 

greater than 0). This is four times more than the survey priorities identified by the HUG methods 

presented here, potentially over-estimating risk and misdirecting priorities relative to the HUG 

values.   
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We also found that 14% of Hgap values exceeded a health rating of 50. This produces a more 

comparable quantity to the HUG priorities but lacks the consistent overlap (Figure 25). Only 

~30% of the Hgap values over 50 overlap with HUG survey priorities, leaving almost 1000 km2 of 

unique HUG survey priorities. 

 

3.6 DISCUSSION 
3.6.1 Sedimentation Rates 

To capture and quantify temporal variability, sedimentation rates were estimated for the survey 

area. Sedimentation rates derived from bathymetry are inclusive of high-frequency changes like 

effects from tides, storms, and flooding. Estimating sedimentation rates through bathymetric 

differencing is not new and has been done before (Ludwick 1978; Donoghue, 1990; Hobbs et al., 

1990; Van Der Wal and Pye, 2003). However, bathymetric differencing can lead to mis-

predictions which includes those derived from migratory rates, ultimately resulting in 

deposition/erosion rate estimations that may only be valid for a given period of time. Similarly, 

this methodology assumes the bathymetric data used are without error, yet depth and position 

errors may propagate through the analysis and lead to misinterpretations (Van Der Wal and Pye, 

2003; Jakobsson et al., 2005).  For example, offshore Delmarva has known sand waves that 

move along the shelf. Through bathymetric differencing, we identify the original location of a 

sand wave as having an erosion rate consistent with the appropriate rate to move the entire 

feature. However, a problem occurs when extrapolating these rates out several years, allowing 

the former location of the sand wave to continue eroding. These effects are similarly observed in 

the new location of the sand wave with a consistent rate of sediment deposition, rather than a 

migratory rate over the whole sand wave field. This can lead to larger (or smaller) estimates of 
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change than truly occur as sand bars are known to move horizontally shoreward and offshore 

depending on the wave energy (Gallagher et al., 1998).  

 

 
Figure 22: Close up of offshore Delmarva (approaching the mouth of Delaware Bay) sedimentation rates. Blue colors indicate 
erosional processes, and reds and oranges indicate sediment accumulation. The triangular-like high accumulation area shown is 
between two navigational channels.  

 
 

Although the HUG estimates resulting from this approach may not quantify the true processes, 

they still capture areas of potential change (Van Der Wal and Pye, 2003). Future work should 

focus on more accurately accounting for migratory rates and patterns of known areas of change. 

Additionally, all sedimentation estimates could be further improved with outputs from a 

sediment transport model. The methodology discussed in this paper allows for sediment transport 

Sedimentation Rates 
(m/yr) 
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model outputs to be directly included in the HUG (∆𝑍 ∆𝑇⁄  in (5)) calculation and can ultimately 

be used to identify future survey priorities with more certainty as well as survey priorities under 

certain circumstances such as for extreme storm response.  

 

3.6.2 Present Survey Uncertainty 

The values observed in the PSU are a result of the most influential of the ISU, survey ages, and 

temporal variability estimates. Therefore, each value is unique to its location, geophysical 

processes, and data collection history. A few fundamental and known processes were captured 

through this estimation that give confidence in the results reported here. The larger uncertainties 

at the mouth of Chesapeake Bay surrounding the navigational channels is a known problem, and 

shows up despite modern data (lower survey ages and lower initial uncertainties) which 

highlights the energetic sediment dynamics in the area (Dalyander et al., 2013).  
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Figure 23: Areas where the PSU estimates are greater than 0.5 m (pink) and PSU estimates less than 0.5 m (grey). 

 

The unrealistically large uncertainties calculated for the Susquehanna and James Rivers identify 

a serious lack of public knowledge or confidence in the currently charted bathymetry. It is 

possible that more modern datasets exist in this area (there is extensive naval activity near 

Norfolk, VA in the James River) that could improve chart health especially when dealing with 

lots of dredging and large vessels. Furthermore, hydrographic surveys are not the sole 

contributor to charted information. In recent years, the incorporation of more progressive data 

formats have been pushed in order to more frequently update charts. For example, bathymetric 

LiDAR (light detection and ranging) has begun to be used to fill in the upper intertidal regions 



55 
 

that are difficult to acquire with more traditional methods (Van Der Wal and Pye, 2003). The 

inclusion of all data formats would yield more accurate uncertainty assessments in all areas and 

should be reviewed for future estimations. 

 

 
Figure 24: HUG model outputs. Values that exceed the MAU (or are greater than 0) are shown in purple and were identified as 
survey priorities. The remaining teal areas represent areas that are within the MAU limit (or final HUG model values less than 0). 
(Right) Subset of the larger image focusing on Thimble Shoal, Hampton Roads, and the Chesapeake Bay mouth navigation 
channels. 
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3.6.3 Hydrographic Uncertainty Gap 

Final HUG estimates identified a significantly reduced number of survey priorities in comparison 

to the current Hgap hydrographic needs. Almost all the survey priorities identified by HUG are 

included in the hydrographic needs; however, once constrained to only areas of potential 

prioritization (HHM > 50), the Hgap correlation with HUG priorities lessened. This is particularly 

true for navigational channels and surrounding areas in both bays. While the Hgap does identify 

most of these areas as having exceeded the HHM DSS, they are not established as high priority 

areas. The reason for these differences comes from the calculation of the PSS.  

In Chapter 2, we identified that 96% of our ISU estimates were smaller than the ISS equivalents. 

By underestimating the initial quality of data and with similar values for survey age and 

MAU/DSS, the HHM decay coefficient is left responsible for the differing results. A large 

number of the unique priorities identified by the HHM are found on the south western Virginia 

half of Chesapeake Bay, with few observed on the Fisherman’s Island side. However, this area 

and the mouth of Chesapeake Bay are where the majority of unique priorities are observed in the 

HUG analysis and have been confirmed in geologic studies and dredging activities (USACE 

Norfolk Report and Environmental Assessment, 2017).  The similarities between the two model 

outputs likely result from large survey ages and small user-defined maximums (MAU/DSS 

values). 
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Figure 25: HUG and HHM output comparison. Purple areas are the HUG survey priorities (or areas that exceed the MAU). Blue 
indicate areas of the Hgap estimates that exceed the HHM DSS by more than 50. Tan areas are the Hgap survey needs, or all areas 
that exceed the HHM DSS (or values greater than 0). This figure shows both the overlapping priorities and the differences between 
the HHM and HUG model results which hint at the differences in the changeability calculations. 

 

 

3.7 CONCLUSIONS 
Through the work presented here, we outlined an alternative calculation for the hydrographic gap 

term within the HHM that incorporates quantifiable estimates of bathymetric change and 

uncertainty called the hydrographic uncertainty gap (HUG). The HUG model was implemented 
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in Chesapeake Bay and the Delmarva Peninsula where known depth-altering physical processes 

occur. We quantified change for the study area through sedimentation rates obtained from a 

literature review and bathymetric differencing. Additional confidence in the bathymetric 

differencing approach could come not only from incorporating a sediment migration component 

that allows for horizontal changes while flagging vertical changes, but also from physical 

validation of the rates we incorporated. Following (5), we estimated the present state of 

hydrographic uncertainty (PSU) and identified the James and Susquehanna Rivers as areas in 

need of more recent surveys. Over 47% of the PSU uncertainties are larger than 0.5 m, but with 

the incorporation of sediment transport model outputs and all forms of charted data, the 

confidence in this estimate would increase. Finally, we identified survey priorities by calculating 

the hydrographic uncertainty gap (HUG). Only 13% of the study area was identified as a survey 

priority, which is one fourth that identified by the current HHM Hgap output. This likely results 

from the specific calculation of the PSU and change terms.  

It is possible, however, that the HUG model is underpredicting the number of survey priorities. 

Each variable within the HUG equation has an uncertainty to its estimated value which 

ultimately propagates through the model at each step in the calculation making the overall error 

hard to quantify. The best way to determine if these results are accurate (and calibrate the HUG 

model) would be to validate with new bathymetry.  

Additionally, the HHM has model outputs that are at a 500 m grid resolution which is over an 

order of magnitude larger than the HUG output resolution of 40 m. This likely is a result of the 

model extent (for the entire coastal U.S.) and a limited computational power available. However, 

a resolution of that size may miss important seafloor characteristics and features increasing risk. 

Any implementation at a national scale should either incorporate a semi-variable resolution 
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output or adopt completely a finer output resolution. Future work should focus on resolving 

sedimentation rate and migration rates, incorporations of sediment transport model outputs, and 

validation of the results presented here. 
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CHAPTER 4 
CONCLUSIONS AND RECOMMENDATIONS 

 

Here we present a new methodology to quantify and constrain the vertical uncertainty of less-than 

full coverage hydrographic surveys to better and more economically present the true hydrographic 

health of Chesapeake Bay using recorded AIS vessel drafts and kriging. We also demonstrated an 

enhanced hydrographic gap calculation that incorporates the quantification of hydrodynamic 

components by analyzing bathymetric changes and their resulting uncertainty fluctuations. This 

work provides a proof-of-concept of a standard methodology for application to additional U.S. 

coastal areas, and more accurate predictive hydrographic assessment results.  

Using a layered approach, all archive bathymetric data within the study area were interpolated 

using ESRI’s ArcGIS Kriging implementation. Resulting uncertainty and bathymetry grids were 

compared to publicly available AIS vessel drafts. Through this process, over 420 km2 (~2%) of 

the study area uncertainties were constrained. Further, 96% of the final constrained uncertainty 

grid was less than current uncertainty approximations. 

The current HHM Hgap cannot incorporate measured bathymetric change estimates, whereas the 

proposed HUG model directly includes methodology to incorporate sedimentation rates and 

seabed change. Bathymetric change was quantified using sedimentation rates calculated from a 

literature review and actual bathymetric survey differencing. These estimates were used in 

conjunction with initial survey uncertainties to approximate the PSU. Differencing the PSU with 

the MAU identified 13% of the study area as current survey priorities, one fourth of the current 

HHM Hgap output. 
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Resolution and data size contribute significantly to the processing time needed to complete 

kriging interpolations. As discussed in Chapter 1, bathymetric datasets were broken up into 

layers based on age, then further segmented based on geographic location to allow for quicker 

processing times. Should kriging be implemented nationally, it is highly recommended that a 

similar approach be used. Further, the uncertainty outputs could also be incorporated into other 

aspects of charting and other NOAA uncertainty-based models like the National Bathymetric 

Database (NBD) that currently implements the HHM changeability calculation to determine a 

survey’s supersession potential (Wyllie et al., 2015). Reusing the uncertainty outputs discussed 

in this thesis allow for the computational time to become more cost-effective.  

The AIS draft analysis relies heavily on accurate AIS data which often does not exist, since user 

errors related to input units are well-established in publicly available datasets (Schultz, 2015). A 

multi-step filtering process was performed to account for these errors, removing a significant 

number of unreliable data points from each AIS dataset. Erroneous data likely still made it into 

the analysis but within the acceptable limits of each vessel category. Gaining access to additional 

AIS datasets and accounting for tides would produce more accurate results and likely alter the 

final percentage of the study area constrained through this procedure.  

Quantifying sedimentary change over time can be done in a number of ways and provide 

differing “resolutions”, two of which were outlined in this thesis: estimating sedimentation rates 

through bathymetric differencing and a literature review. A literature review provides a coarse 

estimate, where point observations are utilized regionally. Bathymetric differencing provides a 

finer definition of change. However, is only possible where repeat surveys exist. Further, it can 

lead to misinterpretations as it does not account for continual sediment migration. An even finer 

resolution may be obtained by incorporating hydrodynamic sediment transport model outputs. 
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Sediment transport models do not have to be run or implemented by NOAA but could come from 

known and verified models run by outside sources. The HUG model allows for all three to be 

utilized simultaneously and all necessary estimates should be included for a national 

implementation. Though it is recommended that sedimentation rates and HUG model outputs be 

validated for future use and model calibration. 

The HUG output has a resolution of 40 m while the HHM output has a resolution of 500 m. The 

resolution difference is attributed to computational necessity based on the extent of each model 

output: the HHM is a national model and covers the entirety of US coastal water. Important 

bathymetric features are missed entirely with grid sizes this large, and bathymetric differencing 

can cause serious errors related to cell overlap locations. A semi-variable resolution or altogether 

finer resolution approach could resolve these issues and should be implemented for a national-

scale model. 
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APPENDIX A: DATA 
 

SUMMARY 
The follow sections outline the publicly-available datasets utilized in the analyses discussed in 

this thesis.  

NOAA ELECTRONIC CHARTS 

 
Figure 26: NOAA electronic navigation charts (ENCs) that were used in HUG calculations.   

 

ENC Chart Scale
Date 

Downloaded
Version Date Edited What I Used What they were used for

US4DE11M 12214 1:80,000 01/23/2018 34 01/11/2018
MQUAL, FAIRWY, DRGARE, 

TWRTPT, TSSLPT, TSEZNE
CATZOC level analysis, MAU designation, 

US4DE12M 12304 1:80,000 01/23/2018 22 12/13/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US4VA50M 12211 1:80,000 01/23/2018 24 01/10/2018
MQUAL, FAIRWY, DRGARE, 

TSSLPT
CATZOC level analysis, MAU designation, 

US4VA70M 12210 1:80,000 01/23/2018 19 12/14/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5DE13M 12311 1:80,000 01/23/2018 31 10/20/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD1AM 12266 1:40,000 01/23/2018 3 01/12/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD12M 12278 1:40,000 01/23/2018 42 12/14/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD13M 12270 1:40,000 01/23/2018 26 01/10/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD14M 12274 1:40,000 01/23/2018 23 01/10/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD15M 12277 1:20,000 01/23/2018 30 10/06/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD16M 12266 1:40,000 01/23/2018 28 09/27/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD17M 12270 1:40,000 01/23/2018 17 01/10/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD21M 12264 1:40,000 01/23/2018 24 11/30/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD22M 12282 1:25,000 01/23/2018 11 07/21/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD32M 12283 1:10,000 01/23/2018 17 10/13/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA10M 12226 1:40,000 01/23/2018 24 11/14/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA14M 12224 1:40,000 01/23/2018 31 12/14/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA15M 12245 1:20,000 01/23/2018 49 01/17/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA16M 12228 1:40,000 01/23/2018 35 01/10/2018
MQUAL, FAIRWY, DRGARE, 

TSSLPT, TSEZNE
CATZOC level analysis, MAU designation, 

US5VA19M 12254 1:20,000 01/23/2018 32 01/17/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA20M 12256 1:20,000 01/23/2018 17 12/14/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA21M 12231 1:40,000 01/23/2018 20 01/09/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA22M 12233 1:40,000 01/23/2018 27 12/19/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA24M 12238 1:40,000 01/23/2018 26 12/14/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA27M 12233 1:40,000 01/23/2018 23 09/12/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA41M 12235 1:40,000 01/23/2018 39 12/05/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA13M 12222 1:40,000 01/23/2018 38 01/17/2018
MQUAL, FAIRWY, DRGARE, 

TSSLPT
CATZOC level analysis, MAU designation, 

US5VA11M 12208 1:50,000 01/23/2018 23 01/16/2018 MQUAL, TSSLPT CATZOC level analysis, MAU designation, 

US4VA12M 12221 1:80,000 01/23/2018 33 12/19/2017
MQUAL, FAIRWY, DRGARE, 

TSSLPT
CATZOC level analysis, MAU designation, 

US4VA1AM 12221 1:80,000 01/23/2018 4 11/15/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US3EC08M 12280 1:200,000 01/23/2018 26 11/20/2017
MQUAL, FAIRWY, DWRTPT, 

TSSLPT, TSEZNE
CATZOC level analysis, MAU designation, 

US4NC32M 12207 1:80,000 01/23/2018 14 01/11/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US4MD40M 12285 1:80,000 02/19/2018 17 01/31/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA51M 12251 1:40,000 02/19/2018 22 02/07/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA25M 12248 1:40,000 02/19/2018 27 02/08/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA60M 12241 1:20,000 02/19/2018 19 12/13/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA61M 12243 1:40,000 02/19/2018 6 02/14/2018 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5VA63M 12237 1:40,000 02/19/2018 16 11/20/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 

US5MD23M 12261 1:40,000 02/19/2018 16 11/30/2017 MQUAL, FAIRWY, DRGARE CATZOC level analysis, MAU designation, 
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NOAA HYDROGRAPHIC SURVEYS 
Area Survey Year Data Type 

Central Chesapeake T00813 1860 XYZ 
Lower Chesapeake, Mouth H01721 1886 XYZ 
Upper Chesapeake H02335 1897 XYZ 
Upper Chesapeake H02347 1897 XYZ 
Central Chesapeake H03003A 1909 XYZ 
Central Chesapeake H03003 1909 XYZ 
Central Chesapeake H03029 1909 XYZ 
Central Chesapeake H03003B 1910 XYZ 
Central Chesapeake H03009 1910 XYZ 
Central Chesapeake H03010 1910 XYZ 
Central Chesapeake H03011 1910 XYZ 
Central Chesapeake H03311 1911 XYZ 
Central Chesapeake H03343 1912 XYZ 
Lower Chesapeake H04084 1919 XYZ 
Lower Chesapeake H05000 1929 XYZ 
Central Chesapeake H05228 1932 XYZ 
Upper Chesapeake H05197 1932 XYZ 
Upper Chesapeake H05198 1932 XYZ 
Upper Chesapeake H05237 1932 XYZ 
Upper Chesapeake H05295 1933 XYZ 
Upper Chesapeake H05327 1933 XYZ 
Upper Chesapeake H05328 1933 XYZ 
Upper Chesapeake H05329 1933 XYZ 
Upper Chesapeake H05374 1933 XYZ 
Upper Chesapeake H05403 1933 XYZ 
Upper Chesapeake H05416 1933 XYZ 
Upper Chesapeake H05432 1933 XYZ 
Upper Chesapeake H05501 1933 XYZ 
Lower Chesapeake H05968 1934 XYZ 
Lower Chesapeake H05969 1934 XYZ 
Offshore Delmarva H05703 1934 XYZ 
Offshore Delmarva H05715 1934 XYZ 
Offshore Delmarva H05771 1934 XYZ 
Offshore Delmarva H05988 1934 XYZ 
Offshore Delmarva, Mouth H05989 1934 XYZ 
Offshore Delmarva, Mouth H05990 1935 XYZ 
Offshore Delmarva H05991 1935 XYZ 
Offshore Delmarva H05992 1935 XYZ 
Upper Chesapeake H06360 1938 XYZ 
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Upper Chesapeake H06362 1938 XYZ 
Upper Chesapeake H06363 1938 XYZ 
Upper Chesapeake H06364 1938 XYZ 
Upper Chesapeake H06365 1938 XYZ 
Upper Chesapeake H06366 1938 XYZ 
Upper Chesapeake H06367 1938 XYZ 
Upper Chesapeake H06368 1938 XYZ 
Upper Chesapeake H06369 1938 XYZ 
Upper Chesapeake H06370 1938 XYZ 
Upper Chesapeake H06371 1938 XYZ 
Upper Chesapeake H06372 1938 XYZ 
Upper Chesapeake H06373 1938 XYZ 
Upper Chesapeake H06374 1938 XYZ 
Upper Chesapeake H06375 1938 XYZ 
Upper Chesapeake H06376 1938 XYZ 
Lower Chesapeake, Mouth H06595 1940 XYZ 
Upper Chesapeake H06597 1940 XYZ 
Upper Chesapeake H06598 1940 XYZ 
Upper Chesapeake H06599 1940 XYZ 
Upper Chesapeake H06600 1940 XYZ 
Upper Chesapeake H06601 1940 XYZ 
Upper Chesapeake H06602 1940 XYZ 
Upper Chesapeake H06603 1940 XYZ 
Upper Chesapeake H06604 1940 XYZ 
Upper Chesapeake H06605 1940 XYZ 
Upper Chesapeake H06683 1941 XYZ 
Central Chesapeake H06775 1942 XYZ 
Central Chesapeake H06776 1942 XYZ 
Central Chesapeake H06779 1942 XYZ 
Lower Chesapeake H06729 1942 XYZ 
Central Chesapeake H06878 1943 XYZ 
Lower Chesapeake H06812 1943 XYZ 
Lower Chesapeake H06832 1943 XYZ 
Upper Chesapeake H06950 1943 XYZ 
Upper Chesapeake H06951 1943 XYZ 
Central Chesapeake H06876 1944 XYZ 
Central Chesapeake H06877 1944 XYZ 
Central Chesapeake H06966 1944 XYZ 
Lower Chesapeake H06928 1944 XYZ 
Lower Chesapeake H06930 1944 XYZ 
Lower Chesapeake, Mouth H06962 1944 XYZ 
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Lower Chesapeake H07021 1944 XYZ 
Upper Chesapeake H06599 1944 XYZ 
Upper Chesapeake H06952 1944 XYZ 
Upper Chesapeake H06954 1944 XYZ 
Upper Chesapeake H06955 1944 XYZ 
Upper Chesapeake H06956 1944 XYZ 
Upper Chesapeake H06958 1944 XYZ 
Upper Chesapeake H07002 1944 XYZ 
Upper Chesapeake H07003 1944 XYZ 
Upper Chesapeake H07010 1944 XYZ 
Upper Chesapeake H07011 1944 XYZ 
Central Chesapeake H07022 1945 XYZ 
Lower Chesapeake H07025 1945 XYZ 
Upper Chesapeake H06953 1945 XYZ 
Upper Chesapeake H07001 1945 XYZ 
Upper Chesapeake H07009 1945 XYZ 
Upper Chesapeake H07027 1945 XYZ 
Upper Chesapeake H07032 1945 XYZ 
Upper Chesapeake H07043 1945 XYZ 
Upper Chesapeake H07047 1945 XYZ 
Upper Chesapeake H07064 1945 XYZ 
Upper Chesapeake H07065 1945 XYZ 
Upper Chesapeake H07075 1945 XYZ 
Central Chesapeake H07091 1946 XYZ 
Central Chesapeake H07092 1946 XYZ 
Central Chesapeake H07094 1946 XYZ 
Central Chesapeake H07154 1946 XYZ 
Central Chesapeake H07155 1946 XYZ 
Central Chesapeake H07156 1946 XYZ 
Central Chesapeake H07157 1946 XYZ 
Lower Chesapeake H07087 1946 XYZ 
Lower Chesapeake, Mouth H07089 1946 XYZ 
Central Chesapeake H07175 1947 XYZ 
Central Chesapeake H07181 1947 XYZ 
Lower Chesapeake H07160 1947 XYZ 
Lower Chesapeake H07162 1947 XYZ 
Lower Chesapeake, Mouth H07171 1947 XYZ 
Lower Chesapeake, Mouth H07185 1947 XYZ 
Lower Chesapeake H07174 1948 XYZ 
Lower Chesapeake H07610 1948 XYZ 
Lower Chesapeake H07641 1948 XYZ 
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Lower Chesapeake H07642 1948 XYZ 
Lower Chesapeake, Mouth H07703 1948 XYZ 
Central Chesapeake H07680 1949 XYZ 
Central Chesapeake H07722 1949 XYZ 
Central Chesapeake H07778 1949 XYZ 
Central Chesapeake H07779 1949 XYZ 
Central Chesapeake H07780 1949 XYZ 
Central Chesapeake H07781 1949 XYZ 
Central Chesapeake H07782 1949 XYZ 
Lower Chesapeake, Mouth H07721 1949 XYZ 
Lower Chesapeake, Mouth H07783 1949 XYZ 
Lower Chesapeake, Mouth H07791 1949 XYZ 
Central Chesapeake, Mouth H07750 1950 XYZ 
Central Chesapeake H07879 1950 XYZ 
Central Chesapeake H07880 1950 XYZ 
Central Chesapeake H07881 1950 XYZ 
Central Chesapeake H07882 1950 XYZ 
Central Chesapeake H07883 1950 XYZ 
Central Chesapeake H07884 1950 XYZ 
Central Chesapeake H07885 1950 XYZ 
Lower Chesapeake, Mouth H07823 1950 XYZ 
Lower Chesapeake, Mouth H07824 1950 XYZ 
Lower Chesapeake H07910 1950 XYZ 
Central Chesapeake H07942 1951 XYZ 
Central Chesapeake H07943 1951 XYZ 
Central Chesapeake H07944 1951 XYZ 
Central Chesapeake H07945 1951 XYZ 
Central Chesapeake H07946 1951 XYZ 
Central Chesapeake H08069 1951 XYZ 
Lower Chesapeake H07894 1951 XYZ 
Central Chesapeake H07955 1952 XYZ 
Central Chesapeake H07956 1952 XYZ 
Central Chesapeake H07957 1952 XYZ 
Central Chesapeake H07958 1952 XYZ 
Central Chesapeake H07960 1952 XYZ 
Central Chesapeake H08012 1952 XYZ 
Lower Chesapeake H07959 1952 XYZ 
Central Chesapeake H07952 1953 XYZ 
Central Chesapeake H07953 1953 XYZ 
Central Chesapeake H08078 1953 XYZ 
Central Chesapeake H08079 1953 XYZ 
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Central Chesapeake H08080 1953 XYZ 
Central Chesapeake H08081 1953 XYZ 
Central Chesapeake H08083 1953 XYZ 
Lower Chesapeake H07954 1953 XYZ 
Central Chesapeake H07911 1954 XYZ 
Central Chesapeake H08082 1954 XYZ 
Central Chesapeake H08185 1954 XYZ 
Central Chesapeake H08186 1954 XYZ 
Central Chesapeake H08187 1954 XYZ 
Central Chesapeake H08188 1954 XYZ 
Central Chesapeake H08189 1954 XYZ 
Lower Chesapeake, Mouth H08217 1954 XYZ 
Lower Chesapeake, Mouth H08218 1954 XYZ 
Offshore Delmarva H08218 1954 XYZ 
Central Chesapeake H08190 1955 XYZ 
Central Chesapeake H08191 1955 XYZ 
Central Chesapeake H08276 1955 XYZ 
Central Chesapeake H08277 1955 XYZ 
Central Chesapeake H08278 1955 XYZ 
Central Chesapeake H08280 1955 XYZ 
Central Chesapeake H08283 1956 XYZ 
Central Chesapeake H08347 1956 XYZ 
Central Chesapeake H08435 1956 XYZ 
Central Chesapeake H08405 1957 XYZ 
Central Chesapeake H08406 1957 XYZ 
Central Chesapeake H08407 1957 XYZ 
Central Chesapeake H08408 1957 XYZ 
Central Chesapeake H08445 1958 XYZ 
Central Chesapeake H08447 1958 XYZ 
Central Chesapeake H08448 1958 XYZ 
Central Chesapeake H08279 1959 XYZ 
Central Chesapeake H08494 1959 XYZ 
Central Chesapeake H08495 1959 XYZ 
Central Chesapeake H08496 1959 XYZ 
Central Chesapeake H08505 1959 XYZ 
Central Chesapeake H08506 1959 XYZ 
Central Chesapeake H08507 1959 XYZ 
Central Chesapeake H08547 1960 XYZ 
Central Chesapeake H08548 1960 XYZ 
Central Chesapeake H08549 1960 XYZ 
Central Chesapeake H08550 1960 XYZ 
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Central Chesapeake H08551 1960 XYZ 
Central Chesapeake H08552 1960 XYZ 
Central Chesapeake H08553 1960 XYZ 
Central Chesapeake H08446 1961 XYZ 
Central Chesapeake H08610 1961 XYZ 
Central Chesapeake H08611 1961 XYZ 
Central Chesapeake H08612 1961 XYZ 
Central Chesapeake H08613 1961 XYZ 
Central Chesapeake H08614 1961 XYZ 
Central Chesapeake H08702 1962 XYZ 
Central Chesapeake H08703 1962 XYZ 
Central Chesapeake H08704 1962 XYZ 
Central Chesapeake H08705 1962 XYZ 
Central Chesapeake H08706 1962 XYZ 
Lower Chesapeake, Mouth H08724 1963 XYZ 
Upper Chesapeake H08859 1965 XYZ 
Upper Chesapeake H08860 1965 XYZ 
Mid Layer H08859 1965 XYZ 
Mid Layer H08860 1965 XYZ 
Lower Chesapeake H08878 1966 XYZ 
Upper Chesapeake H08874 1966 XYZ 
Lower Chesapeake, Mouth H09098 1969 XYZ 
Offshore Delmarva H09136 1970 XYZ 
Offshore Delmarva H09154 1970 XYZ 
Offshore Delmarva H09175 1970 XYZ 
Offshore Delmarva H09176 1970 XYZ 
Delaware Bay H09202 1971 XYZ 
Delaware Bay H09241 1971 XYZ 
Offshore Delmarva H09153 1971 XYZ 
Central Chesapeake H09301 1972 XYZ 
Central Chesapeake H09321 1972 XYZ 
Central Chesapeake H09322 1972 XYZ 
Offshore Delmarva H09311 1972 XYZ 
Offshore Delmarva H09312 1972 XYZ 
Central Chesapeake H09292 1973 XYZ 
Central Chesapeake H09324 1973 XYZ 
Central Chesapeake H09349 1974 XYZ 
Central Chesapeake H09479 1974 XYZ 
Upper Chesapeake H09453 1974 XYZ 
Upper Chesapeake H09454 1974 XYZ 
Mid Layer H09453 1974 XYZ 
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Mid Layer H09454 1974 XYZ 
Upper Chesapeake H09582 1975 XYZ 
Delaware Bay H09533 1975 XYZ 
Offshore Delmarva H09578 1975 XYZ 
Offshore Delmarva H09579 1975 XYZ 
Upper Chesapeake H09562 1976 XYZ 
Upper Chesapeake H09563 1976 XYZ 
Upper Chesapeake H09564 1976 XYZ 
Upper Chesapeake H09566 1976 XYZ 
Upper Chesapeake H09643 1976 XYZ 
Offshore Delmarva H09629 1976 XYZ 
Offshore Delmarva H09639 1976 XYZ 
Offshore Delmarva H09640 1976 XYZ 
Lower Chesapeake, Mouth H09693 1977 XYZ 
Offshore Delmarva H09693 1977 XYZ 
Offshore Delmarva H09699 1977 XYZ 
Offshore Delmarva H09700 1977 XYZ 
Offshore Delmarva H09714 1977 XYZ 
Offshore Delmarva H09723 1977 XYZ 
Offshore Delmarva H09727 1977 XYZ 
Offshore Delmarva H09759 1978 XYZ 
Offshore Delmarva H09764 1978 XYZ 
Offshore Delmarva H09780 1978 XYZ 
Offshore Delmarva H09788 1978 XYZ 
Offshore Delmarva H09796 1978 XYZ 
Lower Chesapeake H09814 1980 XYZ 
Lower Chesapeake, Mouth H09901 1980 XYZ 
Lower Chesapeake H09910 1980 XYZ 
Offshore Delmarva H09901 1980 XYZ 
Offshore Delmarva, Mouth H09905 1980 XYZ 
Offshore Delmarva, Mouth H09919 1980 XYZ 
Offshore Delmarva, Mouth H09922 1980 XYZ 
Mid Layer H09880 1980 XYZ 
Mid Layer H09901 1980 XYZ 
Mid Layer, H09905 1980 XYZ 
Mid Layer H09910 1980 XYZ 
Mid Layer H09919 1980 XYZ 
Mid Layer H09922 1980 XYZ 
Offshore Delmarva H09948 1981 XYZ 
Offshore Delmarva H09955 1981 XYZ 
Offshore Delmarva, Mouth H09959 1981 XYZ 
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Offshore Delmarva, Mouth H09961 1981 XYZ 
Offshore Delmarva H09962 1981 XYZ 
Offshore Delmarva H09969 1981 XYZ 
Offshore Delmarva H09970 1981 XYZ 
Offshore Delmarva H09972 1981 XYZ 
Offshore Delmarva H09978 1981 XYZ 
Offshore Delmarva H09980 1981 XYZ 
Mid Layer H09955 1981 XYZ 
Offshore Delmarva H09981 1982 XYZ 
Offshore Delmarva H10034 1982 XYZ 
Offshore Delmarva H10044 1982 XYZ 
Offshore Delmarva H10045 1982 XYZ 
Offshore Delmarva H10046 1982 XYZ 
Offshore Delmarva H10066 1982 XYZ 
Delaware Bay H10079 1983 XYZ 
Delaware Bay H10084 1983 XYZ 
Delaware Bay H10092 1983 XYZ 
Delaware Bay H10112 1983 XYZ 
Mid Layer H10116 1983 XYZ 
Mid Layer H10212 1983 XYZ 
Delaware Bay H10167 1984 XYZ 
Mid Layer H10127 1984 XYZ 
Mid Layer D00052 1985 XYZ 
Delaware Bay H10199 1986 XYZ 
Delaware Bay H10200 1986 XYZ 
Delaware Bay H10217 1986 XYZ 
Mid Layer H10193 1986 XYZ 
Delaware Bay D00081 1987 XYZ 
Delaware Bay H10255 1987 XYZ 
Offshore Delmarva, Mouth H10340 1990 XYZ 
Offshore Delmarva, Mouth H10341 1990 XYZ 
Offshore Delmarva, Mouth H10343 1990 XYZ 
Offshore Delmarva, Mouth H10356 1990 XYZ 
Mid Layer H10343 1990 XYZ 
Mid Layer H10356 1990 XYZ 
Offshore Delmarva H10439 1992 XYZ 
Offshore Delmarva H10444 1993 XYZ 
Offshore Delmarva H10446 1993 XYZ 
Offshore Delmarva H10464 1993 XYZ 
Offshore Delmarva H10475 1993 XYZ 
Mid Layer H10476 1993 XYZ 
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Mid Layer H10518 1993 XYZ 
Delaware Bay H10234 1994 XYZ 
Delaware Bay H10537 1994 XYZ 
Offshore Delmarva H10241 1994 XYZ 
Offshore Delmarva H10476 1994 XYZ 
Offshore Delmarva H10533 1994 XYZ 
Mid Layer F00387 1994 XYZ 
Mid Layer H10622 1995 XYZ 
Upper Chesapeake H10691 1996 XYZ 
Mid Layer H10691 1996 XYZ 
Upper Chesapeake H10688 1997 XYZ 
Mid Layer H10652 1997 XYZ 
Mid Layer H10688 1997 XYZ 
Mid Layer H10752 1997 XYZ 
Upper Chesapeake H10703 1998 XYZ 
Upper Chesapeake H10757 1998 XYZ 
Offshore Delmarva D00129 1998 XYZ 
Mid Layer D00129 1998 XYZ 
Mid Layer H10703 1998 XYZ 
Mid Layer H10790 1998 XYZ 
Mid Layer H10823 1998 XYZ 
Offshore Delmarva H10854 1999 XYZ 
Offshore Delmarva H10931 1999 XYZ 
Mid Layer H10854 1999 XYZ 
Mid Layer H10859 1999 XYZ 
Mid Layer H10905 1999 XYZ 
Mid Layer H10926 1999 XYZ 
Mid Layer H10931 1999 XYZ 
Mid Layer H10934 2000 XYZ 
Mid Layer H10952 2000 XYZ 
Mid Layer H10989 2000 XYZ 
Delaware Bay H11022 2001 XYZ 
Delaware Bay H11023 2001 XYZ 
Delaware Bay H11070 2001 XYZ 
Mid Layer H11027 2001 XYZ 
Upper Chesapeake H11026 2002 XYZ 
Delaware Bay H11081 2002 XYZ 
Mid Layer F00474 2002 XYZ 
Mid Layer H11028 2002 XYZ 
Mid Layer H11104 2002 XYZ 
Upper Layer H11196 2002 XYZ 
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Upper Layer H11302 2003 BAG 
Mid Layer H10945 2004 XYZ 
Mid Layer H11088 2004 XYZ 
Upper Layer H11207 2005 BAG 
Upper Layer H11301 2005 BAG 
Upper Layer H11401 2005 BAG 
Upper Layer H11402 2005 BAG 
Upper Layer H11407 2005 BAG 
Upper Layer H11450 2005 BAG 
Upper Layer H11205 2006 BAG 
Upper Layer H11206 2006 BAG 
Upper Layer H11303 2006 BAG 
Upper Layer H11323 2006 BAG 
Upper Layer H11503 2006 BAG 
Upper Layer H11504 2006 BAG 
Upper Layer H11505 2006 BAG 
Upper Layer H11529 2006 BAG 
Upper Layer H11535 2006 BAG 
Upper Layer H11554 2006 BAG 
Upper Layer H11555 2006 BAG 
Upper Layer H11568 2006 BAG 
Upper Layer H11598 2006 BAG 
Upper Layer H11295 2007 BAG 
Upper Layer H11530 2007 BAG 
Upper Layer H11603 2007 BAG 
Upper Layer H11647 2007 BAG 
Upper Layer H11648 2007 BAG 
Upper Layer H11649 2007 BAG 
Upper Layer H11650 2007 BAG 
Upper Layer H11651 2007 BAG 
Upper Layer H11652 2007 BAG 
Upper Layer H11653 2007 BAG 
Upper Layer H11655 2007 BAG 
Upper Layer H11656 2007 BAG 
Upper Layer H11657 2007 BAG 
Upper Layer H11788 2008 BAG 
Upper Layer H11789 2008 BAG 
Upper Layer H11872 2008 BAG 
Upper Layer H11873 2008 BAG 
Upper Layer H11874 2008 BAG 
Upper Layer H11918 2008 BAG 
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Upper Layer H11992 2008 BAG 
Upper Layer D00151 2009 BAG 
Upper Layer H12001 2009 BAG 
Upper Layer H12002 2009 BAG 
Upper Layer H12003 2009 BAG 
Upper Layer H12037 2009 BAG 
Upper Layer H12038 2009 BAG 
Upper Layer H12039 2009 BAG 
Upper Layer H12040 2009 BAG 
Upper Layer H12041 2009 BAG 
Upper Layer H12042 2009 BAG 
Upper Layer H12043 2009 BAG 
Upper Layer H12044 2009 BAG 
Upper Layer H12045 2009 BAG 
Upper Layer H12091 2009 BAG 
Upper Layer H12100 2009 BAG 
Upper Layer F00583 2010 BAG 
Upper Layer F00586 2010 BAG 
Upper Layer H12092 2010 BAG 
Upper Layer H12093 2010 BAG 
Upper Layer H12094 2010 BAG 
Upper Layer H12161 2010 BAG 
Upper Layer H12180 2010 BAG 
Upper Layer H12181 2010 BAG 
Upper Layer H12200 2010 BAG 
Upper Layer H12201 2010 BAG 
Upper Layer H12202 2010 BAG 
Upper Layer H12203 2010 BAG 
Upper Layer H12238 2010 BAG 
Upper Layer H12239 2010 BAG 
Upper Layer H12240 2010 BAG 
Upper Layer H12241 2010 BAG 
Upper Layer H12160 2011 BAG 
Upper Layer H12267 2011 BAG 
Upper Layer H12277 2011 BAG 
Upper Layer H12286 2011 BAG 
Upper Layer H12306 2011 BAG 
Upper Layer H12307 2011 BAG 
Upper Layer H12309 2011 BAG 
Upper Layer H12315 2011 BAG 
Upper Layer H12316 2011 BAG 
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Upper Layer H12321 2011 BAG 
Upper Layer H12336 2011 BAG 
Upper Layer H12337 2011 BAG 
Upper Layer H12338 2011 BAG 
Upper Layer H12339 2011 BAG 
Upper Layer H12341 2011 BAG 
Upper Layer H12342 2011 BAG 
Upper Layer H12343 2011 BAG 
Upper Layer H12346 2011 BAG 
Upper Layer F00622 2012 BAG 
Upper Layer H12304 2012 BAG 
Upper Layer H12367 2012 BAG 
Upper Layer H12394 2012 BAG 
Upper Layer H12395 2012 BAG 
Upper Layer H12396 2012 BAG 
Upper Layer H12397 2012 BAG 
Upper Layer H12421 2012 BAG 
Upper Layer H12423 2012 BAG 
Upper Layer H12503 2012 BAG 
Upper Layer H12305 2013 BAG 
Mid Layer H12559 2013 XYZ 
Upper Layer H12560 2013 BAG 
Upper Layer H12561 2013 BAG 
Upper Layer H12568 2013 BAG 
Upper Layer H12569 2013 BAG 
Upper Layer H12570 2013 BAG 
Upper Layer H12571 2013 BAG 
Upper Layer H12572 2013 BAG 
Upper Layer H12573 2013 BAG 
Upper Layer H12575 2013 BAG 
Upper Layer H12605 2013 BAG 
Upper Layer H12666 2014 BAG 
Upper Layer H12667 2014 BAG 
Upper Layer H12668 2014 BAG 
Upper Layer H12674 2014 BAG 
Upper Layer W00331 2014 BAG 
Upper Layer H12786 2015 BAG 
Upper Layer H12854 2015 BAG 
Upper Layer H12856 2015 BAG 
Upper Layer H12866 2016 BAG 

Table 5: NOAA NOS downloaded hydrographic surveys from NCEI  
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APPENDIX B: AIS TRACKLINE MATLAB CODE 
 

The AIS data used in the Chapter 2 analysis underwent a filtering process performed in 

MATLAB to limit the amount of erroneous data used. Each trackline for each year includes a 

mandatory vessel category number and a draft measurement in meters. As mentioned previously, 

significant errors can occur from submitted measurements with incorrect units (feet instead of 

meters). To fix these, vessel categories were used as a validity reference. For example, a vessel 

with a draft input of 20 m and a vessel category of 37 would almost never realistically occur. 

Using a combined knowledge of vessel classes and the depth of the study area, a table of 

maximum drafts for each vessel category was created and compared using MATLAB to the 

recorded drafts. 
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AIS DATA COMPOSITION AND PERCENTAGES 
 

 
Figure 27: Original vessel composition of 2011 AIS tracklines. 
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Figure 28: Original vessel composition for 2013 AIS tracklines. 

  



87 
 

AIS VESSEL DRAFT CORRECTION REFERENCE 
The following values were used as a reference of maximum draft values for each AIS vessel 

category (number) in order to correct for errors with the metric-system conversion. 

Number Ship_type Max_size (m) 

0 Unknown 16 
1 Reserved for future use 3 
2 WIG (wing-in-ground) craft 3 
3 other vessels engaged in actions 6.5 
4 HSC (high speed crafts) or passenger ferries 6 
5 Special craft (tugs, S&R, Law Enforcement) 7 
6 Passenger Ships other than HSC 10 
7 Cargo (freight) ships or integrated tug barge 16 
8 Tankers or integrated tug tank barge vessels 16 
9 Other types of ships 16 

10-19 Reserved for future use 3 
20-28 WIG (wing-in-ground) craft 3 

29 SAR Aircraft 1 
30 Fishing (processors and tenders) 8 
31 Towing ahead or alongside (not astern) 6.5 
32 Towing astern (regardless of tow exceed 200m) 6.5 
33 Engaged in dredging or underwater operations 16 
34 Engaged in diving operations 8.5 
35 Engaged in military operations 16 
36 Sailing vessels 10 
37 Pleasure crafts 8 

38-39 Reserved for future use 3 
40-49 HSC (high speed crafts) or passenger ferries 6 

50 Pilot vessel 3 
51 Search and Rescue Vessels 7 
52 Tugs, light boats, fleet boats, or similar work boats 9.5 
53 Port tenders, yacht tenders, dive tenders 3 
54 Vessels with anti-pollution facilities or Equipment 5 
55 Law enforcement vessels 3 

56-57 local vessels 3 
58 medical transports or public safety vessels 10 
59 ships according to RR Resolution No.18 10 

60-69 Passenger Ships 10 
70-79 Cargo (freight) ships or integrated tug barge 16 
80-89 Tankers or integrated tug tank barge vessels 16 
90-255 Other 16 
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Table 6: List of AIS vessel types and assigned maximum draft limits 

Table 6 was turned into a MATLAB .mat file named AIS_Vessel.mat. 

Both AIS2011.mat and AIS2013.mat have the following structure: 

 

 
Figure 29: AIS trackline MATLAB structure formats. 
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CODE 
AIS_validation.m 

%% AIS DATA RECTIFICATION 
 
% The follow code outlines the steps taken to ensure the vessel draft values % for each entry are recorded in meters, 
and not feet. 
  
%Load data 
load('AIS2011.mat'); %Load previously parsed 2011 Chesapeake Bay (and surrounding areas) AIS trackline 
metadata 
load('AIS2013.mat'); %Load previously parsed 2013 Chesapeake Bay (and surrounding areas) AIS trackline 
metadata 
load('AIS_vessel.mat'); %Load maximum draft measurements (in meters) by vessel category 
  
%feet per meter 
meter= 3.28084; %feet to meter conversion 
  
%% AIS 2011 tracklines 
  
%allocate space to record number of edits per category 
edit=zeros(length(Vessel.type),3); 
  
% function does not account for NAN values 
[AIS2011.draft2,edit]=AIS_analyze(Vessel.type, AIS2011.vessel, AIS2011.draft, Vessel.draft, meter); %AIS 2011 
analysis 
  
AIS2011.draft2=AIS2011.draft2'; %flip output 
  
%validate results 
true(1,1)=length(AIS2011.vessel)-(sum(edit(:,3))+sum(isnan(AIS2011.vessel))); 
  
  
%% AIS 2013 tracklines 
  
%allocate space to record number of edits per category 
edit13=zeros(length(Vessel.type),3); 
  
% function does not account for NAN values 
[AIS2013.draft2,edit13]=AIS_analyze(Vessel.type, AIS2013.vessel, AIS2013.draft, Vessel.draft, meter); %AIS 
2013 analysis 
  
AIS2013.draft2=AIS2013.draft2'; %flip output 
  
%validate results 
true(1,2)=length(AIS2013.vessel)-(sum(edit13(:,3))+sum(isnan(AIS2013.vessel))); 
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AIS_analyze.m 

function [output, edit]= AIS_analyze(vessel_type, AIS_vessel, AIS_draft, Vessel_draft, unit) 
  
for i=1:length(vessel_type) 
     
    %attribute r with vessel category 
    r=vessel_type(i);  
     
    %determine where the vessel type matches and where the recorded draft 
    %exceeds allowable vessel draft for the category 
    true=find(AIS_vessel==r & AIS_draft>Vessel_draft(i));  
     
    %pull the recorded AIS drafts 
    f=AIS_draft(true);  
     
    %divide into meters 
    f(:,2)=f(:,1)./unit;  
     
    %add the edited values back into new vector 
    output(true)=f(:,2); 
     
    %grab the other values for this category 
    false=find(AIS_vessel==r & AIS_draft<=Vessel_draft(i)); 
     
    %place these values into the new vector 
    output(false)=AIS_draft(false); 
     
    edit(i,1)=length(true); %record the number of edited draft values for each category 
    edit(i,2)=length(false); %record the number of UNEDITED draft values 
    edit(i,3)=sum(AIS_vessel==r); %total sum of values in each category 
end 
  
end 
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APPENDIX C: GEOSTATISTICAL ANALYSIS 
 

SUMMARY 
Archive hydrographic survey data are sparse, making comparison with modern datasets difficult 

(Calder, 2006; Dorst, 2009; Wong et al., 2013). Traditionally, these sparse data are interpolated 

into coarse-resolution surfaces that unintentionally omit navigationally significant bathymetric 

features for such comparisons and can ultimately lead to misinterpretations of bathymetric 

change (Van Der Wal and Pye, 2003). Errors for these types of calculations depends not only the 

uncertainty with the data, but also with interpolation technique (Elmore et al., 2009; Aykut et al., 

2013; Amante and Eakins, 2016). As most of these archive surveys lack paired bathymetry and 

uncertainty, the uncertainty is hard to estimate (Calder, 2006; Calder, 2015; Ladner et al., 2017), 

allowing for large uncertainties to develop in end-products. 

There are a number of interpolation techniques, but kriging is particularly popular in the remote 

sensing and ocean mapping world. Kriging is an iterative geostatisical interpolation technique 

first developed by Daniel Krige (1951) that uses spatial weighting and linear regression to 

determine the optimal value and its certainty for a given location (Cressie, 1990; Oliver and 

Webster, 2014). Specifically, kriging uses statistical models to compare each data point with 

surrounding data in order to better predict the voids. Since the data are statistically compared, 

estimates of accuracy are possible for the resulting surface (Calder, 2006; Oliver and Webster, 

2014; ESRI: How Kriging Works Doc), making kriging ideal for uncertainty-based products like 

those outlined in this thesis. 

As this study was almost entirely performed in ESRI ArcGIS 10.5.1., it is important to 

understand the kriging implementation. The general equation is:  �̂�(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖)𝑁
𝑖=1  (ESRI: 

How Kriging Works Doc). Where 𝑍(𝑠𝑖) is the measured value at the ith location, 𝜆𝑖 is an 
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unknown weight for the measured value at the ith location, 𝑠0 is the prediction location, and N is 

the number of measured values. 

Appropriate kriging and variogram parameters must be specified a priori. Each of these 

parameters contributes to 𝜆𝑖, can influence the output surface, and can be changed to fit the 

purpose of the analysis. These parameters include: 

• Kriging method: Ordinary or Universal 

• Semivariogram Model: Gaussian, Linear, Exponential, Circular, Spherical 

• Lag Size: distance with which data pairs exist 

• Major range: The x-axis distance to where the model evens out 

• Nugget: Where the semivariogram model meets the y-axis 

• Partial Sill: The y-axis values above the nugget to the y-value where the 

model evens out 

• Output Cell Size: Determines resolution of surface output 

For this study, we used ESRI’s ArcGIS ‘Geostatistical Wizard’ tool in the Geostatistcal Analyst 

toolbox. Each data group were run through the Wizard, and optimal settings were determined 

(Table 2, Chapter 2). As is standard practice, the Wizard uses z-value residuals to calculate the 

semivariogram graph. Additionally, the Wizard automatically optimizes the parameters for 

processing speed. In situations where the automatic values are not necessarily optimal for a 

user’s specific needs, the user-interface becomes necessary. 

For each of the following sub-sections in this Appendix, a figure of four subplots show the 

empirical semivariogram graph and chosen model, the covariance graph and model, the predicted 

vs. measurement errors graph, and standard error graphs, all vital to choosing the kriging 
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parameters. A table of the data extent and prediction errors determined by the Wizard are also 

included for each subsection. After the parameters were determined (Table 2, Chapter 2), each 

group was interpolated using the ESRI ArcGIS ‘Kriging’ tool in the Spatial Analyst toolbox. All 

data were interpolated using Ordinary Kriging methods. As kriging does not necessarily maintain 

the true measured data points (Amante and Eakins, 2016), a final interpolated vs. measurement 

depth graph is included to show the errors in the final interpolated depths at each known 

location.  

It is important to note that there are other methods and parameters to choose for the kriging of 

each subgroup, and the methods and parameters outlined in this thesis may in fact be inferior to 

those other choices. That said, the purpose of this work was to outline potential improvements to 

existing procedures and to provide a proof of concept. Future work could and should focus on 

determining and validating the best possible kriging parameters for the data. 
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DELAWARE BAY 
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Figure 30: Lower-layer Delaware Bay graphs used to determine kriging parameters. (A) Empirical Semivariogram Spherical Model 
comparison. (B) Covariance Spherical Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values (blue 
crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data set 
the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at known 
data points using the parameters chosen. (D) Standardized error vs. normal value graph.  

 

Location Delaware Bay 

Northeast Extent 39.6603 N, 74.887 W 
Southwest Extent 38.7887 N, 75.619 W 
Number of Points 256,744 

Predicted Errors 
Mean 0.001918 
Root-Mean-Square 0.341532 
Mean Standardized 0.002061 
RMS Standardized 0.847683 
Average Standard Error 0.563800 

Table 7: Lower-level Delaware Bay extent and kriging bathymetry prediction errors. 

 
Figure 31: Delaware Bay trend between kriging interpolated depth and measured depths. 
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OFFSHORE 
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Figure 32: Lower-layer Offshore graphs used to determine kriging parameters. (A) Empirical Semivariogram Gaussian Model 
comparison. (B) Covariance Gaussian Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values (blue 
crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data set 
the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at known 
data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location Offshore 

Northeast Extent 39.01624 N, 74.1591 W 
Southwest Extent 36.4954 N, 76.1197 W 
Number of Points 1,233,936 

Predicted Errors 
Mean 0.0021021 
Root-Mean-Square 0.5921259 
Mean Standardized 0.0039846 
RMS Standardized 1.0636332 
Average Standard Error 0.5538353 

Table 8: Lower-layer Offshore region extents and kriging bathymetry prediction errors. 

 

 
Figure 33: Offshore region estimated kriging trend between interpolated depths and measured depths. 

  



98 
 

LOWER CHESAPEAKE BAY 
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Figure 34: Lower-layer Lower Chesapeake Bay graphs used to determine kriging parameters. (A) Empirical Semivariogram 
Spherical Model comparison. (B) Covariance Spherical Model comparison. (Plots (A) and (B) incorporate binned (red dots) and 
average values (blue crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) 
fits the each data set the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error 
could occur at known data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location Lower Chesapeake Bay 

Northeast Extent 37.31198 N, 75.70812 W 
Southwest Extent 36.7893 N, 77.03376 W 
Number of Points 391,881 

Predicted Errors 
Mean -0.0009533 
Root-Mean-Square 1.21097041 
Mean Standardized -0.0007441 
RMS Standardized 0.91606101 
Average Standard Error 0.57710673 

Table 9: Lower-layer Lower Chesapeake Bay extent and kriging bathymetry prediction errors. 

 

 
Figure 35: Lower Chesapeake Bay interpolated depths vs. measured depths. 
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CENTRAL CHESAPEAKE BAY 
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Figure 36: Lower-layer Central Chesapeake Bay graphs used to determine kriging parameters. (A) Empirical Semivariogram 
Spherical Model comparison. (B) Covariance Spherical Model comparison. Plots (A) and (B) incorporate binned (red dots) and 
average values (blue crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) 
fits the each data set the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error 
could occur at known data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location Central Chesapeake Bay 

Northeast Extent 38.7932 N, 75.5712 W 
Southwest Extent 36.9239 N, 77.3877 W 
Number of Points 1,498,565 

Predicted Errors 
Mean 6.3576838e-005 
Root-Mean-Square 0.3459982 
Mean Standardized -9.0026693e-005 
RMS Standardized 0.7200176 
Average Standard Error 0.5843674 

Table 10: Lower-layer Central Chesapeake Bay extent and kriging bathymetry prediction errors. 

 

 
Figure 37: Central Chesapeake Bay kriging interpolated depths versus measured depths. 
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UPPER CHESAPEAKE BAY 
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Figure 38: Lower-layer Upper Chesapeake Bay graphs used to determine kriging parameters. (A) Empirical Semivariogram 
Exponential Model comparison. (B) Covariance Exponential Model comparison. Plots (A) and (B) incorporate binned (red dots) 
and average values (blue crosses) of the data within the set lag size to help the user determine which statistical model (solid blue 
line) fits the each data set the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much 
error could occur at known data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location Upper Chesapeake Bay 

Northeast Extent 39.6128 N, 75.8074 W 
Southwest Extent 38.3596 N, 76.632 W 
Number of Points 937,990 

Predicted Errors 
Mean 0.0003233 
Root-Mean-Square 0.4628166 
Mean Standardized 0.0001100 
RMS Standardized 0.8191227 
Average Standard Error 0.6978359 

Table 11: Lower-layer Upper Chesapeake Bay extent and kriging bathymetry prediction errors. 

 
Figure 39: Upper Chesapeake Bay kriging interpolated depths versus measured depths. 
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MOUTH OF CHESAPEAKE BAY 

 
Figure 40: Lower-layer Chesapeake Bay Mouth graphs used to determine kriging parameters. (A) Empirical Semivariogram 
Guassian Model comparison. (B) Covariance Guassian Model comparison. Plots (A) and (B) incorporate binned (red dots) and 
average values (blue crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) 



105 
 

fits the each data set the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error 
could occur at known data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location Mouth Chesapeake Bay 

Northeast Extent 37.1960 N, 75.7114 W 
Southwest Extent 36.8162 N, 76.2601 W 
Number of Points 276,734 

Predicted Errors 
Mean -0.00248597 
Root-Mean-Square 0.47344879 
Mean Standardized -0.00444149 
RMS Standardized 0.83314642 
Average Standard Error 0.56902197 

Table 12: Lower-layer Mouth of Chesapeake Bay extent and kriging bathymetry prediction errors. 

 

 
Figure 41: Mouth of Chesapeake Bay kriging interpolated depths versus measured depths. 

 



106 
 

MID-LAYER: LOWER CHESAPEAKE BAY 
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Figure 42: Mid-layer Lower Chesapeake Bay graphs used to determine kriging parameters. (A) Empirical Semivariogram Gaussian 
Model comparison. (B) Covariance Gaussian Model comparison. Plots (A) and (B) incorporate binned (red dots) and average 
values (blue crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the 
each data set the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could 
occur at known data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location M. Lower Chesapeake Bay 

Northeast Extent 37.1850 N, 75.4335 W 
Southwest Extent 36.7875 N, 76.2148 W 
Number of Points 718,462 

Prediction Errors 
Mean 0.0005590368 
Root-Mean-Square 0.3095545 
Mean Standardized 0.00173856 
RMS Standardized 0.8989027 
Average Standard Error 0.3435862 

Table 13: Mid-layer Lower Chesapeake Bay extent and kriging bathymetry prediction errors. 

 

 
Figure 43: Mid-Layer Lower Chesapeake Bay kriging interpolated depths versus measured depths. 
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MID-LAYER: UPPER CHESAPEAKE BAY 

 
Figure 44: Mid-layer Upper Chesapeake Bay graphs used to determine kriging parameters. (A) Empirical Semivariogram Circular 
Model comparison. (B) Covariance Circular Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values 
(blue crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data 
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set the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at 
known data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location M. Upper Chesapeake Bay 

Northeast Extent 39.4120 N, 76.0955 W 
Southwest Extent 38.6844 N, 76.5617 W 
Number of Points 770,427 

Prediction Errors 

Mean -0.001021986 
Root-Mean-Square 0.21382 
Mean Standardized -0.004245591 
RMS Standardized 2.120599 
Average Standard Error 0.2196721 

Table 14: Mid-layer Upper Chesapeake Bay extent and kriging bathymetry prediction errors. 

 

 
Figure 45: Mid-layer Upper Chesapeake Bay kriging interpolated depths versus measured depths. 
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MID-LAYER: DELAWARE BAY 

 
Figure 46: Mid-layer Delaware Bay graphs used to determine kriging parameters. (A) Empirical Semivariogram Gaussian Model 
comparison. (B) Covariance Gaussian Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values (blue 
crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data set 
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the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at known 
data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location M. Delaware Bay 

Northeast Extent 39.6600 N, 74.5507 W 
Southwest Extent 38.4671 N, 75.6048 W 
Number of Points 222,031 

Prediction Errors 

Mean -0.002153824 
Root-Mean-Square 0.3637845 
Mean Standardized -0.007495826 
RMS Standardized 1.239448 
Average Standard Error 0.2915771 

Table 15: Mid-layer Delaware Bay extent and kriging bathymetry prediction errors. 

 

 
Figure 47: Mid-Layer Delaware Bay kriging interpolated depths versus measured depths. 
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MID-LAYER: H12559 

 
Figure 48: Mid-layer H12559 graphs used to determine kriging parameters. (A) Empirical Semivariogram Gaussian Model 
comparison. (B) Covariance Gaussian Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values (blue 



113 
 

crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data set 
the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at known 
data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location M. H12559 

Northeast Extent 37.3474 N, 75.5556 W 
Southwest Extent 37.2478 N, 75.7352 W 
Number of Points 18,775 

Prediction Errors 

Mean -0.00009242529 
Root-Mean-Square 0.221048 
Mean Standardized -0.0004141973 
RMS Standardized 1.225284 
Average Standard Error 0.1794785 

Table 16: Mid-layer H12559 extent and kriging bathymetry prediction errors. 

 

 
Figure 49: Mid-Layer H12559 kriging interpolated depths versus measured depths. 
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MID-LAYER: D00052 

 
Figure 50: Mid-layer D00052 graphs used to determine kriging parameters. (A) Empirical Semivariogram Spherical Model 
comparison. (B) Covariance Spherical Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values (blue 
crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data set 
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the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at known 
data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location M. D00052 

Northeast Extent 37.2709 N, 76.0246 W 
Southwest Extent 37.1729 N, 76.3913 W 
Number of Points 3,149 

Prediction Errors 

Mean -0.001441357 
Root-Mean-Square 0.4521762 
Mean Standardized -0.001180366 
RMS Standardized 0.4650055 
Average Standard Error 1.058081 

Table 17: Mid-layer D00052 extent and kriging bathymetry prediction errors. 

 

 
Figure 51: Mid-Layer D00052 kriging interpolated depths versus measured depths. 
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MID-LAYER: H11088 

 
Figure 52: Mid-layer H11088 graphs used to determine kriging parameters. (A) Empirical Semivariogram Gaussian Model 
comparison. (B) Covariance Gaussian Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values (blue 
crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data set 
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the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at known 
data points using the parameters chosen. (D) Standardized error vs. normal value graph.  

  

Location M. H11088 

Northeast Extent 38.4708 N, 76.2906 W 
Southwest Extent 38.3427 N, 76.4294 W 
Number of Points 42,718 

Prediction Errors 

Mean 0.001691649 
Root-Mean-Square 0.2737156 
Mean Standardized 0.01103378 
RMS Standardized 1.667314 
Average Standard Error 0.1650757 

Table 18: Mid-layer H11088 extent and kriging bathymetry prediction errors. 

 

 
Figure 53: Mid-Layer H11088 kriging interpolated depths versus measured depths. 
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MID-LAYER: H10934 

 
Figure 54: Mid-layer H10934 graphs used to determine kriging parameters. (A) Empirical Semivariogram Gaussian Model 
comparison. (B) Covariance Gaussian Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values (blue 



119 
 

crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data set 
the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at known 
data points using the parameters chosen. (D) Standardized error vs. normal value graph.   

 

Location M. H10934 

Northeast Extent 38.0394 N, 76.2069 W 
Southwest Extent 37.9292 N, 76.3658 W 
Number of Points 27,899 

Prediction Errors 

Mean -0.0006286584 
Root-Mean-Square 0.1372092 
Mean Standardized -0.003697011 
RMS Standardized 0.798035 
Average Standard Error 0.1723181 

Table 19: Mid-layer H10934 extent and kriging bathymetry prediction errors. 

 

 
Figure 55: Mid-Layer H10934 kriging interpolated depths versus measured depths. 
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MID-LAYER: H10193 

 
Figure 56: Mid-layer H10193 graphs used to determine kriging parameters. (A) Empirical Semivariogram Gaussian Model 
comparison. (B) Covariance Gaussian Model comparison. Plots (A) and (B) incorporate binned (red dots) and average values (blue 
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crosses) of the data within the set lag size to help the user determine which statistical model (solid blue line) fits the each data set 
the best. (C) Predicted depth vs. measured depth graph with trend line equation that shows how much error could occur at known 
data points using the parameters chosen. (D) Standardized error vs. normal value graph. 

 

Location M. H10193 

Northeast Extent 38.3351 N, 76.2817 W 
Southwest Extent 38.2905 N, 76.3853 W 
Number of Points 10,341 

Prediction Errors 

Mean 0.002754618 
Root-Mean-Square 0.413769 
Mean Standardized 0.004839575 
RMS Standardized 0.6654018 
Average Standard Error 0.630334 

Table 20: Mid-layer H10193 extent and kriging bathymetric prediction errors. 

 

 

Figure 57: Mid-Layer H10193 kriging interpolated depths versus measured depths. 

 

 

 

 

 


