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ANALYTIC SOLUTION FOR THE FORCED  
MEAN CROSS-SHORE FLOW IN THE SURF ZONE 

Thomas C. Lippmann1, Assoc. MASCE 

Analytical solutions to the forced horizontal momentum equations 
are found for the local vertical structure of mean flow driven by surface 
wave breaking within a saturated surf zone. Similar to the theoretical 
development of flows within the wave bottom boundary layer driven by 
arbitrary free stream wave motions (Foster, et al., 1999), the oscillating 
surface boundary condition is distributed through the water column by 
transforming the vertical coordinate, 

€ 

′ z = z + h η+ h  where h is the still 
water depth and η is the fluctuating sea surface elevation. The 
transformation leads to local analytical solutions of the vertical 
structure of time-averaged currents driven by surface wave breaking 
without explicitly defining wave trough levels or surface mass fluxes. 
The solutions have the attractive attribute that they estimate the sub-
surface flow contributed from surface forcing by wave breaking.  The 
total mean flow includes these solutions plus contributions by the 
Stokes Drift, not explicitly considered herein.  

INTRODUCTION 

Observations in both the field (e.g., Smith, et al., 1992; Haines and 
Sallenger, 1994; Masselink and Black, 1995; Garcez Faria, et al., 2000; and 
others) and the laboratory (e.g., Stive and Wind, 1986; Ting and Kirby, 1994; 
and others) universally show strong vertical variation in the cross-shore mean 
flow. The seaward-directed mean cross-shore current, generally referred to as 
the undertow, is in general well sampled in these experiments. The driving force 
for the undertow has long been linked to the vertical imbalance in radiation 
stresses and the mean pressure (setup) gradient (e.g., Dyhr-Nielsen and 
Sorensen, 1970; Svendsen, 1984; Stive and Wind, 1986; Deigaard, et al., 1991; 
and many others) with a number of numerical models that provide a reasonable 
representation of the seaward component of the undertow.  

In general, these studies restrict the analysis to the sub-trough level where 
there is always water and any Eulerian measurements are easily compared with 
model predictions. In the region between the wave trough and crest, any 
particular elevation in the vertical is alternatively covered and uncovered by 
water, with increasingly more out-of-water time the closer to the wave crest. The 
mean flow between the crest and trough when there is water present is always 
onshore (except, perhaps, in the present of strong rip currents which will not be 
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considered herein), creating a shoreward mass flux that balances the return flow 
below the trough. This Stokes Drift (Phillips, 1980) is considered in models 
(e.g., Walstra, et al., 2000), but by definition, the Stokes Drift only considers the 
contribution by non breaking wave motions. Numerical models have been 
developed that include the effects of surface mass flux contributed by both the 
Stokes Drift and by momentum fluxes associated with wave breaking in the surf 
zone (e.g., Stive and Wind, 1982; Garcez Faria, et al., 2000). However, the 
contribution above the wave trough level is not specified in detail, and thus the 
vertical variation of the mean flow between the trough and crest is not estimated 
(considering only periods when water is present at any given elevation). 

In this work, we derive analytic solutions for the vertical variation in time-
averaged mean flow from the sea bed to the level of the wave crest by 
transforming the forced two-dimensional momentum equations following 
Foster, et al. (1999) who considered the vertical structure of the flow in the wave 
bottom boundary layer forced by an oscillating free stream velocity. The 
solutions have hyperbolic form, and depend on both the (unspecified) surface 
forcing by breaking and a vertically uniform eddy viscosity. Above the trough 
level, the solution describes the time-averaged flow forced by surface breaking 
only for the period of time when water is present. 

THEORY 

The forced horizontal momentum equation for the two-dimensional cross-
shore flow can be written (using continuity and assuming no alongshore flow) as  

 

€ 

∂
∂x

P + ρ ˆ u 2( ) +
∂
∂z
ρ ˆ u ̂  w = 0  (1) 

(Stive and Wind, 1982), where the pressure 

€ 

P = ρg(η− z) − ρ ˆ w 2  with η the sea 
surface elevation, 

€ 

ˆ u  and 

€ 

ˆ w  are the cross-shore and vertical velocities, ρ is 
density, and x and z are the horizontal and vertical Cartesian coordinates with z 
positive upward from the still water level. The velocities are assumed to be 
composed of mean (U), wave (

€ 

˜ u ,  ˜ w ), and turbulent (

€ 

′ u ,  ′ w ) components, such 
that  

 

€ 

ˆ u = U + ˜ u + ′ u   (2) 

 

€ 

ˆ w = ˜ w + ′ w  (3) 

Time-averaging (1) thus leads to a governing equation for the mean flow field, 
that unfortunately cannot be solved analytically for the vertical structure because 
the surface boundary conditions (at 

€ 

z = η) are functions of space and time,  

 

€ 

ˆ u (η) = ˆ u (x,  t)  (4) 

 

€ 

ˆ w (η) = ˆ w (x,  t)  (5) 



  3 

In previous work, the vertical flow structure was partitioned into two layers, 
above and below the wave trough level, and mass conserved over the vertical 
such that the onshore mass flux above the trough level is balanced by an 
imposed depth uniform mean return flow, 

€ 

Ur , below the trough (e.g., Garcez 
Faria, et al., 2000). This methodology leads to an equation describing only the 
mean flow below the wave trough, given by 

 

€ 

∂
∂z

ρν
∂U
∂z

 

 
 

 

 
 =

1
2
∂
∂x

ρ ˜ u 2 − ˜ w 2( ) 
  

 
  

+ ρg ∂η 
∂x

+
∂ρUr

2

∂x
 (6) 

where the over-bar indicates time averaging over the wave period. In (6) it has 
been assumed that the time-averaged turbulent shear stresses are determined by  

 

€ 

−ρ ′ u ′ w = ρν
∂U
∂z

 (7) 

with ν an eddy viscosity. Numerical solutions for the mean flow structure below 
the trough level are determined by the form of ν, and by various methods for 
specifying 

€ 

Ur  from the vertical mass balance. No form for the structure of the 
mean flow above the trough level is found, limiting the solution to numerically 
calculated sub-trough currents.  

Following Foster, et al. (1999), we show that an analytical solution can be 
found for the forced cross-shore flow spanning the water column from the 
bottom to the fluctuating sea surface ( ) in the presence of surface 
wave breaking. In the oscillatory wave bottom boundary layer model of Foster, 
et al. (1999) the vertical coordinate is transformed so that boundary conditions at 
the free stream and at the bottom are constant (and zero).  

The coordinate transformation takes the form 

 

€ 

′ z =
z + h
η+ h

 (8) 

so that the velocities in the transformed system are given by  

 

€ 

u( ′ z ) = ˆ u − ′ z ˆ u o   (9) 

 

€ 

w( ′ z ) = ˆ w − ′ z ˆ w o  (10) 

where we have used the simplified notation  

 

€ 

ˆ u (η) = ˆ u o  (11) 

  

€ 

ˆ w (η) = ˆ w o  (12) 

The boundary conditions become zero both at the surface (

€ 

′ z = 1) and at the 
bottom (

€ 

′ z = 0).  

! 

"h < z < #
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€ 

u(0) = u(1) = 0   (13) 

 

€ 

w(0) = w(1) = 0  (14) 

Inserting (8)-(12) into (1), using (2)-(3), assuming shallow water so that the 
approximations 

€ 

˜ w = ˜ w o ′ z  and 

€ 

˜ u = ˜ u o  can be made, and the transformed time-
averaged governing equation becomes  

 

€ 

∂
∂x

gη −
uowo
η+ h

−
2wo
η+ h

U ( ′ z ) =
ν

(η+ h)2
∂ 2

∂ ′ z 2
U ( ′ z )  (15) 

Equation (15) has form  

 

€ 

A(x) − ∂ 2

∂ ′ z 2
 

 
 

 

 
 U ( ′ z ) − B(x) = 0  (16) 

with hyperbolic solutions, where A and B are functions only of x. Using the 
surface and bottom boundary conditions, solution to (15) is given by  

 

€ 

U ( ′ z ) = H 1−
sinh G ′ z ( )
sinh G

−
sinh G (1− ′ z )( )

sinh G

 

 

 
 

 

 

 
 

 (17) 

where G and H are functions of the surface wave field independent of depth 

 

€ 

G (x) =
2wo
η+ h

ν

(η+ h)2
 (18) 

 

€ 

H (x) =
∂
∂x

gη +
uowo
η+ h

 

 
 

 

 
 

wo
η+ h

 (19) 

Transformation of (17) back to the original, untransformed coordinate system 
yields 

 

€ 

U (z) =
z + h
η+ h

Uo +H 1−
sinh G z + h

η+ h

 

 
 

 

 
 

sinh G
−

sinh G 1− z + h
η+ h

 

 
 

 

 
 

 

 
  

 

 
  

sinh G

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 (20) 

Assuming mass conservation over the vertical in the cross-shore direction,  

 

€ 

U (z)dz
−h

a

∫ = 0  (21) 

an estimate of the mean flow at the surface, 

€ 

Uo , can be found in terms of G and 
H, 
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€ 

Uo = 2H 1
a + h
η+ h

−

cosh G a + h
η+ h

 

 
 

 

 
 −1− cosh G 1− a + h

η+ h

 

 
 

 

 
 

 

 
  

 

 
  + cosh G

a + h
η+ h

 

 
 

 

 
 

2

G sinh G

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 (22) 

 

RESULTS 

Solutions given by (20) and (22) are shown in Figure 1 for a saturated surf 
zone with wave amplitude to water depth ratio 

€ 

a h = 0.17 and with the 
arbitrarily chosen values 

€ 

G = −0.3 and 

€ 

H = 10m s. Sea surface elevation is 
given by a single linear wave with arbitrary frequency. The solutions are as 
expected, with surface flow onshore above the trough with maximum value at 
the elevation of the wave crest, and subsurface flow (i.e., the undertow) with 
maximum below the wave trough level.  

 
Figure 1. Example analytical solution for the vertical structure of the forced mean 
cross-shore flow given by equations (20) and (22) with G = -0.3, H = 10 m/s, and a/h = 
0.17.  

Note that in the solution the flow field extends upward beyond the still 
water level to a position equivalent to the wave amplitude, 

€ 

z = a . The water 
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does not occupy the position above the trough (at elevations 

€ 

z > −a ) at all times 
and only reaches the crest of the waves at the moment the breaking wave passes. 
The velocity at the crest of the mean flow profile is maximum, only occurring 
during the forced onshore flows right at the crest of the breaking wave. At lower 
elevation, but above the trough level, the time-averaged flow (occurring only 
when water is present at that elevation) is lower and smoothly connects with the 
sub-trough flow.  

The form for 

€ 

U (z)  is determined by the relative magnitudes of G and H. 
With H  held constant (e.g., a particular forcing condition independent of ν), and 
then choosing a range of G (which varies inversely with ν) allows an 
examination of the flow structure in response to changes in the eddy viscosity. 
Figure 2 shows 

€ 

U (z)  for a range of G and with H held constant. As the eddy 
viscosity increases, the vertical mixing is stronger and the vertical variation in 
mean flow is reduced (i.e., more uniform throughout the water column), as 
expected. By holding G constant and varying H, the impact of stronger forcing 
is qualitatively examined. Figure 3 show 

€ 

U (z)for a range of H with the mixing 
(represented by G) constant. For higher wave forcing both the onshore surface 
flow and subsurface return flows are more pronounced.  

 
Figure 2. Analytical solutions for the forced mean cross-shore flow with H = 10 m/s 
and over a range of G, showing the effect of vertical mixing through variation in eddy 
viscosity.  
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Figure 3. Analytical solutions for the forced mean cross-shore flow with G = -0.3 and 
over a range of H, showing the effect of forcing magnitude on the vertical variation in 
flow.  

DISCUSSION 

The variable G qualitatively determines the effect eddy mixing has on the 
vertically varying mean flow field.  The form for G was found analytically only 
because the equations were grossly simplified by letting the eddy viscosity be 
uniform over depth. In nature, we would expect ν to vary over the water column 
and be strongly dependent on the turbulent structure both near the surface where 
wave breaking occurs and the wave-current bottom boundary layer. 

The magnitude of the forcing by breaking processes (including setup and 
surface shear stresses induced by breaking) is described qualitatively by H, 
independent of eddy viscosity. When H goes to zero, the wave breaking is 
turned off, no external forcing occurs, and the forced solution goes to zero. This 
does not mean that the time-averaged flow at a given elevation above the trough 
is zero in the absence of wave breaking. Contributions to the mean cross-shore 
flow structure occur in the presence of waves (non breaking or breaking) due to 
the Stokes Drift, not accounted for herein.  

Solutions were found under the assumption of shallow linear waves so that 
the horizontal wave velocities were uniform over depth and thus represented by 
surface values, and similarly so that the vertical wave velocities varied linearly 
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over depth and could also be represented by surface values.  This simplification 
is necessary for analytic solutions, but greatly over simplifies the complexities in 
natural breaking waves with strong nonlinearities. Thus, the solutions are only 
useful in a qualitative manner, but appear to represent the gross, expected form 
of the mean cross-shore flow.  Consideration of higher order wave interactions 
could make the results applicable to field situations but would require numerical 
solutions. 

When surface waves pass a given location in the surf zone, the elevation of 
the surface moves up and down. Thus an observing system that follows the 
water surface measures the mean and oscillatory surface flow field that depends 
on the elevation, or phase, at which the measurement is made. A time-average 
over the wave period is equivalent to a time average over the range of elevations 
spanned, that is, from the wave trough to the wave surface. Hence, an observing 
system following the surface flow can be time averaged and compared 
qualitatively with the solutions given by (20) and (22) provided an account of 
the Stokes Drift is made. 

CONCLUSIONS 

Analytical solutions to the forced horizontal momentum equations are found 
for the local vertical structure of mean flow within a saturated surf zone.  
Similar to the theoretical development of flows within the wave bottom 
boundary layer driven by arbitrary free stream wave motions (Foster, et al., 
1999), the oscillating surface boundary condition is distributed through the 
water column allowing for local analytical solutions of the vertical structure of 
time-averaged currents to be found without explicitly defining wave trough 
levels or surface mass fluxes. 

The forced horizontal momentum equations for the two-dimensional cross-
shore flow are given by Stive and Wind (1982). Assuming the velocities to be 
composed of mean, wave, and turbulent components and time-averaging leads to 
a governing equation for the mean flow field; however, the surface boundary 
conditions are functions of space and time precluding direct analytic solutions 
for the mean flow structure (Garcez Faria, et al., 2000). In this work, we show 
that a complete analytical solution spanning the water column from the bottom 
to the surface can be found. Following Foster, et al. (1999), the vertical 
coordinate is transformed by 

€ 

′ z = z + h η+ h , so that the boundary conditions 
become zero both at the surface (

€ 

z = η) and at the bottom (

€ 

z = −h ).  After 
significant simplification, and assuming mass conservation over the vertical, the 
transformed time-averaged governing equation can be shown to have hyperbolic 
solutions. 

The solutions are as expected, with surface flow onshore above the trough 
with maximum value at the elevation of the wave crest, and subsurface flow (i.e. 
the undertow) with maximum below the wave trough level.   The form for the 
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undertow profile is determined by the relative magnitudes of the eddy mixing 
and the wave forcing.  As the eddy viscosity increases, the vertical mixing is 
stronger and the vertical variation in mean flow is reduced, also as expected.  
For higher wave forcing, both the onshore surface flow and subsurface return 
flow are stronger.  Total flow includes both the forced solution presented here 
that includes the effects of surface wave breaking, and from contributions due to 
the Stokes Drift, not presently considered. 
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