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Abstract 11 

The construction of new offshore wind farms is one of the strategies to fulfill growing demands for “green” renewable energy. 12 

Underwater imagery is an important tool in the environmental monitoring of offshore renewable energy installations, especially in 13 

rocky benthic environment where traditional techniques, such as benthic grabs, are not applicable. Benthic features cover quantitative 14 

estimation from underwater imagery is a not easy task, especially when large amount of visual data must be processed in a short time. 15 

Underwater video from the high energy Norwegian Sea coast was used for this study. Traditional manual point-based benthic cover 16 

estimations from selected frames was tested against a semi-automatic color-based computer-assisted approach which involved 17 

making mosaic images from underwater videos. The study demonstrates that results of manual and semi-automatic benthic cover 18 

estimations are similar, although the manual analysis has a much larger spread in the variability of the data with many outliers due to 19 

the limited amount of points used in the analysis, compared to the semi-automatic analysis, where much larger proportion of the 20 

imagery is used. Although the number of benthic features that could be extracted by computer using color are fewer than those that 21 

can be detected with the human eye, the described semi-automatic method is less biased and less costly in terms of qualified staff. 22 

Implementation of the semi-automatic method does not reqiure any programing skills and has the ability to quickly and simply 23 

process larger amount of underwater imagery which would of decisive advantage to the industry. 24 

Keywords: Underwater video, benthic cover estimation, features color, automatic image analysis, video mosaics 25 

1. Introduction 26 

By 2020 EU countries aim to derive 20% of their energy from renewable sources. European countries typically have 27 

high population densities and the corresponding need for larger amount of energy. Offshore wind power is one of the 28 
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strategies to fulfill those needs that have received public and legislative support. Although Norway is not an EU country 29 

member, the Norwegian government was able to exercise significant influence on EU maritime policy development 30 

(Wedge, 2011). With a highly developed maritime industry (including oil and gas industry, fishing, aquaculture and 31 

shipping), Norway needed a strategy for sustainable use of these resources, which resulted in plans for an integrated 32 

ecosystem-based management developed specifically for the marine environment (Ottersen et al., 2011). Ecosystem-33 

based management for offshore wind farms requires thorough planning and a well-developed environmental monitoring 34 

programs at all stages: baseline, construction, operation and decommissioning. 35 

One of the solutions to the growing demand for offshore wind farm locations could be the siting of farms at shallow, 36 

high-energy rocky shores. Those areas are avoided by larger vessels due to high risk of navigation hazards, and only 37 

marginally used by local communities for small-scale fishery and kelp harvest, which limits the number of conflicting 38 

uses. There are a wide variety of traditional marine monitoring methods and legislation to regulate this monitoring in 39 

place for offshore wind farms sited at soft sea-beds (Magadana et al., 2012), and their use in national monitoring 40 

programs as well as for research purposes has resulted in large amounts of data being gathered about the impacts of 41 

offshore wind farms installations on soft sediments (Bergström et al., 2014). In contrast to traditional offshore wind 42 

farm sites on sandy substratum both, method guidelines and legislations are lacking at rocky, high energy areas 43 

(Dahlgren et al., 2014). Developing monitoring programs in such hydrological dynamic areas are challenging due to the 44 

difficulties in carrying out field sampling, the scarcity of knowledge about ecology of subtidal high-energy ecosystems, 45 

and the resulting lack of hypotheses of the possible impacts from wind farms developments (Shields et al., 2009, 2011; 46 

Dahlgren et al., 2014; but see Schläppy et al., 2014). 47 

Technological advances in underwater imagery make any depths accessible and the quality and resolution of underwater 48 

imagery has constantly improved so that quantitative data can now be extracted from the images (Solan et al., 2003). 49 

However, visual data analysis remains challenging. Most common methods for quantitative benthic cover estimation are 50 

manual point-based approaches (Foster, 1991; Meese & Tomich, 1992; Leonard & Clark, 1993; Carleton & Done, 51 

1995) and region based percentage estimation (Meese & Tomich, 1992; Garrabou et al., 1998, 2002; Teixidó et al., 52 

2002, 2011; Pech et al., 2004; Guinda et al., 2013). Various software tools are exist to aid those analysis methods 53 

(Kohler & Gill, 2006; Teixidó et al., 2011; Trygonis  & Sini, 2012, etc), but their application is still labor- intensive, 54 

forcing the analysis to be limited to only a subset of the imagery being used for the analysis. Those techniques are based 55 

on the analysis of selected frames only, not on complete video sequences. Tools and strategies for processing the entire 56 
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images in order to obtain cover estimates from video streams, except simple but subjective visual census, are virtually 57 

non-existent.  58 

A solution to replace the work-intensive point-estimate method (in which a large amount of the information contained 59 

in the image is not analysed) is to use automatic image segmentation. Those approaches are now a well-developed and 60 

applied to satellite and aerial images where various advanced techniques have been used (e.g. Jensen, 1996; Baatz & 61 

Schäpe, 2000; Burnett & Blaschke, 2003; Wang et al., 2004; Neubert et al., 2006). However, these methods have yet to 62 

find their way into the world of underwater imagery. The main difficulty in applying automatic image segmentation 63 

directly to an underwater image is the optical properties of the water that causes the water to strongly distort colors even 64 

at short distances (Duntley, 1963). This color distortion biases segmentation results when methods are used that 65 

originally have been developed for atmospheric conditions. To overcome this distortion problem, various approaches 66 

have been suggested, from the use of multispectral cameras that can make objects of interest more easily distinguishable 67 

(Gleason et al., 2007; Mortazavi et al., 2013), to the application of various image filters (Beuchel et al., 2010).  68 

Due to the nature of in situ underwater imagery, accurate taxonomical identification to the species level is difficult and, 69 

in many cases, impossible because the practical resolution of modern underwater video equipment usually does not 70 

exceed the millimeter-scale (and in many cases centimeter-scale). Consequently, organisms may only be seen from one 71 

angle and cryptic organisms can be easily missed. However, identification to the species level is not always a necessity 72 

for monitoring programs (Somerfield & Clarke, 1995; Olsgard et al., 1998; Lampadariou et al., 2005; Bevilacqua et al., 73 

2009) and in many cases higher rank taxon datasets have been successfully used to detect natural and 74 

anthropogenically-induced changes in the marine communities (Defeo & Lercari, 2004; Bevilacqua et al., 2009). 75 

The aim of this study was to describe an underwater video analysis technique that is suitable for monitoring programs at 76 

offshore wind farms on high-energy rocky reefs. The described semi-automatic color-based benthic cover estimation 77 

method is compared with a manual point-based video image analysis method in terms of cost-effectiveness and 78 

consistency.  79 

2.  Materials and methods 80 

2.1 Study area and video data collection 81 

Video footage was collected in September 2010 and 2011 as part of a baseline study for a future assessment of the 82 

impact from a planned offshore wind farm called “Havsul”, near the city of Ålesund, Norway. The wind farm site is to 83 
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be situated at an open coast area with a rocky seafloor that is exposed to waves having one of the highest energy in the 84 

world (Golmen, 2007). A medium-class remotely operated vehicle (ROV) equipped with an HDTV video camera and 85 

powerful xenon lights (400 W in total) was used to collect video transects (Schläppy et al., 2014; Dahlgren et al., 2014). 86 

The camera faced down (90°) during the filming and the ROV pilot tried to keep the vehicle altitude as constant and as 87 

neutral as possible. This was a challenging task because the hydrological conditions at the site drastically affected the 88 

stability of the ROV. Additional inconsistencies in the video transects between the two years was introduced by 89 

variations in weather and the fact that the ROV pilots were different. Video was collected in 200 m transects of 90 

approximately ten minutes in duration at depths varying between 20 and 40 m. Four video transects (two collected in 91 

2010 and two collected at the same locations in 2011) were used in this study. For the analysis, raw video footage was 92 

divided into 30 seconds video segments.  93 

2.2 Video mosaicing 94 

Video mosaicing is a process that converts a video stream into a single still image that contains overlapping video 95 

frames (Fig. 1). 96 

 97 

Figure 1. Example of overlapping frames outline (a) and resulting video mosaic (b). 98 
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The advantage of video mosaics is that practically all of the video data is used to construct the final mosaic image (i.e., 99 

frames that are omitted do not contain additional information that is not present in frames being used). In addition, each 100 

object appears on the mosaic only once, in contrast to raw video where each object appears several times on different 101 

overlapping frames. In this study, a video mosaic method that has been developed by the Center for Coastal and Ocean 102 

Mapping (CCOM), (Rzhanov et al., 2004) was used. The process of video mosaicing consists of several steps: 103 

1. Raw video was divided into 30 s segments. This process also reduced the frame rate and frame size to 104 

eliminate interlace artifacts and to shorten computing time. 105 

2. Video was compensated for the roll and pitch of the filming platform. 106 

3. Each frame was enhanced using specific video-enhancing algorithms. 107 

4. Automatic frame-to-frame pair-wise registration (a process used to calculate the overlap of neighboring 108 

frames) was performed to the enhanced video. 109 

5. Video mosaics were built from non-enhanced video using pair-wise registration data from the previous step. 110 

The success of automatic frame-to-frame pair-wise registration is directly dependent on the imagery quality. If details 111 

on the images are poorly recognizable (due to blur, insufficient lighting or other factors), the registration process is 112 

more likely to fail. In such case, neighboring frames can be registered manually. However, the failure in automatic 113 

registration does provide a proxy of image quality. If more than 10 pairs had failed to automatically register, then the 114 

video segment was considered of insufficient quality and no mosaic was built from it. This number had been chosen 115 

empirically: a single mosaic contains ~150 frames, therefore ten pairs (20 frames) makes more than 10% of the 116 

imagery, which was considered a significant proportion, too high for the segment to be of acceptable quality. The 117 

number of excluded video segments was different for 200 m transects, so a sample of 10 best-quality segments were 118 

chosen out of the 30 s segments from each video transect. In short, about 1/3 of the total imagery was used in the 119 

analysis. This subsampling strategy compensated for the sometimes sub-optimal data. Eighty mosaics (40 from 2010 120 

survey and forty from a repeated 2011 survey) were ultimately used in this study. 121 

2.3 Benthic cover estimation 122 

2.3.1 Manual point-based benthic cover estimation 123 

Percentage estimates of benthic cover were assessed using the point-count method modified from Miller and Müller 124 

(1999). The collected video transects were divided in 50 equal segments, making the average distance between the 125 
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frames approximately 4 m. The video was stopped at each start of a segment and the screen that represents the segment 126 

start was used for benthic cover estimation. Five fixed sampling points were placed on the screen and each sample 127 

screen was analyzed using those 5 points. Percentage cover was estimated by identifying which benthic cover was 128 

directly underneath the 5 sampling points on each sample-screen of the paused clip (see Ohlhorst et al., 1988). The 129 

categories of benthic cover to which the sample point could be assigned were Lithothamnion spp., erect red algae, 130 

encrusting dark red algae (EDRA), sponges/bryozoans, sand, stone, bedrock, and kelp. The category Lithothamnion spp. 131 

represents a variety of crust-forming red algae of that genus. EDRA is a type of encrusting red algae that could not be 132 

identified either through the video only nor through the ground-truth samples collected during the campaign.  133 

As the number of points used for frame analysis was limited, analysis results for individual frames sometimes were 134 

biased, especially for low-abundance features. Some features were underestimated (did not appear in the cover) and 135 

some features were substantially overestimated (each point gives 20% cover, even for benthic covers that were much 136 

smaller). A larger number of analyzed frames were used to try to reduce the bias introduced by individual frames, but 137 

still the bias was substantial. 138 

Ideally, the optimal number of points to be analyzed on each sample screen should be the topic of a separate study; 139 

however, this was not possible for this study. Instead, we chose to use 5 points because this value was realistic in terms 140 

of manpower needed for the analysis and because this value was used by Miller and Müller (1999) and found 141 

appropriate to estimate benthic cover on a coral reef, an environment much more diverse than the rocky reef of Havsul. 142 

The manual point-based benthic cover estimate procedure is: 143 

1. Select 5 points on the screen where the user applies 5 empty squares which will serve to guide where to look 144 

for a benthic category. The squares are empty so that there is less confusion as to what category of benthos is 145 

under them. The squares stayed on the screen in the same location for all visual analyses. 146 

2. Open the video. 147 

3. Scroll to the desired video position, go frame-by-frame in order to select the frame that is of sufficient quality 148 

for the analysis (not blurred and with satisfactory colors, etc.). 149 

4. Record the benthic category located in the exact middle of each of the 5 empty squares. 150 

5. Repeat from step 2 once the first video is finished (the same squares on the screen are used for the next video). 151 

2.3.2 Computer-aided color-based semi-automatic cover estimation 152 
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The video-derived images made highly heterogenic mosaics composed of small patches of sand, stones covered with 153 

encrusting and erect algae and sponges (Fig. 1). A computer-aided color-based approach similar to that reported in 154 

Beuchel et al. (2010) was used to estimate benthic cover. Pixels of similar colors that belonged to a certain benthic 155 

cover were extracted from the mosaic (Fig 2.) that yielded the proportion of the extracted pixels to the total pixels in the 156 

image as a quantitative estimation of benthic cover. 157 

 158 

Figure 2. Benthic covers extracted by pixel colors. Frame showing raw video data in the middle left; a) extracted erect 159 

red algae layer; b) extracted Lithothamnion spp. layer; c) extracted sand layer. In the top left are simulated color palettes 160 

for appropriate benthic features. 161 

Since the color of any one benthic cover type could vary according to the amount of illumination that it received from 162 

the ROV’s lights (which in turn is a function of the ROV’s height above the substratum), a range of colors (palette) 163 

were attributed to one benthic type, rather than only one color (Fig. 2). The number of colors belonging to a palette 164 

varied from 5 to 12 and all the colors belonging to this palette were hand-picked until the selection results on test 165 
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mosaics were satisfactory. Each palette was attributed to one benthic cover type and there was no overlap in colors 166 

between other palettes. The procedure of identifying one type of benthic cover using the corresponding palette was done 167 

independently, not in the extraction of every pixel in the image. The colors corresponding to one benthic category type 168 

were extracted, for eg. erect red algae, as in Figure 2 a, then the color extraction was repeated  with another palette for 169 

another benthic category. 170 

A variety of graphic editing packages can be used to select and extract visual features by color and to provide the count 171 

of extracted pixels. We used the Adobe Photoshop (http://www.adobe.com) “magic wand” tool in non-contiguous mode 172 

for benthic covers selection and Reindeer Graphics (http://reindeergraphics.com/) WideHistogram Photoshop plug-in 173 

for counting pixels. To ensure consistency and repeatability, the “magic wand” settings were fixed (tolerance was set to 174 

10) and the same benthic cover color palettes were used throughout the whole-imagery analysis. Additionally, the order 175 

that colors were picked was fixed, always from the darkest to the brightest. This procedure ensured repeatability of 176 

results and made the analysis completely operator-independent. Using Adobe Photoshop and WideHistogram plug-in, 177 

the full analysis procedure was as follows: 178 

1. Open the mosaic in Adobe Photoshop. 179 

2. Select the background color, invert the colors, open WideHistogram and record the mosaic pixel count. 180 

3. Paste benthic cover color palettes into the open image.  181 

4. Apply the color palettes in appropriate order for the first feature. 182 

5. Open WideHistogram, check the number of selected pixels, and record the values. 183 

6. Reset pixels selection, repeat step 4-5 for all remaining benthic covers. 184 

7. Close the mosaic, repeat the procedure for the next one starting with step 1. 185 

The human eye is a very powerful instrument in visual analyses and its performance exceeds by far the capacity of the 186 

computer-assisted color-based approach used in this study. Therefore, the number of benthic cover types that could be 187 

reliably distinguished with a color-based computer-assisted approach was substantially less than those distinguishable 188 

with the human eye. Even with very careful and precise tuning of the color selection tool and benthic cover color 189 

palettes, erect red algae, EDRA and kelp produced color overlaps. With slightly larger tolerances (that is necessary for 190 

the method to be applicable to a wide variety of video mosaics that contain color inconsistencies), stones and bedrock 191 

colors were selected that included a significant proportion of red algae. We encountered a similar problem with sand 192 

and sponge/bryozoanians. Considering this, benthic cover types suitable for semi-automatic estimations were chosen as: 193 

http://www.adobe.com/
http://reindeergraphics.com/
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1. Erect red and brown algae (ERBL). Cumulative value that contained the covers of red algae, EDRA and 194 

sometimes portions of kelp. 195 

2. Lithothamnion spp. encrusting algae cover. 196 

3. Sand cover. Cumulative value that contains sand and a significant proportion of the sponge/bryozoans 197 

cover. 198 

4. Unidentified pixels: the difference between the sum of identified pixels and the total pixel count in the 199 

mosaic. Because benthic cover types were picked one-by-one, not every pixel in the mosaic was 200 

classified. The unidentified pixels count was used to evaluate the quality of the mosaic and of the 201 

analysis. A high positive count of unidentified indicated that those pixels were not classified by any of the 202 

benthic cover color palettes. The high positive pixel count usually indicated a high degree of 203 

inconsistency in the mosaic. To compensate for this inconsistency, the sum of identified pixels was used 204 

as the total pixel count and all further cover calculations were made with the total classified pixels count 205 

as 100%. Sometimes the unidentified pixel count was negative, which was an indication that some of the 206 

pixels were counted more than once (i.e. attributed to 2 different benthic cover type), which led to some 207 

benthic types being overestimated. Mosaics with more than 8% negative unidentified pixel counts were 208 

considered unreliable and discarded from the analysis. 209 

Color selection results can be seen on a screen, and it makes human supervision instantaneous and easy; i.e., the 210 

operator could see immediately if the segmentation was acceptable or not. 211 

For the comparison of the semi-automatic and manual point-based analysis results, features types used for manual 212 

analysis were reduced to match the semi-automatic analysis features. 213 

2.3.3 Inconsistency in the data 214 

Although all efforts were undertaken to make the video images as uniform as possible during filming, some variations 215 

were unavoidable because even small changes in the altitude of the ROV resulted into noticeable changes in the colors 216 

of benthic cover types. Such inconsistencies could substantially affect the performance of a color-based approach. 217 

Moreover, different pilots had different habits of flying the ROV, which resulted in systematic differences in the 218 

imagery between transects. To compensate for these differences, the video mosaics were visually divided into three 219 

colors classes: 31 mosaics were classified as colors class I, 44 mosaics were classified as colors class II and 5 as color 220 

class III (mosaic segments characteristic for each color class are shown at Fig. 3). 221 
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The differences between color classes were related to the mean color channels distribution. Color class I had mean color 222 

channels values (in the segment shown in Fig. 3) of Red/Green/Blue (later R/G/B) of 154/118/117 and represented 223 

approximately the natural colors (with artificial lights) of the substratum. Color class II with mean color channels 224 

R/G/B of 68/89/81 represented images filmed from greater ROV altitude, which resulted in the reduction of the all color 225 

channels, especially the Red channel which has the greatest absorption rate in water. Color class III with mean color 226 

channels values of R/G/B of 110/112/70 most probably represent images that were filmed with the ROV xenon bulbs 227 

not fully “warmed up”, and therefore having different color temperature, with a reduced Blue channel.  228 

 229 

Figure 3. Examples of the mosaic segments that belong to different color classes (from left to right: color class I, II and 230 

III). Independent benthic cover color palettes were created for each class. 231 

Different benthic cover color palettes, derived from different mosaic color classes, were checked for overlap: so that 232 

one specific color could be assigned to the same benthic cover on different mosaic color classes. However, a unique 233 

color was not allowed to correspond to different benthic cover; e.g., a shade of red color could be used as the proxy for 234 

red algae on different classes of mosaics, but could not be the proxy for Lithothamnion spp. Although it is a time 235 

consuming and subjective process, in the end we were able to select appropriate color palettes for all benthic covers and 236 

mosaics color classes. 237 

After reviewing of the preliminary results, mosaics that belonged to the color class III were discarded from the analysis. 238 

Colors degradation within this color class (the blue channel was significantly reduced), made the discrimination of 239 

Lithothamnion spp. from sand and/or erect red algae, in many cases, impossible. 240 



 11 

For the final analysis, seven mosaics (six from 2010 and one from 2011) were excluded because they were of the color 241 

class III and five more (three from 2010 and two from 2011) were eliminated because of high negative unidentified 242 

pixels counts. Eventually, 31 mosaics from the 2010 season and 37 mosaics from the 2011 season remained. The 243 

number of mosaics per transect that remained in the analysis varied between 6 and 10 (Tab. 1). 244 

Table 1. Number of mosaics used for semi-automatic analysis after rejection of inconsistent imagery (maximum 245 

possible count is 10, indicating that no mosaics were rejected in that transect). 246 

 Transect 

Season 5D 6E 8D 9D 

2010 6 8 10 7 

2011 10 10 8 9 

Regarding mosaic color classes, all mosaics that remained from 2010 season after the rejection process belonged to 247 

color class II. Only transect 9D (nine mosaics) from 2011 belonged to color class II whereas the remaining 28 mosaics 248 

from transects 5D, 6E and 8D belonged to color class I. 249 

2.3.4 Different benthic cover color palettes 250 

Although the sensitivity settings of the color picking tool and the order of the palette colors used to extract benthic 251 

cover could be easily standardized to completely eliminate operator bias, the benthic cover color palettes themselves 252 

were chosen manually, therefore some degree of bias during this process was unavoidable. To test an error inflicted by 253 

manually chosen color palettes, four randomly chosen video mosaics were analyzed using sets of independently 254 

prepared 32 color palettes for the ERBL and 32 color palettes for Lithothamnion spp. Benthic covers were calculated 255 

using each palette only once, hence, Mosaic 1 to Mosaic 4 were analyzed 7 times each, providing with sufficient 256 

amount of statistics. 257 

3. Results 258 

3.1 Different benthic cover color palettes 259 

The comparison between the four randomly chosen video mosaics analyzed using different color palettes are shown in 260 

Fig. 4.  261 
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 262 

Figure 4. Average benthic cover estimations of Lithothamnion spp and ERBL with standard deviations, estimated from 263 

four randomly chosen mosaics using different color palettes. 264 

For the Lithothamnion spp. coverage estimations, from the test mosaics the average coverarage was 10.8% with an 265 

average standard deviation of 1.5%, while for the erct red algae average cover was 50.5% with average standard 266 

deviation of 5.3%. Altrough general tendency is that standard deviation is greater for benthic covers having highier 267 

absolute values, variation still remains at an acceptable level. Most of the errors that added to the variations in average 268 

erect red algae and Lithothamnion spp. cover, appeared on the borders between different benthic cover types, were even 269 

manual classification (where to draw the line?) would be difficult and operator dependant.  270 

3.2 Comparison of manual and computer-assisted cover estimations 271 

The results from the semi-automated and manual analysis of benthic cover estimation were broadly congruent (Fig. 5 272 

and Tab. 2). The most noticeable trend captured by both methods was an increase in red algae and corresponding 273 

decrease in Lithothamnion spp. cover for transects 8D and 9D in the 2011 season compared with the same transects in 274 

2010 season. The biggest differences between the semi-automated and manual methods were between less abundant 275 

benthic cover types (sand in both seasons and Lithothamnion spp. cover in 2011 season), which were more affected by 276 

errors due to the limited amounts of sampling points used in the manual analysis. For more abundant (in our case, with 277 

absolute values bigger than approximately 30%) benthic cover types mean values for both methods were very close, 278 

although manual point-based analysis results have much higher variation.  279 
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 280 

 281 

Figure 5. Computer-assisted cover estimations (on the left) compared to manual cover estimations (on the right). Labels 282 

on the X axis represent transect code (5D; 6E, etc) and season (10 for 2010 and 11 for 2011) 283 
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 284 

Table 2. Mean values and standard deviations of the benthic features covers estimated using manual point based and 285 

semi-automatic methods for 2010 and 2011 seasons.  286 

 2010 season 2011 season 

 Manual Semi-automatic Manual Semi-automatic 

ERBL 55.6 ± 25.8 59.4 ± 3.9 77.2 ± 21.9 69.8 ± 6.0 

Lithothamnion spp. 27.3 ± 22.5 33.9 ± 3.0 13.8 ± 18.2 25.3 ± 5.8 

Sand 17.0 ± 18.8 6.8 ± 1.5 9.0 ± 12.9 4.8 ± 1.0 

3.3 Cost-effectiveness analysis 287 

3.3.1 Semi-automatic computer-assisted color-based covers estimation 288 

The computing time to create a mosaic from 30 seconds of raw video using the technique of Rzhanov et al. (2004) is 289 

approximately 15 minutes. Therefore, for the four video transects and 80 mosaics used in this study, the total computing 290 

time was 20 hours. However, the process could be easily parallelized using a modern computer with several processor 291 

cores and several copies of the software simultaneously running, without any performance loss.  Such a computer would 292 

reduce the required computing time to 8 to10 hours. In addition, the creation of a mosaic using this technique does not 293 

require a solid scientific background, thereby reducing personnel costs. Results using this technique are operator 294 

independent so that using multiple operators will result in faster production of the mosaics. 295 

3.3.2 Manual points-based video analysis 296 

The initial preparation for the manual point-based analysis requires only features selection and naming, and in our case 297 

was accomplished in about 4 hours by an experienced researcher. After the features and the number of frames to be 298 

analyzed from transects are determined, a single frame analysis can be completed in approximately 5 minutes. The 299 

analysis of the test study data (4 transects, 200 frames) took about 16 hours. The entire analysis process should be 300 

performed by an experienced researcher and the process cannot be parallelized. Although it is possible to divide the data 301 

between several operators, the inter-calibration between each person and quality-control procedures are needed to 302 

ensure analysis uniformity. 303 
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Summary of the man-hours required to process our study data using semi-automatic and manual analyses is shown in 304 

the Tab. 3. 305 

Table 3. Comparison of time, parallelization capabilities and operators qualifications for different steps of semi-306 

automatic and manual imagery analyses 307 

Computer-assisted color-based semi-automatic analysis 

 Work hours Parallelization Technician Researcher 

Mosaics creation 20 On same computer Yes Not required 

Benthic cover color palettes 8 No Not recommended Recommended 

Mosaics analysis 3 Different technicians Yes Not required 

Total: 31    

Manual points-based analysis 

Features selection 4 No Not recommended Recommended 

Frame analysis 16 Different researchers Not recommended Recommended 

Total: 20    

Although semi-automatic analysis needed 9 more hours to be completed compared to a manual points-based analysis, 308 

the majority of this time (20 hours) was the computing time required to prepare mosaics. This process can be easily 309 

parallelized either on single computer or between computers and technicians. Furthermore, the majority of the tasks can 310 

be performed by moderately trained technicians, and researcher input is required only for 8 hours. As result, semi-311 

automatic analysis can be performed faster and cheaper than manual analysis, which require researcher level operator 312 

on all stages of the process. 313 

4. Discussion 314 

The image analysis tools to parameterize feature coverage investigated in this study offer a robust method to assess 315 

environmental change at offshore wind farms and other offshore renewable energy projects sited at subtidal rocky 316 

substrates. 317 

Although using manual point-based estimate techniques as “gold standard“ to assess other methods performance is 318 

arguable, any proposed new technique to determine cover estimates must have some level of similarity and show 319 
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similar tendences to the manual-estimate technique, what was demonstrated during this study in the Fig. 5 and Tab. 2. 320 

Some outliers in the manual point-based benthic cover estimations are clearly artifacts due to relatively small number of 321 

points used in the frames; e.g., nowhere in the analyzed imagery was sand cover as high as 50% or more, which is the 322 

case in some of the frames analyzed manually, as scan be seen in the Fig. 5. Semi-automatic analysis uses a much 323 

greater number of pixels (the average number of identified pixels in single mosaics is 5.9 million, which corresponds to 324 

up to 60 million points per transect, comparing with only 200 points used in manual analysis), making such mistakes 325 

impossible. 326 

The process of semi-automatic analysis could be fully automated, for example, with the use of scripting tools, but in this 327 

case human supervision on the extracted features is omitted and the quality of the analysis may suffer. Although a 328 

supervised analysis process cannot be parallelized on a single computer, using multiple technicians on the job will 329 

reduce the analysis time without impacting accuracy. 330 

An alternative to the computer-assisted color-based semi-automatic or the manual point-based imagery analyses could 331 

be simple visual cover census that are simpler to implement and, in some cases, can be as accurate as point-based 332 

analysis (Deithier et al., 1993). However, simple visual cover census is subjective, and, in general, it uncertainty is 333 

difficult to predict and estimate. A point-based manual approach is more objective, but still is subject to significant 334 

errors in estimations within individual frames due to the limited amount of points that is practical to use. The semi-335 

automatic benthic cover estimation from video mosaics approach have the potential to overcome the above difficulties. 336 

In projects were large amounts of imagery is needed to be analyzed, a semi-automatic approach is much faster and more 337 

efficient than any other analytical method, because, unlike manual methods, the most time consuming stage, the 338 

mosaics preparation is mainly computing time and could be easily parallelized as can be seen in the Tab. 3. 339 

The biggest challenge with computer-assisted color-based cover estimations are inconsistencies in the real world 340 

underwater imagery due to inherent non-linearity of underwater imagery caused by the wavelength-dependent 341 

absorption (Duntley, 1963). This makes the proper compensation for the non-linearity a non-trivial task. The optical 342 

properties of sea water are dependent on many factors related to seasonal, geographical, hydrological differences. 343 

Different particles (biological and abiotic) also heavily affect the optical properties of seawater and it properties can 344 

rapidly change, especially in coastal areas. These changes make any modeling of water optical properties imprecise and 345 

probably inadequate for practical use. To properly compensate for water clarity, the optical properties of seawater need 346 

to be quantitatively measured during the filming. Although such measurements are fairly simple to do (Fonseca & 347 

Raimundo, 2007; Fu et al., 2014; Vecchi et al., 2014), this kind of equipment is rarely used during imagery collection 348 
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and has yet to become a common tool in the benthologist inventory. As of today, information about the optical 349 

properties of seawater during filming is rarely available. Such uncertainties make the application of computer-vision 350 

algorithms for underwater video problematic because of the difficulties with colors and illumination add to the errors 351 

caused by the imperfections of the images-segmentation methods itself. The proposed approach allows the user to see 352 

the extracted features almost immediately so that quality control is fast and easy, thereby allowing for any 353 

inconsistencies in the extracted feature to be easily spotted, as well as the thoroughness of the selection. 354 

Dividing video mosaics into different color classes can overcome some of the problems created by inconsistencies 355 

within the imagery. Subdividing the mosaics compromises analysis uniformity to some degree because separate 356 

benthic-cover color palettes are required for different mosaic color classes. However, our results shown in the Fig. 4 357 

suggest that this compromise does not significantly affect the accuracy of the analyses. This conclusion is also 358 

supported by a comparison with a manual analysis (which is less affected by imagery inconsistency due to greater 359 

flexibility of the human eye) as shown in the Fig. 5. This is so even though the majority of the imagery from 2010 and 360 

2011 had different colors and hence different color palettes that had to be used for features extraction (only one transect 361 

from 2011 was of the same color class as 2010 transects). Moreover, cover estimates for both seasons were in good 362 

agreement with manual point-based cover estimates. Human supervision of the extracted features indicated that the use 363 

of color palettes tuned to a specific color class can help with inconsistencies within the mosaics (e.g., when the ROV 364 

altitude changed for a short period of time that resulted in changes in the color in a small portion of the mosaic). Almost 365 

no pixels in such cases were extracted from areas that belong to different color classes, and instead they were added to 366 

the unidentified pixels count. Because only identified pixels were used to calculate total pixel count, any areas of 367 

different color class that were filled with unidentified pixels were effectively excluded from the analysis and did not 368 

biased the results. 369 

There are ways to improve the results from automatic or semi-automatic underwater imagery analysis. Two 370 

improvements would be the use of more complicated and robust segmentation and/or imagery-preprocessing algorithms 371 

and improvements in the data collection procedures. While imagery processing methods development requires 372 

additional studies, implementation of stricter data-collection protocols is fairly simple. During this study, having more 373 

experience with data analysis after the 2010 season, we were able to reorganize data collection in 2011, which resulted 374 

into significant reduction in number of mosaics rejected during the computer-assisted color-based semi-automatic data 375 

analysis; nine were rejected from the 2010 dataset whereas only three were rejected from the 2011 data, as can be seen 376 

in the Tab. 1. 377 
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Although the technique used in the test study demonstrated good performance it has significant limitations.  Not all of 378 

the benthic features were distinguished using colors alone, and we had to significantly reduce the number of features 379 

used in the semi-automatic analysis compared with the manual analysis. On another hand, the method does not require 380 

special programming skills, and a variety of image editing software can be used for benthic covers extraction by colors. 381 

Also, already produced mosaics can be used for other types of imagery analysis, such as count of visually 382 

distinguishable benthic organisms (e. g. sea stars or sea urchins). Comparing with the raw video, where only one of 383 

several overlapping frames can be seen at the time, and where zooming and scrolling through the imagery becomes 384 

more difficult, video mosaic can be easily scrolled in any direction and zoomed in and out, using most of image viewing 385 

software available, making imagery inspection from mosaics simpler and more flexible, thus less tiresome and probably 386 

more accurate. 387 

 The method can be adapted to imagery collected in different environments, containing different benthic features: all 388 

what is needed is to create color palettes for appropriate benthic features. For monitoring purposes, when data is 389 

repeatedly collected in the same environment, filming equipment and collection protocols are standardized, there is no 390 

need to change the imagery analysis procedures between the surveys and the same color palettes can be used over and 391 

over again, saving time and money. 392 

Conclusion 393 

As the need for offshore renewable energy increases, so does the need to find out whether installations have a 394 

deleterious effect on the marine environment. Methods of video data collection and analysis that reduce the cost of the 395 

impact assessments and environmental monitoring through the use of semi-automated video-analysis techniques would 396 

be of financial advantage to the companies operating offshore wind farms. Typically, impact studies need to be carried 397 

out before an impact exists, especially during the installation and then during the operations and finally after 398 

decommissioning of the installation. Ideally, the same areas should be repeatedly resampled in order to detect any 399 

changes in the benthic community. A semi-automated analysis of the video data collected on repeat surveys could be 400 

cost-effective and also reduce the bias caused by analyses performed by different personnel, as can be seen in the Tab. 401 

3, that are expected to happen over the lifetime of an offshore wind farm. Of all the impact studies that need to be 402 

carried out (typically benthic fauna, marine birds, marine mammals and fish), the video analysis of benthic fauna has 403 

the largest potential for being automated. In the case of benthic cover, a semi-automated analysis is not only cheaper, 404 

but also allows to use much larger proportion of the imagery in the analysis comparing with manual methods, making it 405 

more robust to the random factors due to limited amount of sampling points. With proper equipment, sampling design 406 
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and data collection protocols, virtually all the collected imagery can be used, rather than its subset, making the results 407 

more trust-worthy and the ability to detect change more reliable. The main constraint in a semi-automated analysis is 408 

the reduced number of features that can be extracted compared to a manual analysis. Future studies will have to assess 409 

whether the limited number of features that can be analyzed by a semi-automatic analysis are adequate to reflect the 410 

impact of offshore wind farms on the benthic community. 411 
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