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(a) Greyscale. Constant
speed between each pair
of points.

(b) Half greyscale. Const.
speed in each half, drops
to zero across the halves.

(c) Flat greyscale. Con-
stant grey in [0.2,0.8] re-
sults in a speed of zero.

(d) Cool/warm divergent.
Const. speed in each half,
but not across halves.

(e) Rainbow. High speed
around blue, low around
green.

(f) Viridis. Low variations
in speed result in its uni-
form appearance.

Fig. 1: Our six showcase colormaps and their corresponding matrices of the global speed. The luminance of each entry (i,k)
represents how high the speed V ∆E76

i,k = ∆E76(xi,xk)/(tk − ti) is from the color x(ti) in the same row i to the color x(tk) in the same
column k on the diagonal using the ∆E76 metric.

Abstract— A myriad of design rules for what constitutes a “good” colormap can be found in the literature. Some common rules 
include order, uniformity, and high discriminative power. However, the meaning of many of these terms is often ambiguous or open to 
interpretation. At times, different authors may use the same term to describe different concepts or the same rule is described by varying 
nomenclature. These ambiguities stand in the way of collaborative work, the design of experiments to assess the characteristics of 
colormaps, and automated colormap generation. In this paper, we review current and historical guidelines for colormap design. We 
propose a specified taxonomy and provide unambiguous mathematical definitions for the most common design rules.

Index Terms—colormap, survey, taxonomy, order, uniformity, discriminative power, smoothness, monotonicity, linearity, speed

1 MOTIVATION

Colormapping is a very old technique. Dating back to the 19th cen-
tury, early colormaps were often based on prior experience, practical
reasoning, or aesthetic opinion rather than an experimentally-based
understanding of the human visual system and perception [18]. In our
literature research, we found that even today, the assessment of good,
bad, or ugly colormaps often relies on these values, partly because
meaningful experiments can be difficult to design [81] or implement.

One possible reason for the difficulty in assessing and defining the
characteristics that make an effective colormap is the lack of a common
framework. Wainer and Francolini stressed the importance of a com-
mon language decades ago: “For if we do not have a vocabulary with
which to discuss graphic concepts, we cannot discuss these concepts in
an unambiguous manner.” Yet ambiguities continue.

At times, the same terms are used to describe different properties of a
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color map. For example, order as used by Levkowitz and Herman [30]
has a local and directed meaning: a color xi should perceptually precede
the next color. In contrast, the term order as used by Ware [83] has
a global but undirected meaning. He requires that a user be able
to sort colors picked from anywhere in the colormap, but does not
distinguish whether they are sorted from low to high or vice versa.
While linearity as used by Pizer [51] refers to the perceptual distance
between neighboring colors, Levkowitz and Herman [30] use linear to
require that the path of the colormap forms a straight line.

Alternately, different authors use different terms to refer to the same
concept. Levkowitz and Herman [30] use the terminology no bound-
aries, Borland [8] uses no sharp transitions, while Moreland [46] uses
the term no Mach bands. All of these seem to represent the same
concept. Likewise, perceptual uniformity [30], linearity [52], homo-
geneity [82], representative distances [68], and preservation of data
relations [41] are used interchangeably.

These ambiguities can impede experimental design, collaborative ef-
forts, and attempts to automate the assessment, choice, or generation of
colormaps. We hypothesize that the goal of creating a cross-discipline
framework and language can best be achieved through that most fun-
damental of disciplines: mathematics. With this hypothesis, we agree
with Resnikoff [54], who states “it has been generally recognized that
a theory of color perception must be, both in form and content, a
mathematical theory.” and Kindlmann and Scheidegger [26].

Collaborating with a mathematician, a physicist, an artist, a percep-
tual scientist, and a computer scientist, we strove to unify and identify
nomenclature for the suggested rules in a way that minimalizes in-
terference with terminology in other fields. Additionally, we tried to
find nomenclature that is expressive, intuitive, unambiguous, general,
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simple, and in accordance with the names that have been used in the
literature to date. After long discussions, we were able to agree on the
taxonomy used in this paper. The definitions are general in the sense
that they are operational and independent from the colorspace, task, or
data under consideration. The contributions of this paper are as follows:

• We start by cataloging the many suggested colormap design rules
from the wide body of literature available.

• We categorize them into perceptual, mathematical, and opera-
tional rules.

• We interpret the perceptual rules based on how the authors used
them and, where possible, we delineate this interpretation by
means of a mathematical formula.

• We unify, clarify, and standardize the taxonomy by distinguishing
different uses of the same terms and summarizing different terms
for the same concept.

• Whenever possible, we associate perceptual concepts with mathe-
matical concepts and suggest measures to evaluate them.

• We provide an online tool that allows the user to assess a colormap
based on these measures.

Please note that the following items are specifically not attempted
contributions of this paper:

• We do not suggest new rules to evaluate colormaps; we simply
collect them from the literature.

• We do not judge whether or not the suggested rules from the
literature are indeed necessary or sufficient to produce a good
colormap, but only catalog them objectively.

• We do not claim that all criteria for the design of a good col-
ormap can be put into a mathematical framework; we only assign
formulas when it is possible.

• We do not consider information about the data, user, display, or
visualization task, using a general framework assuming only the
colormap itself.

• We do not restrict our framework to a specific colorspace, hypoth-
esizing instead the existence of a metric space which describes
human color perception.

• We do not claim that the suggested measures are unique or the
best ones available.

• We do not yet provide a tool for colormap improvement. Our
hope is that the work will provide a foundation that will eventually
lead to automated approaches to colormap improvement.

This common framework has two important applications. First, it
will enable scientists of different fields, users, and artists to use a com-
mon language when discussing properties of a colormap. Secondly,
it will enable the development of algorithms for the automatic assess-
ment, improvement, as well as generation of colormaps. We have
implemented the mathematical measures in a publicly accessible online
tool at http://colormeasures.org. Users can determine the measures of
their own colormaps by simply loading the corresponding .json files.

2 RELATED WORK

We first consider the breadth of colormap design rules and suggestions
available in the literature with the goal of gathering relevant terms and
meanings. We build on excellent survey works of the literature [68, 69,
90] and summarize chronologically. Please keep in mind that many of
the rules have been intuitively applied for hundreds of years [1, 62, 70,
81]. For the reader wishing to review general color foundations first,
please see Section 3 before returning to this literature review.

In the context of computer graphics, Sloan and Brown [71] mention
as early as 1979 that a colormap should consist of colors that are
maximally distinguishable and have an order that can be remembered
easily. They suggest treating the colormap as a path through color space
and mention the dependence on task, human perception, and display.

Design Rule Source
Order (intuitive, natural, easy to remember) [8, 15, 29–31, 46, 50, 52,

55, 71, 79, 81, 83, 86]
Discriminative power (separation, sensitivity, just not-
icable differences, distinct color levels, color space uti-
lization/ exploitation, perceptual range / resolution, dis-
criminability)

[15,30,41,42,46,50–52,
55, 57, 59, 71, 74, 79, 89]

Uniformity (equidistant differences, separation, asso-
ciability, separability, linearity, equal values shall be
mapped to equal colors)

[8, 15, 19, 29, 30, 40–42,
46, 50–52, 57, 60, 74, 76,
78, 79, 82, 86, 89]

Smoothness (continuity, no boundaries, no Mach bands,
low curvature no sharp bends)

[6,8,29,30,46,55,57,60,
74, 78, 86]

Equal visual importance [6, 31, 42, 55]
Robust to vision deficiencies [31, 46, 55, 88]
Robustness to contrast effects [55, 83]
Robustness to shading on 3D surfaces [40, 46, 55]
Background sensitivity [6]
Device independence (do not leave the gamut) [6, 40, 46, 76, 86, 88]
Aesthetically pleasing [39, 40, 46, 88]
Intuitive / natural color choices [64, 77]
Use different colormaps for different variables [77]
Separation of values into low, medium, and high [46, 55]
Avoid rainbow [8, 46, 57, 60, 81]
Highlighting of prominent values [76]

Table 1: Summary of the suggested perceptual colormap design rules
from the literature. We provide mathematical formulations that hold in
a non-Euclidean metric space for the bold ones.

Wainer and Francolini [81] stress order within a retinal variable, and
point out the difficulty of ordering color solely by hue.

Meyer and Greenberg [40] advocate already in 1980 uniformity in
a perceptual colorspace. They further suggest that the path of the
colormap through a perceptual color space may not leave the gamut of
a device, but should be close to the boundary to have brilliant colors.
They also suggest to only vary in hue for the coloring of 3D surfaces to
not interfere with the shading.

Trumbo [79] states that a good univariate colormap must satisfy two
fundamental principles, similar to those in [71]. The first is again order
in one or more retinal variables. However, he explicitly includes hue
as one of the retinal variables, in addition to saturation and brightness.
His second principle is separation, meaning that two different values
should be represented by perceivably different colors.

Pizer [51] stresses the importance of equal changes in the data value
to be equally perceivable in its color representation in the context of
display devices. He defines a linear device as one for which the curve
of just noticeable differences (JNDs) is constant. In [50, 52], Pizer
et al. require a colormap to satisfy naturalness of order, sensitivity,
and associability. Sensitivity in this sense corresponds to the length of
the path of the colormap through colorspace measured in the number
of JNDs, and associability to the fact that close values are mapped to
similar colors and more distant values to more different colors. They
identify two criteria that guarantee associability: continuity and mono-
tonicity in brightness. In their opinion, natural order can be achieved by
a monotonic increase in brightness and each of the RGB components,
such that the order of their intensities does not change throughout the
colormap. This is satisfied by the heated body colormap but not by the
rainbow. They differentiate perceptual tasks: qualitative, referring to
interpretation of the overall form of the data, and quantitative, referring
to the ability to read or compare exact values.

Tajima [74] states that the best colormaps have paths with large color
differences and are perceptually uniform. He suggests using colormaps
with regular color differences in a perceptually uniform colorspace to
produce perceptual uniformity.

Robertson and O’Callaghan [57] refer to Trumbo’s rules, making
use of perceptual color spaces to implement order and separation. To
our knowledge, they were the first to describe that straight lines in
a perceptual color space produce colormaps of perceptual uniformity.
They also note that bent curves can have a greater color space utilization
advocating paths that are smooth and with low curvature.

Mackinlay [37] develops an automated graphical design tool with
an algebraic underpinning.

Mathematical Rule Source
Monotonicity in an attribute (luminance, RGB, satu-
ration and hue, CIELCH)

[5, 8, 19, 25, 30, 31, 49, 50,
52, 55, 58, 60, 61, 72, 83, 88]

Invertibility [6, 30, 78]
Continuity [6, 8, 29, 30, 46, 55, 57, 60,

74, 78, 86]
Linearity [30, 46, 57, 72, 76, 78]
Constant speed [8, 51]
Long path [50, 52]
Low curvature [57]
Redundancy (invertibility / monotonicity in more
than one attribute)

[19, 55, 69, 72, 83]

Non-monotonicity in a color-opponent channel [55, 83]
Fix order of magnitudes of RGB [50, 52]

Table 2: Summary of suggested mathematical rules from the literature.

Ware [83] points out that a monotonic change in luminance is impor-
tant to see the overall form of the data (qualitative task). On the other
hand, he stresses the significance of non-monotonicity in at least one
color-opponent channel. His experiments show that a colormap that
consists of only one completely monotonic path in a single perceptual
channel is prone to error in reading the exact values of the underlying
data (quantitative task) due to the simultaneity effect.

In an early algorithmic approach, Pham [49] produces low curvature
colormaps by fitting splines through given points in color space.

Levkowitz and Herman [30] require order, uniformity, and no per-
ceivable boundaries. They define uniformity such that equally spaced
data values are represented by colors that are perceived as equally differ-
ent. This unifies Pizer’s definitions of associability and separation and
implies linearity. They suggest an algorithm that produces colormaps
that have maximal color differences, are monotonic in RGB, hue, sat-
uration, and brightness. In [29], Levkowitz suggests an algorithm to
create colormaps with equal speed between adjacent points.

Drawing on expertise and experience in cartography, Brewer [10,11]
advocates hue, lightness, and saturation as the perceptual dimensions
and suggests avoiding confounding attributes. Similar to the concept of
associability, she demands that progression along a perceptual attribute
should relate to progression in data values.

Bergman and Rogowitz, et al. [5, 58–61] distinguish different tasks,
data types, and spatial frequency, recommending colormap properties
for each combination. They mention that equal visual importance,
perceptually even spacing, smoothness, and monotonically increasing
luminance, saturation, or hue are important for the isomorphic task,
which has the goal of faithfully reflecting the structure of the underlying
data. They reject the rainbow colormap for failing at this task.

Rheingans [55] stresses the importance of considering the charac-
teristics of the data, the goals of the visualization, and the audience.
She summarizes many of the previously suggested rules and adds ro-
bustness w.r.t. color vision deficiency (CVD), classification into low,
medium, and high values, and little interference with 3D shading. She
also introduces the taxonomy of redundant colormaps, in which the
information is encoded on more than one attribute.

Light and Bartlein [31] discuss the rainbow colormap and its lack of
robustness with respect to CVD. Borland and Taylor [8] also focus on
the flaws of the rainbow. A graphical example of a thought experiment
drawn from Ware [84] considers the problem of ordering four colors
drawn from the spectrum, thus demonstrating its lack of perceptual
ordering. The tendency of the rainbow to alternately obscure features
in the data and create artifacts is also shown.

Schulze-Wollgast et al. [67] focus on the comparison task. They
extract statistical information from the data, e.g., minimum, maxi-
mum, average, median, mode, skewness, and quartiles and adjust the
colormap to gain a better color discrimination.

Zhang and Montag [89] construct colormaps in CIELAB, evaluating
their performance via user studies. They stress the importance of
perceptual uniformity and color space exploitation: the number of
distinct color levels through which the path passes.

Tominski et al. [78] are the first to explicitly relate the invertibility
of the colormap to its effectiveness. They also demand associability

and perceptual linearity and stress that the characteristics of the data,
tasks, goals, user, and output device need to be taken into account.

Wijffelaars et al. [86] state that required properties for colormaps
are perceived order, equal perceived distances, and equal importance.
They say that the latter is violated if the path of the colormap through
space has sharp bends.

Moreland [46] demands a colormap to be aesthetically pleasing,
have maximal resolution, minimal interference with shading on 3D
surfaces, robust to CVD, order, perceptual linearity, and not leave the
gamut. He provides a mathematical definition of perceptual uniformity
in a local as well as a global sense. He presents an algorithm for the
construction of diverging color maps that have a long path through
CIELAB and have no Mach bands stemming from non-smooth bends
in the colormap path. His cool/warm diverging colormap has replaced
the rainbow as the default colormap in ParaView [2].

Gresh [19] measures the perception function, which shows how big
the difference in color needs to be for a given point in the colormap
such that a certain user on a certain monitor can perceive a difference.
She goes on to develop an algorithm to transform it into a constant
function in order to achieve equal perceptual steps in the colorscale.

Thompson et al. [76] suggest applying special colors outside the
usual gradient of the colormap to dominantly occurring values.

Mittelstädt et al. [41, 42] require perceptual linearity but also a high
discriminative power and state that saturated colors are important to
achieve the latter. They publish quality measures to evaluate how well
colormaps preserve data relations based on the stress [75] and how
well they exploit the color space using the volume of the convex hull
of all used colors in CIELAB or the number of JND’s, and the visual
importance using the arc of intensity and saturation.

Bernard et al. [6] suggest definitions of colormap properties and
build relations to mathematical criteria for their assessment and map
them to different tasks in the context of bivariate colormaps. They
name color exploitation (number of JNDs), separability, background
sensitivity (JND distance to black or white), device independence, and
ease of implementation, and distinguish perceptual linearity in a local
from a global sense. For the measurement of how perceptually linear a
colormap is, they use the variance of the different slopes.

Fang et al. [17] provide an algorithm for optimizing distances be-
tween multiple discrete colors.

Experiments by Padilla et al. [48] show that binning a colormap
usually leads to longer response times, but more accurate results for a
variety of tasks on 2D scalar fields.

Thyng et al. [77] provide a set of colormaps for ocean data. They
agree that uniformity is important and suggest two new rules. Consis-
tency implies that within the same context, two variables should not be
visualized by the same colormap just as two variables should not be
represented by the same Greek symbol. Intuition means that cultural
implications and the nature of matter can improve understanding.

Samsel et al. [64] also make use of intuitive colors for the visualiza-
tion of environmental data. They provide sets of blue colormaps for
water, browns for land and greens for vegetation. Using the natural col-
ors of different matter aims at exploiting automated cognitive processes
that require less conscious concentration [4].

Please note that not all rules are advocated for as hard and fast by the
authors. They are often considered beneficial qualities between which
a trade-off needs to be found. At times, design rules are explicitly
stated w.r.t. a specific task [3]. A large body of research is dedicated
to properties of colormapping that can only be evaluated if the data is
known, because certain perceptual effects depend on the frequency, the
size of a color patch [16,73], or the composition of its surroundings [43,
45]. Other colormap qualities can not be judged without knowing the
task or goal of a visualization [3, 55, 71, 78, 83]. Also the audience,
their experience, cultural background, language, names given to colors,
personal preferences, aesthetics, and intuitive associations can influence
intepretation of a visualization [21,32,65,66]. We mention these aspects
to give a more complete overview on the literature, but in this paper, we
concentrate on deriving a general framework that does not depend on
the data, audience, task, display, goal, or colorspace. This is possible,
because we often do not need to take the context into account in order to
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simple, and in accordance with the names that have been used in the
literature to date. After long discussions, we were able to agree on the
taxonomy used in this paper. The definitions are general in the sense
that they are operational and independent from the colorspace, task, or
data under consideration. The contributions of this paper are as follows:

• We start by cataloging the many suggested colormap design rules
from the wide body of literature available.

• We categorize them into perceptual, mathematical, and opera-
tional rules.

• We interpret the perceptual rules based on how the authors used
them and, where possible, we delineate this interpretation by
means of a mathematical formula.

• We unify, clarify, and standardize the taxonomy by distinguishing
different uses of the same terms and summarizing different terms
for the same concept.

• Whenever possible, we associate perceptual concepts with mathe-
matical concepts and suggest measures to evaluate them.

• We provide an online tool that allows the user to assess a colormap
based on these measures.

Please note that the following items are specifically not attempted
contributions of this paper:

• We do not suggest new rules to evaluate colormaps; we simply
collect them from the literature.

• We do not judge whether or not the suggested rules from the
literature are indeed necessary or sufficient to produce a good
colormap, but only catalog them objectively.

• We do not claim that all criteria for the design of a good col-
ormap can be put into a mathematical framework; we only assign
formulas when it is possible.

• We do not consider information about the data, user, display, or
visualization task, using a general framework assuming only the
colormap itself.

• We do not restrict our framework to a specific colorspace, hypoth-
esizing instead the existence of a metric space which describes
human color perception.

• We do not claim that the suggested measures are unique or the
best ones available.

• We do not yet provide a tool for colormap improvement. Our
hope is that the work will provide a foundation that will eventually
lead to automated approaches to colormap improvement.

This common framework has two important applications. First, it
will enable scientists of different fields, users, and artists to use a com-
mon language when discussing properties of a colormap. Secondly,
it will enable the development of algorithms for the automatic assess-
ment, improvement, as well as generation of colormaps. We have
implemented the mathematical measures in a publicly accessible online
tool at http://colormeasures.org. Users can determine the measures of
their own colormaps by simply loading the corresponding .json files.

2 RELATED WORK

We first consider the breadth of colormap design rules and suggestions
available in the literature with the goal of gathering relevant terms and
meanings. We build on excellent survey works of the literature [68, 69,
90] and summarize chronologically. Please keep in mind that many of
the rules have been intuitively applied for hundreds of years [1, 62, 70,
81]. For the reader wishing to review general color foundations first,
please see Section 3 before returning to this literature review.

In the context of computer graphics, Sloan and Brown [71] mention
as early as 1979 that a colormap should consist of colors that are
maximally distinguishable and have an order that can be remembered
easily. They suggest treating the colormap as a path through color space
and mention the dependence on task, human perception, and display.

Design Rule Source
Order (intuitive, natural, easy to remember) [8, 15, 29–31, 46, 50, 52,

55, 71, 79, 81, 83, 86]
Discriminative power (separation, sensitivity, just not-
icable differences, distinct color levels, color space uti-
lization/ exploitation, perceptual range / resolution, dis-
criminability)

[15,30,41,42,46,50–52,
55, 57, 59, 71, 74, 79, 89]

Uniformity (equidistant differences, separation, asso-
ciability, separability, linearity, equal values shall be
mapped to equal colors)

[8, 15, 19, 29, 30, 40–42,
46, 50–52, 57, 60, 74, 76,
78, 79, 82, 86, 89]

Smoothness (continuity, no boundaries, no Mach bands,
low curvature no sharp bends)

[6,8,29,30,46,55,57,60,
74, 78, 86]

Equal visual importance [6, 31, 42, 55]
Robust to vision deficiencies [31, 46, 55, 88]
Robustness to contrast effects [55, 83]
Robustness to shading on 3D surfaces [40, 46, 55]
Background sensitivity [6]
Device independence (do not leave the gamut) [6, 40, 46, 76, 86, 88]
Aesthetically pleasing [39, 40, 46, 88]
Intuitive / natural color choices [64, 77]
Use different colormaps for different variables [77]
Separation of values into low, medium, and high [46, 55]
Avoid rainbow [8, 46, 57, 60, 81]
Highlighting of prominent values [76]

Table 1: Summary of the suggested perceptual colormap design rules
from the literature. We provide mathematical formulations that hold in
a non-Euclidean metric space for the bold ones.

Wainer and Francolini [81] stress order within a retinal variable, and
point out the difficulty of ordering color solely by hue.

Meyer and Greenberg [40] advocate already in 1980 uniformity in
a perceptual colorspace. They further suggest that the path of the
colormap through a perceptual color space may not leave the gamut of
a device, but should be close to the boundary to have brilliant colors.
They also suggest to only vary in hue for the coloring of 3D surfaces to
not interfere with the shading.

Trumbo [79] states that a good univariate colormap must satisfy two
fundamental principles, similar to those in [71]. The first is again order
in one or more retinal variables. However, he explicitly includes hue
as one of the retinal variables, in addition to saturation and brightness.
His second principle is separation, meaning that two different values
should be represented by perceivably different colors.

Pizer [51] stresses the importance of equal changes in the data value
to be equally perceivable in its color representation in the context of
display devices. He defines a linear device as one for which the curve
of just noticeable differences (JNDs) is constant. In [50, 52], Pizer
et al. require a colormap to satisfy naturalness of order, sensitivity,
and associability. Sensitivity in this sense corresponds to the length of
the path of the colormap through colorspace measured in the number
of JNDs, and associability to the fact that close values are mapped to
similar colors and more distant values to more different colors. They
identify two criteria that guarantee associability: continuity and mono-
tonicity in brightness. In their opinion, natural order can be achieved by
a monotonic increase in brightness and each of the RGB components,
such that the order of their intensities does not change throughout the
colormap. This is satisfied by the heated body colormap but not by the
rainbow. They differentiate perceptual tasks: qualitative, referring to
interpretation of the overall form of the data, and quantitative, referring
to the ability to read or compare exact values.

Tajima [74] states that the best colormaps have paths with large color
differences and are perceptually uniform. He suggests using colormaps
with regular color differences in a perceptually uniform colorspace to
produce perceptual uniformity.

Robertson and O’Callaghan [57] refer to Trumbo’s rules, making
use of perceptual color spaces to implement order and separation. To
our knowledge, they were the first to describe that straight lines in
a perceptual color space produce colormaps of perceptual uniformity.
They also note that bent curves can have a greater color space utilization
advocating paths that are smooth and with low curvature.

Mackinlay [37] develops an automated graphical design tool with
an algebraic underpinning.

Mathematical Rule Source
Monotonicity in an attribute (luminance, RGB, satu-
ration and hue, CIELCH)

[5, 8, 19, 25, 30, 31, 49, 50,
52, 55, 58, 60, 61, 72, 83, 88]

Invertibility [6, 30, 78]
Continuity [6, 8, 29, 30, 46, 55, 57, 60,

74, 78, 86]
Linearity [30, 46, 57, 72, 76, 78]
Constant speed [8, 51]
Long path [50, 52]
Low curvature [57]
Redundancy (invertibility / monotonicity in more
than one attribute)

[19, 55, 69, 72, 83]

Non-monotonicity in a color-opponent channel [55, 83]
Fix order of magnitudes of RGB [50, 52]

Table 2: Summary of suggested mathematical rules from the literature.

Ware [83] points out that a monotonic change in luminance is impor-
tant to see the overall form of the data (qualitative task). On the other
hand, he stresses the significance of non-monotonicity in at least one
color-opponent channel. His experiments show that a colormap that
consists of only one completely monotonic path in a single perceptual
channel is prone to error in reading the exact values of the underlying
data (quantitative task) due to the simultaneity effect.

In an early algorithmic approach, Pham [49] produces low curvature
colormaps by fitting splines through given points in color space.

Levkowitz and Herman [30] require order, uniformity, and no per-
ceivable boundaries. They define uniformity such that equally spaced
data values are represented by colors that are perceived as equally differ-
ent. This unifies Pizer’s definitions of associability and separation and
implies linearity. They suggest an algorithm that produces colormaps
that have maximal color differences, are monotonic in RGB, hue, sat-
uration, and brightness. In [29], Levkowitz suggests an algorithm to
create colormaps with equal speed between adjacent points.

Drawing on expertise and experience in cartography, Brewer [10,11]
advocates hue, lightness, and saturation as the perceptual dimensions
and suggests avoiding confounding attributes. Similar to the concept of
associability, she demands that progression along a perceptual attribute
should relate to progression in data values.

Bergman and Rogowitz, et al. [5, 58–61] distinguish different tasks,
data types, and spatial frequency, recommending colormap properties
for each combination. They mention that equal visual importance,
perceptually even spacing, smoothness, and monotonically increasing
luminance, saturation, or hue are important for the isomorphic task,
which has the goal of faithfully reflecting the structure of the underlying
data. They reject the rainbow colormap for failing at this task.

Rheingans [55] stresses the importance of considering the charac-
teristics of the data, the goals of the visualization, and the audience.
She summarizes many of the previously suggested rules and adds ro-
bustness w.r.t. color vision deficiency (CVD), classification into low,
medium, and high values, and little interference with 3D shading. She
also introduces the taxonomy of redundant colormaps, in which the
information is encoded on more than one attribute.

Light and Bartlein [31] discuss the rainbow colormap and its lack of
robustness with respect to CVD. Borland and Taylor [8] also focus on
the flaws of the rainbow. A graphical example of a thought experiment
drawn from Ware [84] considers the problem of ordering four colors
drawn from the spectrum, thus demonstrating its lack of perceptual
ordering. The tendency of the rainbow to alternately obscure features
in the data and create artifacts is also shown.

Schulze-Wollgast et al. [67] focus on the comparison task. They
extract statistical information from the data, e.g., minimum, maxi-
mum, average, median, mode, skewness, and quartiles and adjust the
colormap to gain a better color discrimination.

Zhang and Montag [89] construct colormaps in CIELAB, evaluating
their performance via user studies. They stress the importance of
perceptual uniformity and color space exploitation: the number of
distinct color levels through which the path passes.

Tominski et al. [78] are the first to explicitly relate the invertibility
of the colormap to its effectiveness. They also demand associability

and perceptual linearity and stress that the characteristics of the data,
tasks, goals, user, and output device need to be taken into account.

Wijffelaars et al. [86] state that required properties for colormaps
are perceived order, equal perceived distances, and equal importance.
They say that the latter is violated if the path of the colormap through
space has sharp bends.

Moreland [46] demands a colormap to be aesthetically pleasing,
have maximal resolution, minimal interference with shading on 3D
surfaces, robust to CVD, order, perceptual linearity, and not leave the
gamut. He provides a mathematical definition of perceptual uniformity
in a local as well as a global sense. He presents an algorithm for the
construction of diverging color maps that have a long path through
CIELAB and have no Mach bands stemming from non-smooth bends
in the colormap path. His cool/warm diverging colormap has replaced
the rainbow as the default colormap in ParaView [2].

Gresh [19] measures the perception function, which shows how big
the difference in color needs to be for a given point in the colormap
such that a certain user on a certain monitor can perceive a difference.
She goes on to develop an algorithm to transform it into a constant
function in order to achieve equal perceptual steps in the colorscale.

Thompson et al. [76] suggest applying special colors outside the
usual gradient of the colormap to dominantly occurring values.

Mittelstädt et al. [41, 42] require perceptual linearity but also a high
discriminative power and state that saturated colors are important to
achieve the latter. They publish quality measures to evaluate how well
colormaps preserve data relations based on the stress [75] and how
well they exploit the color space using the volume of the convex hull
of all used colors in CIELAB or the number of JND’s, and the visual
importance using the arc of intensity and saturation.

Bernard et al. [6] suggest definitions of colormap properties and
build relations to mathematical criteria for their assessment and map
them to different tasks in the context of bivariate colormaps. They
name color exploitation (number of JNDs), separability, background
sensitivity (JND distance to black or white), device independence, and
ease of implementation, and distinguish perceptual linearity in a local
from a global sense. For the measurement of how perceptually linear a
colormap is, they use the variance of the different slopes.

Fang et al. [17] provide an algorithm for optimizing distances be-
tween multiple discrete colors.

Experiments by Padilla et al. [48] show that binning a colormap
usually leads to longer response times, but more accurate results for a
variety of tasks on 2D scalar fields.

Thyng et al. [77] provide a set of colormaps for ocean data. They
agree that uniformity is important and suggest two new rules. Consis-
tency implies that within the same context, two variables should not be
visualized by the same colormap just as two variables should not be
represented by the same Greek symbol. Intuition means that cultural
implications and the nature of matter can improve understanding.

Samsel et al. [64] also make use of intuitive colors for the visualiza-
tion of environmental data. They provide sets of blue colormaps for
water, browns for land and greens for vegetation. Using the natural col-
ors of different matter aims at exploiting automated cognitive processes
that require less conscious concentration [4].

Please note that not all rules are advocated for as hard and fast by the
authors. They are often considered beneficial qualities between which
a trade-off needs to be found. At times, design rules are explicitly
stated w.r.t. a specific task [3]. A large body of research is dedicated
to properties of colormapping that can only be evaluated if the data is
known, because certain perceptual effects depend on the frequency, the
size of a color patch [16,73], or the composition of its surroundings [43,
45]. Other colormap qualities can not be judged without knowing the
task or goal of a visualization [3, 55, 71, 78, 83]. Also the audience,
their experience, cultural background, language, names given to colors,
personal preferences, aesthetics, and intuitive associations can influence
intepretation of a visualization [21,32,65,66]. We mention these aspects
to give a more complete overview on the literature, but in this paper, we
concentrate on deriving a general framework that does not depend on
the data, audience, task, display, goal, or colorspace. This is possible,
because we often do not need to take the context into account in order to
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define a rule. For example, Ware [83] states that monotonicity supports
the qualitative task, while impeding the quantitative one. However, we
do not need to know any of that to assign a formula to monotonicity.

Using the nomenclature from this paper, we have collected and sum-
marize the suggested rules from the literature. They fall into three
main categories: perceptual, mathematical, and operational rules. The
perceptual rules are fundamental. Table 1 is our attempt to gather
the most important ones from the literature. In contrast to the percep-
tual rules, the mathematical ones are merely auxiliary tools to achieve
the former. They already come with unambiguous definitions. The
most common ones from the the literature are collected in Table 2.
Finally, the operational rules, such as the use of a perceptually uni-
form colorspace [29, 30, 40, 49, 57, 72, 88, 89], device independence
and adherence to display gamut [6, 40, 46, 76, 86, 88], or ease of imple-
mentation [6] are practical rules. They form the groundwork on which
the mathematical rules can be applied. Last but not least, even though
not always stated explicitly, the underlying motivation of each of these
suggested rules is the generation of a good visualization. That means
they all follow the highest rule of producing images that best enable
the observer to understand the underlying data.

In this paper, we will define a coherent taxonomy for the most
common or important perceptual rules. This will enable us to match
the bold perceptual rules to a mathematical counterpart, providing them
with an unambiguous definition.

3 FOUNDATIONS

We start with a recap of the necessary theoretical foundations.

3.1 Colorspaces
The widely used base for color measurement is the Commision Interna-
tionale de L’Eclairage (CIE) XYZ system. It is based on the concept
that all humans have a set of three cone receptors with the same color
sensitivity functions. Although these receptor sensitivities have been
estimated using RGB primaries, the color standard uses the imaginary
primary colors X,Y, and Z, which enables all perceivable colors to have
positive, device independent coordinates [12]. However, CIEXYZ is
designed for color measurement and only relates very indirectly to
color appearance. It is perceptually non-uniform.

Uniform color spaces have been developed that attempt perceptual
uniformity in the sense that equal metric differences in the spaces should
correspond to equally large perceived difference between pairs of colors.
The seminal work on defining perceptual color differences was done
by Wright and Pitt [87] and MacAdam [36] (“MacAdam ellipses”).
Many authors agree that a perceptually uniform color space should
be used to assess the quality of colormaps [29, 30, 40, 49, 57, 88, 89].
Examples are the CIE standards, CIELUV, CIELAB, and CIECAM02-
UCS. However, these too suffer from deficiencies in that experiments
have shown that perceived color differences cannot be captured in a
Euclidean space [23, 53]. Several metrics such as ∆E1994 or ∆E2000
have been proposed on top of CIELAB to achieve greater perceptual
uniformity, but these cannot be visualized in a 3D Euclidean space
such as the popular chromaticity diagrams; the resulting space does
not have an inner product or norm associated with it. Thus there is no
straight forward definition of an angle. In addition, even these metrics
are not very accurate for the evaluation of large color differences [38].
They may produce discontinuities for colors whose hue angles differ
by 180°. In certain areas they do not even satisfy the triangle equation,
mathematically disqualifying them as a metric. For example, in ∆E2000,
white and grey as well as black and grey differ by ∆E2000 = 36 each,
but white and black differ by ∆E2000 = 100.

Another problem shared by even the best metrics is that they do
not account for effects such as simultaneous color contrast and the
discounting by the eye and brain of perceived illumination [27], which
can result in large distortions in color space. CIECAM is a color ap-
pearance model [16] designed to estimate and counterbalance some of
the interdependencies of the appearance of a color and its surround-
ings [35, 47].

In this paper, we are concerned with general purpose color sequences.
Therefore, for our theoretical work, we will assume the existence of

a hypothetical metric ∆E, that does perfectly represent the perceived
distance between two colors. As practical examples, we evaluate the
measures in the most commonly used metrics, ∆E1976, ∆E2000 [34],
and ∆ECAM02−UCS [33], henceforth denoted by ∆E76, ∆E00, and ∆E02
respectively. By making only this single assumption, our distance
metric is an updatable module.

3.2 Colormaps
The basic data in scientific visualization are scalar fields f : Rd →
R, p �→ f (p). They associate a real value f , describing a physical
quantity, with each point p in space. The most popular visualization
of two-dimensional scalar fields is color coding, where each point
is assigned a color to represent the corresponding physical value. A
continuous colormap forms a curve in a colorspace.

Definition 1 A colormap is a function x : [a,b] ⊂ R → C, which is
defined by a colorspace C, an increasing sequence of sampling points
t0 < ... < tm ∈ [a,b], a series of values in the colorspace x0, ...,xm ∈C,
the mapping x(ti) = xi, i = 0, ...,m, and a rule for interpolating the
intermediate values ti−1 < t < ti ∈ [a,b].

Unless stated otherwise, we will always interpolate linearly in
CIELAB equipped with the Euclidean metric ∆E76 in this paper. As
implemented in many tools, this makes a colormap a polygonal chain
in CIELAB. It is important to note that a straight line from linear inter-
polation generally does not coincide with the shortest path if we use a
non-Euclidean metric such as ∆E00. This can be seen if we compare
Figures 7(a) and (b). The greyscale and cool/warm divergent colormaps
are uniform with respect to ∆E76, where they were designed, but not
with respect to ∆E00.

Colormaps span a range of types including continuous, cyclical,
discrete, banded, and categorical [5, 11, 42, 46]. In this work,we restrict
the development of the theoretical framework (Section 4) to continu-
ous colormaps. However, many of the results can either be directly
applied to other types of colormaps or applied via extrapolation of the
methodology. Please note that Definition 1 includes discrete colormaps
if we use a constant interpolation scheme instead. Cyclical colormaps
can likewise be addressed with either linear or constant interpolation
as appropriate while using an angular difference rather than linear dif-
ference for the sampling points. The half greyscale and flat greyscale
showcase maps are indicative of the potential order issues that one
would also expect with banded and cyclical colormaps. Divergent
colormaps, often most appropriate for interval data, are a subset of
continuous colormaps that can also be assessed with these measures,
as shown by the cool/warm colormap included in our showcase set.
Some divergents may exhibit non-constant local speed in the vicinity
of the divergent point, but application of our framework is certainly
appropriate to divergent colormaps. A more rigorous extrapolation of
this work to the broader range of colormap types must be left for future
work.

In order to express the measures for continuous functions, we would
need infinitesimal mathematics. However, to keep the notation easily
accessible and readily implemented, we will assume that we have a
sufficiently fine, equidistant sampling on the unit interval t j = j/n, j =
0, ...,n for each colormap and use corresponding discrete formulations.
This resampled version of a colormap can be derived using the above
interpolation. The 2D images and measures in this paper were generated
using n = 20.

3.3 Available Measures for Colormap Assessment
One of the goals of this paper is to find relationships between the per-
ceptual rules in Table 1 and the mathematical ones in Table 2. But as
we discussed previously, this will not always be possible or reasonable.
For example, it seems intuitive that the perceptual qualitity of smooth-
ness is related to the curvature, but a metric space does not necessarily
provide the concept of curvature. Therefore, we will restrict ourselves
to quantities that can be measured.

In our framework, there is a distinction between the definition of
a rule and the measure for its evaluation. While the definition is

(a) ParaView’s greyscale. (b) Half greyscale. (c) Flat greyscale. (d) Moreland’s divergent. (e) ParaView’s rainbow. (f) Viridis.

Fig. 2: The matrix of the global distances D76
i,k. The colormaps are displayed on the diagonal i = j. The luminance of each patch i �= j represents

the mutual distance between the two colors at the points x(ti) and x(tk), which can be seen going horizontally and vertically towards the diagonal.

meant to be ubiquitous, there may be several measures that evaluate a
given property. For example, the stress [24, 41, 63] can be a measure
of the uniformity, as can the standard deviation of the speed, or the
acceleration. Also, measures may allow for an informal comparison in
the sense that colormap A may satisfy a rule more or less than colormap
B even if the rule can only assume the values true or false.

We will see in the next section that the (bold-faced) concepts in
Table 2 can all be evaluated from derived quantities of the global
distances. Please note that we do not claim that these measures are the
best ones possible. A detailed experimental comparison is beyond the
scope of the current paper and must be left for future work.

To guarantee that our framework is as general as possible, it must be
independent of the data, the task, and the colorspace. Therefore we are
limited to a single measure: the perceived distance between two colors
in the colormap. This is all that the assumed metric, ∆E, provides. In
the following section, we will use this measure to define the different
design rules.

For a colormap, the mutual distances between all pairs of points
ti, t j, i, j ∈ {0, ...,n} give a 2D scalar function Di, j : [0,1]2 → R

Di, j := ∆Ei j = ∆E(x(ti),x(t j)) (1)

as illustrated in Figure 2. The matrix visualization, similar to Demiralp
et al. [14], uses luminance to indicate the mutual distances between any
two colors. Higher luminance indicates a greater distance. From this,
we can derive various statistical quantities such as minimum, maximum,
mean, and standard deviation.

Additionally, the distance allows for a definition of the metric speed
∀i �= j ∈ {0, ...,n} : Vi, j : [0,1]2 → R,

Vi, j :=
Di, j

|t j − ti|
, (2)

shown in Figure 1 for the showcase colormaps. Note that in a normed
vector space, we could use the velocity, i.e. the vector valued derivative
of the distance, but in an arbitrary metric space, it does not exist.

3.4 Local and Global Measures
As briefly touched on in Section 1, we found in the review of the
literature that when noticeably different concepts were referred to with
the same terms, they could often be decoupled by distinguishing a local
interpretation from the global interpretation. Robertson [56] notes:
“The significance, and exploitation, of the difference between local
interpretation and global interpretation (or concentration) is particularly
clear, for example in the graphic works of M. C. Escher, the music of
J. S. Bach, and in many other artistic fields [22].” We will likewise use
this distinction of local and global quantities for our framework.

Global quantities describe the relationship of a color in a colormap
to any other of its colors. The two-dimensional function of global
distances is given in (1) and the global speeds in (2). In contrast,
the local concepts describe the relationship of a color and its near
neighborbors.

In this sense, we can derive the one-dimensional local distance func-
tion d j : [0,1]→ R between two neighboring points on the colormap
∀ j = 1, ...,n :

d j := D j, j−1 (3)

and analogously the local speed v j : [0,1]→ R, illustrated in Figure 7:

v j :=Vj, j−1. (4)

4 THEORETICAL FRAMEWORK

In this section, we analyze the most common design rules from the
summary in Table 1: discriminative power, uniformity, and order. For
each concept, we will first browse the related work for nuances in the
way they are used by the different authors, then specify the taxonomy.
Finally, we will provide an unambiguous mathematical definition using
only the measures of distance and speed introduced in the previous
section and their derived quantities such as minimum, average, or
standard deviation. The restriction to these measures for the evaluation
of the design rules is crucial for the generality.

We will illustrate the quality measures using a set of six showcase
colormaps shown in Figure 1. The greyscale and rainbow are from Par-
aView [2], cool/warm divergent from Moreland [46], and Viridis [80]
from Matplotlib. The adaptions of the greyscale we constructed our-
selves for illustrative purposes. We will also briefly discuss smoothness,
attribute-related measures, and robustness, but without mathematical
formulations.

4.1 Discriminative Power
We decided to use the terminology of the discriminative power of a
colormap to unify the terms maximally distinguishable [71], separa-
tion [55,79], sensitivity, or dynamic range [30,50–52], color differences,
number of distinct colors, number of just noticable differences [30, 74],
color space utilization [57], color space exploitation [6,15,41], number
of distinct colors/color levels [6,15,41,42,50–52,89], perceptual range,
perceptual resolution [46], discriminability [15], because the way that
these different terms have been used suggests a common idea.

Pizer at al. [50–52], describe how it can be evaluated experimentally
using the notion of just noticable differences (JNDs) and Rogowitz
et. al. [59] demonstrate a psychophysical experimental methodology.
From the way, they and others [57, 74] discuss discriminative power, it
corresponds to the arclength ∑n

j=1 d j of the colormap’s curve through
colorspace. We will call this interpretation the local discriminative
power of a colormap as it only takes the relationship between neigh-
boring points into account. On the unit interval, it coincides with the
average local speed v̄ ∈ R:

v̄ :=
∑n

j=1 v j

n−1
=

∑n
j=1 v jh

∑n
j=1 h

=
∑n

j=1 v j(t j − t j−1)

∑n
j=1 t j − t j−1

=
∑n

j=1 d j

(tn − t0)
=

n

∑
j=1

d j.

(5)
Other authors describe the discriminative power in a broader

sense [15, 41, 42, 55, 71, 79, 89]. They refer to a more global meaning
in which not only the distances between neighboring colors play a
role but across the entire colormap. We will call this interpretation
the global discriminative power of a colormap. The staightforward
generalization of arclength to a two-dimensional function would be the
surface area, but its computation would require the existence of a cross
product, which does not necessarily exist in a metric space. Summing
up all pairwise distances ∑n

i�= j=0 Di, j is also not very helpful because
it grows with the number of sample points n. A measure that can be
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define a rule. For example, Ware [83] states that monotonicity supports
the qualitative task, while impeding the quantitative one. However, we
do not need to know any of that to assign a formula to monotonicity.

Using the nomenclature from this paper, we have collected and sum-
marize the suggested rules from the literature. They fall into three
main categories: perceptual, mathematical, and operational rules. The
perceptual rules are fundamental. Table 1 is our attempt to gather
the most important ones from the literature. In contrast to the percep-
tual rules, the mathematical ones are merely auxiliary tools to achieve
the former. They already come with unambiguous definitions. The
most common ones from the the literature are collected in Table 2.
Finally, the operational rules, such as the use of a perceptually uni-
form colorspace [29, 30, 40, 49, 57, 72, 88, 89], device independence
and adherence to display gamut [6, 40, 46, 76, 86, 88], or ease of imple-
mentation [6] are practical rules. They form the groundwork on which
the mathematical rules can be applied. Last but not least, even though
not always stated explicitly, the underlying motivation of each of these
suggested rules is the generation of a good visualization. That means
they all follow the highest rule of producing images that best enable
the observer to understand the underlying data.

In this paper, we will define a coherent taxonomy for the most
common or important perceptual rules. This will enable us to match
the bold perceptual rules to a mathematical counterpart, providing them
with an unambiguous definition.

3 FOUNDATIONS

We start with a recap of the necessary theoretical foundations.

3.1 Colorspaces
The widely used base for color measurement is the Commision Interna-
tionale de L’Eclairage (CIE) XYZ system. It is based on the concept
that all humans have a set of three cone receptors with the same color
sensitivity functions. Although these receptor sensitivities have been
estimated using RGB primaries, the color standard uses the imaginary
primary colors X,Y, and Z, which enables all perceivable colors to have
positive, device independent coordinates [12]. However, CIEXYZ is
designed for color measurement and only relates very indirectly to
color appearance. It is perceptually non-uniform.

Uniform color spaces have been developed that attempt perceptual
uniformity in the sense that equal metric differences in the spaces should
correspond to equally large perceived difference between pairs of colors.
The seminal work on defining perceptual color differences was done
by Wright and Pitt [87] and MacAdam [36] (“MacAdam ellipses”).
Many authors agree that a perceptually uniform color space should
be used to assess the quality of colormaps [29, 30, 40, 49, 57, 88, 89].
Examples are the CIE standards, CIELUV, CIELAB, and CIECAM02-
UCS. However, these too suffer from deficiencies in that experiments
have shown that perceived color differences cannot be captured in a
Euclidean space [23, 53]. Several metrics such as ∆E1994 or ∆E2000
have been proposed on top of CIELAB to achieve greater perceptual
uniformity, but these cannot be visualized in a 3D Euclidean space
such as the popular chromaticity diagrams; the resulting space does
not have an inner product or norm associated with it. Thus there is no
straight forward definition of an angle. In addition, even these metrics
are not very accurate for the evaluation of large color differences [38].
They may produce discontinuities for colors whose hue angles differ
by 180°. In certain areas they do not even satisfy the triangle equation,
mathematically disqualifying them as a metric. For example, in ∆E2000,
white and grey as well as black and grey differ by ∆E2000 = 36 each,
but white and black differ by ∆E2000 = 100.

Another problem shared by even the best metrics is that they do
not account for effects such as simultaneous color contrast and the
discounting by the eye and brain of perceived illumination [27], which
can result in large distortions in color space. CIECAM is a color ap-
pearance model [16] designed to estimate and counterbalance some of
the interdependencies of the appearance of a color and its surround-
ings [35, 47].

In this paper, we are concerned with general purpose color sequences.
Therefore, for our theoretical work, we will assume the existence of

a hypothetical metric ∆E, that does perfectly represent the perceived
distance between two colors. As practical examples, we evaluate the
measures in the most commonly used metrics, ∆E1976, ∆E2000 [34],
and ∆ECAM02−UCS [33], henceforth denoted by ∆E76, ∆E00, and ∆E02
respectively. By making only this single assumption, our distance
metric is an updatable module.

3.2 Colormaps
The basic data in scientific visualization are scalar fields f : Rd →
R, p �→ f (p). They associate a real value f , describing a physical
quantity, with each point p in space. The most popular visualization
of two-dimensional scalar fields is color coding, where each point
is assigned a color to represent the corresponding physical value. A
continuous colormap forms a curve in a colorspace.

Definition 1 A colormap is a function x : [a,b] ⊂ R → C, which is
defined by a colorspace C, an increasing sequence of sampling points
t0 < ... < tm ∈ [a,b], a series of values in the colorspace x0, ...,xm ∈C,
the mapping x(ti) = xi, i = 0, ...,m, and a rule for interpolating the
intermediate values ti−1 < t < ti ∈ [a,b].

Unless stated otherwise, we will always interpolate linearly in
CIELAB equipped with the Euclidean metric ∆E76 in this paper. As
implemented in many tools, this makes a colormap a polygonal chain
in CIELAB. It is important to note that a straight line from linear inter-
polation generally does not coincide with the shortest path if we use a
non-Euclidean metric such as ∆E00. This can be seen if we compare
Figures 7(a) and (b). The greyscale and cool/warm divergent colormaps
are uniform with respect to ∆E76, where they were designed, but not
with respect to ∆E00.

Colormaps span a range of types including continuous, cyclical,
discrete, banded, and categorical [5, 11, 42, 46]. In this work,we restrict
the development of the theoretical framework (Section 4) to continu-
ous colormaps. However, many of the results can either be directly
applied to other types of colormaps or applied via extrapolation of the
methodology. Please note that Definition 1 includes discrete colormaps
if we use a constant interpolation scheme instead. Cyclical colormaps
can likewise be addressed with either linear or constant interpolation
as appropriate while using an angular difference rather than linear dif-
ference for the sampling points. The half greyscale and flat greyscale
showcase maps are indicative of the potential order issues that one
would also expect with banded and cyclical colormaps. Divergent
colormaps, often most appropriate for interval data, are a subset of
continuous colormaps that can also be assessed with these measures,
as shown by the cool/warm colormap included in our showcase set.
Some divergents may exhibit non-constant local speed in the vicinity
of the divergent point, but application of our framework is certainly
appropriate to divergent colormaps. A more rigorous extrapolation of
this work to the broader range of colormap types must be left for future
work.

In order to express the measures for continuous functions, we would
need infinitesimal mathematics. However, to keep the notation easily
accessible and readily implemented, we will assume that we have a
sufficiently fine, equidistant sampling on the unit interval t j = j/n, j =
0, ...,n for each colormap and use corresponding discrete formulations.
This resampled version of a colormap can be derived using the above
interpolation. The 2D images and measures in this paper were generated
using n = 20.

3.3 Available Measures for Colormap Assessment
One of the goals of this paper is to find relationships between the per-
ceptual rules in Table 1 and the mathematical ones in Table 2. But as
we discussed previously, this will not always be possible or reasonable.
For example, it seems intuitive that the perceptual qualitity of smooth-
ness is related to the curvature, but a metric space does not necessarily
provide the concept of curvature. Therefore, we will restrict ourselves
to quantities that can be measured.

In our framework, there is a distinction between the definition of
a rule and the measure for its evaluation. While the definition is

(a) ParaView’s greyscale. (b) Half greyscale. (c) Flat greyscale. (d) Moreland’s divergent. (e) ParaView’s rainbow. (f) Viridis.

Fig. 2: The matrix of the global distances D76
i,k. The colormaps are displayed on the diagonal i = j. The luminance of each patch i �= j represents

the mutual distance between the two colors at the points x(ti) and x(tk), which can be seen going horizontally and vertically towards the diagonal.

meant to be ubiquitous, there may be several measures that evaluate a
given property. For example, the stress [24, 41, 63] can be a measure
of the uniformity, as can the standard deviation of the speed, or the
acceleration. Also, measures may allow for an informal comparison in
the sense that colormap A may satisfy a rule more or less than colormap
B even if the rule can only assume the values true or false.

We will see in the next section that the (bold-faced) concepts in
Table 2 can all be evaluated from derived quantities of the global
distances. Please note that we do not claim that these measures are the
best ones possible. A detailed experimental comparison is beyond the
scope of the current paper and must be left for future work.

To guarantee that our framework is as general as possible, it must be
independent of the data, the task, and the colorspace. Therefore we are
limited to a single measure: the perceived distance between two colors
in the colormap. This is all that the assumed metric, ∆E, provides. In
the following section, we will use this measure to define the different
design rules.

For a colormap, the mutual distances between all pairs of points
ti, t j, i, j ∈ {0, ...,n} give a 2D scalar function Di, j : [0,1]2 → R

Di, j := ∆Ei j = ∆E(x(ti),x(t j)) (1)

as illustrated in Figure 2. The matrix visualization, similar to Demiralp
et al. [14], uses luminance to indicate the mutual distances between any
two colors. Higher luminance indicates a greater distance. From this,
we can derive various statistical quantities such as minimum, maximum,
mean, and standard deviation.

Additionally, the distance allows for a definition of the metric speed
∀i �= j ∈ {0, ...,n} : Vi, j : [0,1]2 → R,

Vi, j :=
Di, j

|t j − ti|
, (2)

shown in Figure 1 for the showcase colormaps. Note that in a normed
vector space, we could use the velocity, i.e. the vector valued derivative
of the distance, but in an arbitrary metric space, it does not exist.

3.4 Local and Global Measures
As briefly touched on in Section 1, we found in the review of the
literature that when noticeably different concepts were referred to with
the same terms, they could often be decoupled by distinguishing a local
interpretation from the global interpretation. Robertson [56] notes:
“The significance, and exploitation, of the difference between local
interpretation and global interpretation (or concentration) is particularly
clear, for example in the graphic works of M. C. Escher, the music of
J. S. Bach, and in many other artistic fields [22].” We will likewise use
this distinction of local and global quantities for our framework.

Global quantities describe the relationship of a color in a colormap
to any other of its colors. The two-dimensional function of global
distances is given in (1) and the global speeds in (2). In contrast,
the local concepts describe the relationship of a color and its near
neighborbors.

In this sense, we can derive the one-dimensional local distance func-
tion d j : [0,1]→ R between two neighboring points on the colormap
∀ j = 1, ...,n :

d j := D j, j−1 (3)

and analogously the local speed v j : [0,1]→ R, illustrated in Figure 7:

v j :=Vj, j−1. (4)

4 THEORETICAL FRAMEWORK

In this section, we analyze the most common design rules from the
summary in Table 1: discriminative power, uniformity, and order. For
each concept, we will first browse the related work for nuances in the
way they are used by the different authors, then specify the taxonomy.
Finally, we will provide an unambiguous mathematical definition using
only the measures of distance and speed introduced in the previous
section and their derived quantities such as minimum, average, or
standard deviation. The restriction to these measures for the evaluation
of the design rules is crucial for the generality.

We will illustrate the quality measures using a set of six showcase
colormaps shown in Figure 1. The greyscale and rainbow are from Par-
aView [2], cool/warm divergent from Moreland [46], and Viridis [80]
from Matplotlib. The adaptions of the greyscale we constructed our-
selves for illustrative purposes. We will also briefly discuss smoothness,
attribute-related measures, and robustness, but without mathematical
formulations.

4.1 Discriminative Power
We decided to use the terminology of the discriminative power of a
colormap to unify the terms maximally distinguishable [71], separa-
tion [55,79], sensitivity, or dynamic range [30,50–52], color differences,
number of distinct colors, number of just noticable differences [30, 74],
color space utilization [57], color space exploitation [6,15,41], number
of distinct colors/color levels [6,15,41,42,50–52,89], perceptual range,
perceptual resolution [46], discriminability [15], because the way that
these different terms have been used suggests a common idea.

Pizer at al. [50–52], describe how it can be evaluated experimentally
using the notion of just noticable differences (JNDs) and Rogowitz
et. al. [59] demonstrate a psychophysical experimental methodology.
From the way, they and others [57, 74] discuss discriminative power, it
corresponds to the arclength ∑n

j=1 d j of the colormap’s curve through
colorspace. We will call this interpretation the local discriminative
power of a colormap as it only takes the relationship between neigh-
boring points into account. On the unit interval, it coincides with the
average local speed v̄ ∈ R:

v̄ :=
∑n

j=1 v j

n−1
=

∑n
j=1 v jh

∑n
j=1 h

=
∑n

j=1 v j(t j − t j−1)

∑n
j=1 t j − t j−1

=
∑n

j=1 d j

(tn − t0)
=

n

∑
j=1

d j.

(5)
Other authors describe the discriminative power in a broader

sense [15, 41, 42, 55, 71, 79, 89]. They refer to a more global meaning
in which not only the distances between neighboring colors play a
role but across the entire colormap. We will call this interpretation
the global discriminative power of a colormap. The staightforward
generalization of arclength to a two-dimensional function would be the
surface area, but its computation would require the existence of a cross
product, which does not necessarily exist in a metric space. Summing
up all pairwise distances ∑n

i�= j=0 Di, j is also not very helpful because
it grows with the number of sample points n. A measure that can be
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(a) Greyscale with local v̄∆E76 = 100 and global V̄ ∆E76 = 100 discriminative power.

(b) Half greyscale with local v̄∆E76 = 100 and global V̄ ∆E76 = 68 discriminative power.

(c) Flat greyscale with local v̄∆E76 = 100 and global V̄ ∆E76 = 65 discriminative power.

Fig. 3: All colormaps have the same local but different global discrimi-
native powers.

directly generalized to measure the global discriminative power is the
average global speed V̄ ∈ R:

V̄ :=
∑n

i�= j=0 Vi, j

n(n−1)
. (6)

An illustration of the difference of the two measures can be found in
Figure 3. The average global speed of our showcase colormaps can be
seen in Figure 4.

Fig. 4: The global speed characteristics of the showcase colormaps. A
colormap’s average speed correlates to its discriminative power. It is
highest for the rainbow and lowest for the greyscales. The minimum
speed measures its legend-based order. It is violated for GreyHalf and
GreyFlat. The standard deviation of the speed measures its uniformity.
The Greyscale is uniform in ∆E76.

4.2 Uniformity
We chose the term uniformity [30, 40, 57] to encompass the terminol-
ogy of separation [55, 79], associability [50–52], equal spacing [57]
perceptual linearity [6, 50–52, 78, 88], even spacing [60], represen-
tative distance [30], perceptual uniformity [46, 57, 74, 82, 89], equal
perceived distances [86], equal perceptual steps [19], preservation of
data relations [10, 11, 41, 42], separability, and preservation of data
distances [6], all of which appear to follow a common concept.

The definition of uniformity in the literature is not very controversial.
To our knowledge, the first explicit formula was given by Levkowitz and
Herman in 1992 [30]. While some authors seem to refer to uniformity
in a global sense [55, 79], others only consider neighboring sample
points [74]. Many are aware of this difference and make a distinction
between local and global uniformity [6, 41, 42, 57]. The difference is
illustrated in Figures 5 and 6.

(a) Local and global. (b) Local but not global. (c) Neither local not global.

Fig. 5: Illustration of the uniformity, which corresponds to the standard
deviation of the speed. For local, the colormap must suffice σv = 0, for
global, σV = 0.

One approach to experimentally test uniformity would be to present
the observer with two pairs of colors. A colormap is uniform if the

(a) Greyscale satisfies local σv∆E76 = 0 and global σV ∆E76 = 0 uniformity.

(b) Half greyscale satisfies local σv∆E76 = 0 but not global σV ∆E76 = 37 uniformity.

(c) Rainbow satisfies neither local σv∆E76 = 122 nor global σV ∆E76 = 76 uniformity.

Fig. 6: Uniformity of different colormaps. For local, they must suffice
σv = 0 and for global σV = 0.

observer perceives the pair as more similar for those pairs that corre-
spond to sample points that are less distant. An example can be found
in [86]. For the local interpretation, the pairs need to be formed from
three consecutive colors.

A colormap suffices local uniformity if the distances between adja-
cent colors correspond to the distances of the values they represent:

∀ j ∈ {1, ...,n} :
d j

t j − t j−1
=

d j+1

t j+1 − t j
(7)

It is obvious from the definition that the local uniformity is equivalent to
constant local speed. The local uniformity of our showcase colormaps is
shown in Figure 7. The less the local speed deviates from the average,
the more uniform is the colormap. For an overall measure of local
uniformity, we can use the standard deviation of the local speed
σv ∈ R:

σv :=
√

∑(v j − v)2 (8)

Low standard deviation corresponds to high local uniformity.
A colormap satisfies global uniformity, if

∀i, j,k, l ∈ {1, ...,n} :
Di, j

|t j − ti|
=

Dk,l

|tk − tl |
, (9)

which is equivalent to the global speed being constant. Global unifor-
mity is a very strong constraint. In a Euclidean setting, it would be
equivalent to the mathematical definition of linearity, which means,
using the ∆E76 metric, that only straight lines in CIELAB fulfill it.
This is probably the reason why Levkowitz and Herman [30] and also
Moreland [46] define uniformity in a global sense, but enforce only a
local version when constructing their colormaps. In a non-Euclidean
setting, linearity is not defined in a straightforward way.

Analogous to the local case, an overall measure of global uniformity
is the standard deviation of the global speed σV ∈ R:

σV =

√
∑n

i�= j=0(Vi, j −V )2

n(n−1)
, (10)

which can be found in Figure 4 applied to the six showcase colormaps.
As expected, it is zero for the linear greyscale and maximal for the
rainbow.

4.3 Order
The term order is sometimes used to describe different properties of a
colormap. Sloan and Brown [71] use order in the sense that it can be
remembered easily. Thus they would allow a user to consult the legend
before ordering the colors. In contrast, other authors [46, 52, 57, 83]
demand a natural or intuitive order, such that a user should not need
a legend to be able to order the colors. Levkowitz and Herman [30]
give it a local meaning. They want a color xi−1 to perceptually precede
its successor, i.e. xi−1 < xi,∀i = 1, ...,n. On the other hand, Ware [84]
refers to order in a global sense. Not only adjacent colors, but colors
picked from anywhere in the colormap should be sortable by a user.
While Ware does not distinguish whether the user sorts them from low
to high or vice versa, Moreland wants the user to be able to associate

(a) ∆E76 (b) ∆E00 (c) ∆E02

Fig. 7: The local speeds v j of our showcase colormaps. If the minimum vmin > 0 is positive, it is locally
invertible, i.e. we have local legend-based order. The flat greyscale has a local speed of zero between
0.2 and 0.8, because it is identically grey there. All other colormaps can be locally ordered. The higher the
average local speed v̄, the higher is the local discriminative power. It is equally low for all greyscales
and highest for the rainbow. The deviation from the average is a measure of the local uniformity.

Fig. 8: Illustration of the triangle
side difference Tri jk. Here, the col-
ors can be correctly ordered, because
the longest side connects the two
outer points, i.e. the middle point
lies within the dark grey area.

low and high values with the colors on the colormap [46]. Taking all of
this into account, we define different notions of order as follows.

Experimentally speaking, a colormap is considered to satisfy order
if for a given a set of colors picked from the colormap, any general
observer would sort them in the same way [84]. We add the follow-
ing specifications to account for the different uses of the term in the
literature and to make them distinguishable.

Intuitive vs easy to remember vs legend-based: Either the sorting
is performed without, or after, or during access to the legend.

Local vs global: The sample points are chosen either consecutively
or arbitrarily.

Directed vs undirected: Either the user can sort two colors in the
same order, or is able to consistently pick the middle one out of three
colors.

Please note that legend-based order implies directed order. Since
a metric by definition is symmetric, it is not possible to describe the
concept of directed, intuitive order per se. The concept of an easily
remembered order is strongly dependent on the cognitive abilities of
a human and cannot be expressed in our metric space. We treat the
remaining cases in the following subsections.

4.3.1 Legend-Based Order
Local legend-based order is related to the concept of local invertibil-
ity. It is fulfilled as long as two neighboring colors do not coincide:

∀ j ∈ {1, ...,n} : x j−1 �= x j. (11)

We could use the minimum local distance, minn
j=1 d j and check if it is

non-zero. But for human observers, it is not sufficient for the points to
be different, they need them to be noticeably different. The intuitive
way to evaluate how different neighboring colors are is to use the local
distance d j, but its behavior is not easy to interpret. It depends on the
resolution with which we compute it and will decrease with growing n.
Therefore, we will use the minimum local speed vmin ∈ R:

vmin := min
j∈{1,...,n}

v j. (12)

It is zero iff the colormap is not invertible. The higher it is, the more
easily the colormap can be inverted locally. As a side note: since the

(a) Local and global. (b) Local but not global. (c) Neither local nor global.

Fig. 9: Illustration of the legend-based order, which corresponds to the
invertibility. For local, the colormap must suffice vmin > 0; for global
Vmin > 0.

local speed is the finite approximation to the first derivative, demanding
it to be non-zero is the discrete equivalent of the inverse function theo-
rem. Local non-intuitive undirected order corresponds to invertibility
in a neighborhood.

(a) Greyscale satisfies local v
∆E76
min = 100 and global V

∆E76
min = 100 legend-based order.

(b) Half greyscale satisfies local v
∆E76
min = 100 but not global V

∆E76
min = 0 legend-based.

(c) Flat greyscale has neither local v
∆E76
min = 0 nor global V

∆E76
min = 0 legend-based order.

Fig. 10: These colormaps have different properties w.r.t. legend-based
order. For local, they must suffice vmin > 0 and for global Vmin > 0.

Global legend-based order is the analog when the distances do not
correspond to neighboring points, but can be taken from anywhere
in the colormap. This means it corresponds to the invertibility of a
function [30, 78]. It is guaranteed if the function is injective:

∀ j �= i ∈ {0, ...,n} : xi �= x j, (13)

which means that the colors are mutually distinct.
Again, analogous to the local case, we can measure it using the

minimum global speed Vmin ∈ R:

Vmin = min
i�= j∈{1,...,n}

Vi, j. (14)

Examples of the different legend-based orders can be found in Figures 9
and 10.

The overall global legend-based order of our showcase colormaps
can be seen in Figure 4. The minimum global speed is zero for the half
greyscale and the flat greyscale. Thus these two can not be ordered
globally even given a legend. All others can be ordered. Figure 7 shows
the local legend-based order. The greyscale with the flat area cannot be
ordered. The flat green part in the rainbow exhibits a significant drop
in local speed, reflecting the difficulty of ordering in that region.

4.3.2 Intuitive Order
Our metric can determine how different an observer perceives pairs of
colors. As a result, we expect the observer to correctly sort three colors
in an intuitive way if the distance of the two outer colors is larger than
their respective distances to the one in the middle. The corresponding
mathematical formulation for local intuitive order is therefore:

∀ j ∈ {1, ...,n−1} : D j−1, j < D j−1, j+1 > D j, j+1. (15)

Since the local triangle side ratio max(D j−1, j,D j, j+1)/D j−1, j+1 is
numerically unstable for small ∆E j−1, j+1 we use the local triangle
side difference tr j : [0,1]→ R:

tr j :=
D j−1, j+1 −max(D j−1, j,D j, j+1)

t j+1 − t j−1
. (16)
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(a) Greyscale with local v̄∆E76 = 100 and global V̄ ∆E76 = 100 discriminative power.

(b) Half greyscale with local v̄∆E76 = 100 and global V̄ ∆E76 = 68 discriminative power.

(c) Flat greyscale with local v̄∆E76 = 100 and global V̄ ∆E76 = 65 discriminative power.

Fig. 3: All colormaps have the same local but different global discrimi-
native powers.

directly generalized to measure the global discriminative power is the
average global speed V̄ ∈ R:

V̄ :=
∑n

i�= j=0 Vi, j

n(n−1)
. (6)

An illustration of the difference of the two measures can be found in
Figure 3. The average global speed of our showcase colormaps can be
seen in Figure 4.

Fig. 4: The global speed characteristics of the showcase colormaps. A
colormap’s average speed correlates to its discriminative power. It is
highest for the rainbow and lowest for the greyscales. The minimum
speed measures its legend-based order. It is violated for GreyHalf and
GreyFlat. The standard deviation of the speed measures its uniformity.
The Greyscale is uniform in ∆E76.

4.2 Uniformity
We chose the term uniformity [30, 40, 57] to encompass the terminol-
ogy of separation [55, 79], associability [50–52], equal spacing [57]
perceptual linearity [6, 50–52, 78, 88], even spacing [60], represen-
tative distance [30], perceptual uniformity [46, 57, 74, 82, 89], equal
perceived distances [86], equal perceptual steps [19], preservation of
data relations [10, 11, 41, 42], separability, and preservation of data
distances [6], all of which appear to follow a common concept.

The definition of uniformity in the literature is not very controversial.
To our knowledge, the first explicit formula was given by Levkowitz and
Herman in 1992 [30]. While some authors seem to refer to uniformity
in a global sense [55, 79], others only consider neighboring sample
points [74]. Many are aware of this difference and make a distinction
between local and global uniformity [6, 41, 42, 57]. The difference is
illustrated in Figures 5 and 6.

(a) Local and global. (b) Local but not global. (c) Neither local not global.

Fig. 5: Illustration of the uniformity, which corresponds to the standard
deviation of the speed. For local, the colormap must suffice σv = 0, for
global, σV = 0.

One approach to experimentally test uniformity would be to present
the observer with two pairs of colors. A colormap is uniform if the

(a) Greyscale satisfies local σv∆E76 = 0 and global σV ∆E76 = 0 uniformity.

(b) Half greyscale satisfies local σv∆E76 = 0 but not global σV ∆E76 = 37 uniformity.

(c) Rainbow satisfies neither local σv∆E76 = 122 nor global σV ∆E76 = 76 uniformity.

Fig. 6: Uniformity of different colormaps. For local, they must suffice
σv = 0 and for global σV = 0.

observer perceives the pair as more similar for those pairs that corre-
spond to sample points that are less distant. An example can be found
in [86]. For the local interpretation, the pairs need to be formed from
three consecutive colors.

A colormap suffices local uniformity if the distances between adja-
cent colors correspond to the distances of the values they represent:

∀ j ∈ {1, ...,n} :
d j

t j − t j−1
=

d j+1

t j+1 − t j
(7)

It is obvious from the definition that the local uniformity is equivalent to
constant local speed. The local uniformity of our showcase colormaps is
shown in Figure 7. The less the local speed deviates from the average,
the more uniform is the colormap. For an overall measure of local
uniformity, we can use the standard deviation of the local speed
σv ∈ R:

σv :=
√

∑(v j − v)2 (8)

Low standard deviation corresponds to high local uniformity.
A colormap satisfies global uniformity, if

∀i, j,k, l ∈ {1, ...,n} :
Di, j

|t j − ti|
=

Dk,l

|tk − tl |
, (9)

which is equivalent to the global speed being constant. Global unifor-
mity is a very strong constraint. In a Euclidean setting, it would be
equivalent to the mathematical definition of linearity, which means,
using the ∆E76 metric, that only straight lines in CIELAB fulfill it.
This is probably the reason why Levkowitz and Herman [30] and also
Moreland [46] define uniformity in a global sense, but enforce only a
local version when constructing their colormaps. In a non-Euclidean
setting, linearity is not defined in a straightforward way.

Analogous to the local case, an overall measure of global uniformity
is the standard deviation of the global speed σV ∈ R:

σV =

√
∑n

i�= j=0(Vi, j −V )2

n(n−1)
, (10)

which can be found in Figure 4 applied to the six showcase colormaps.
As expected, it is zero for the linear greyscale and maximal for the
rainbow.

4.3 Order
The term order is sometimes used to describe different properties of a
colormap. Sloan and Brown [71] use order in the sense that it can be
remembered easily. Thus they would allow a user to consult the legend
before ordering the colors. In contrast, other authors [46, 52, 57, 83]
demand a natural or intuitive order, such that a user should not need
a legend to be able to order the colors. Levkowitz and Herman [30]
give it a local meaning. They want a color xi−1 to perceptually precede
its successor, i.e. xi−1 < xi,∀i = 1, ...,n. On the other hand, Ware [84]
refers to order in a global sense. Not only adjacent colors, but colors
picked from anywhere in the colormap should be sortable by a user.
While Ware does not distinguish whether the user sorts them from low
to high or vice versa, Moreland wants the user to be able to associate

(a) ∆E76 (b) ∆E00 (c) ∆E02

Fig. 7: The local speeds v j of our showcase colormaps. If the minimum vmin > 0 is positive, it is locally
invertible, i.e. we have local legend-based order. The flat greyscale has a local speed of zero between
0.2 and 0.8, because it is identically grey there. All other colormaps can be locally ordered. The higher the
average local speed v̄, the higher is the local discriminative power. It is equally low for all greyscales
and highest for the rainbow. The deviation from the average is a measure of the local uniformity.

Fig. 8: Illustration of the triangle
side difference Tri jk. Here, the col-
ors can be correctly ordered, because
the longest side connects the two
outer points, i.e. the middle point
lies within the dark grey area.

low and high values with the colors on the colormap [46]. Taking all of
this into account, we define different notions of order as follows.

Experimentally speaking, a colormap is considered to satisfy order
if for a given a set of colors picked from the colormap, any general
observer would sort them in the same way [84]. We add the follow-
ing specifications to account for the different uses of the term in the
literature and to make them distinguishable.

Intuitive vs easy to remember vs legend-based: Either the sorting
is performed without, or after, or during access to the legend.

Local vs global: The sample points are chosen either consecutively
or arbitrarily.

Directed vs undirected: Either the user can sort two colors in the
same order, or is able to consistently pick the middle one out of three
colors.

Please note that legend-based order implies directed order. Since
a metric by definition is symmetric, it is not possible to describe the
concept of directed, intuitive order per se. The concept of an easily
remembered order is strongly dependent on the cognitive abilities of
a human and cannot be expressed in our metric space. We treat the
remaining cases in the following subsections.

4.3.1 Legend-Based Order
Local legend-based order is related to the concept of local invertibil-
ity. It is fulfilled as long as two neighboring colors do not coincide:

∀ j ∈ {1, ...,n} : x j−1 �= x j. (11)

We could use the minimum local distance, minn
j=1 d j and check if it is

non-zero. But for human observers, it is not sufficient for the points to
be different, they need them to be noticeably different. The intuitive
way to evaluate how different neighboring colors are is to use the local
distance d j, but its behavior is not easy to interpret. It depends on the
resolution with which we compute it and will decrease with growing n.
Therefore, we will use the minimum local speed vmin ∈ R:

vmin := min
j∈{1,...,n}

v j. (12)

It is zero iff the colormap is not invertible. The higher it is, the more
easily the colormap can be inverted locally. As a side note: since the

(a) Local and global. (b) Local but not global. (c) Neither local nor global.

Fig. 9: Illustration of the legend-based order, which corresponds to the
invertibility. For local, the colormap must suffice vmin > 0; for global
Vmin > 0.

local speed is the finite approximation to the first derivative, demanding
it to be non-zero is the discrete equivalent of the inverse function theo-
rem. Local non-intuitive undirected order corresponds to invertibility
in a neighborhood.

(a) Greyscale satisfies local v
∆E76
min = 100 and global V

∆E76
min = 100 legend-based order.

(b) Half greyscale satisfies local v
∆E76
min = 100 but not global V

∆E76
min = 0 legend-based.

(c) Flat greyscale has neither local v
∆E76
min = 0 nor global V

∆E76
min = 0 legend-based order.

Fig. 10: These colormaps have different properties w.r.t. legend-based
order. For local, they must suffice vmin > 0 and for global Vmin > 0.

Global legend-based order is the analog when the distances do not
correspond to neighboring points, but can be taken from anywhere
in the colormap. This means it corresponds to the invertibility of a
function [30, 78]. It is guaranteed if the function is injective:

∀ j �= i ∈ {0, ...,n} : xi �= x j, (13)

which means that the colors are mutually distinct.
Again, analogous to the local case, we can measure it using the

minimum global speed Vmin ∈ R:

Vmin = min
i�= j∈{1,...,n}

Vi, j. (14)

Examples of the different legend-based orders can be found in Figures 9
and 10.

The overall global legend-based order of our showcase colormaps
can be seen in Figure 4. The minimum global speed is zero for the half
greyscale and the flat greyscale. Thus these two can not be ordered
globally even given a legend. All others can be ordered. Figure 7 shows
the local legend-based order. The greyscale with the flat area cannot be
ordered. The flat green part in the rainbow exhibits a significant drop
in local speed, reflecting the difficulty of ordering in that region.

4.3.2 Intuitive Order
Our metric can determine how different an observer perceives pairs of
colors. As a result, we expect the observer to correctly sort three colors
in an intuitive way if the distance of the two outer colors is larger than
their respective distances to the one in the middle. The corresponding
mathematical formulation for local intuitive order is therefore:

∀ j ∈ {1, ...,n−1} : D j−1, j < D j−1, j+1 > D j, j+1. (15)

Since the local triangle side ratio max(D j−1, j,D j, j+1)/D j−1, j+1 is
numerically unstable for small ∆E j−1, j+1 we use the local triangle
side difference tr j : [0,1]→ R:

tr j :=
D j−1, j+1 −max(D j−1, j,D j, j+1)

t j+1 − t j−1
. (16)
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(a) Greyscale Tr
∆E76
min = 5. (b) Half g.s. Tr

∆E76
min =−100. (c) Flat g.s. Tr

∆E76
min =−5. (d) Divergent Tr

∆E76
min =−0.2. (e) Rainbow Tr

∆E76
min =−85. (f) Viridis Tr

∆E76
min =−1.4.

Fig. 11: The global intuitive order can be evaluated using the triangle side difference. For each (i,k), the top row shows how much
Tr∆E76

min = mini< j<k Tr∆E76
i, j,k over all j between them goes below zero. The bottom row shows the color that of this j where the minimum is assumed.

It is positive if the colors can be sorted and becomes more negative
the further the middle point is away from the outer ones. Scaling with
t j+1−t j−1 prevents it from decreasing with growing n. An visualization
of this concept can be found in Figure 8.

A positive minimal local triangle side difference trmin ∈ R:

trmin := min
j∈{1,...,n−1}

tr j (17)

indicates that a colormap suffices local order everywhere. The local
intuitive order can be read off the subdiagonal of the global plot in
Figure 11. It is positive for all of our showcase colormaps except for
the point of inflection in the half greyscale.

(a) Greyscale satisfies local tr
∆E76
min = 5 as well as global Tr

∆E76
min = 5 intuitive order.

(b) Rainbow satisfies local tr
∆E67
min = 4 but not global Tr

∆E76
min =−85 intuitive order.

(c) Flat greyscale has neither local tr
∆E76
min =−5 nor global Tr

∆E76
min =−37 intuitive order.

Fig. 12: Intuitive order of different colormaps. For local, they must
suffice trmin > 0 and for global Trmin > 0.

The global analogue, global intuitive order is given by:

∀i < j < k ∈ {1, ...,n} : Di, j < Di,k > D j,k. (18)

It can be measured by the global triangle side difference Tri, j,k :
[0,1]2 → R:

Tri, j,k :=
Di,k −max(Di, j,D j,k)

tk − ti
. (19)

If the minimal global triangle side difference Trmin ∈ R:

Trmin := min
i< j<k∈{1,...,n−1}

Tr(i, j,k) (20)

is positive, the colormap can be intuitively ordered everywhere.
Note that the actual positive value of the triangle side difference

itself is not easy to interpret because it assumes values close to zero if
one of the points is far away from the other two. That means it does not
correlate to how close to perceptually linear a colormap is, but depends
on the resolution.

The global triangle side difference is a 3D function [0,1]3 → R. To
visualize it, we check, for every pair i,k, if there is a sample point
j : i < j < k with Tr(i, j,k) < 0. If so, we plot the j that minimizes
Tr(i, j,k) at the coordinates i,k. Thus the user can immediately see
which area of the colormaps cannot be globally ordered in an intuitive
way and why. From Figure 11, the greyscale can be intuitively ordered.
The point of inflection breaks the intuitive order of the half greyscale.
In the rainbow, green is furthest away from red and blue.

Examples of colormaps satisfying intuitive order in a global or local
sense can be found in Figure 12. The difference between legend-based
and intuitive order in a global sense is illustrated in Figure 13.

(a) Greyscale satisfies legend-based V
∆E76
min = 100 as well as intuitive Tr

∆E76
min = 5 order.

(b) Rainbow satisfies legend-based V
∆E76
min = 62 but not intuitive Tr

∆E76
min =−85 order.

(c) Half greyscale has neither legend-based V
∆E76
min = 0 nor intuitive Tr

∆E76
min =−50 order.

Fig. 13: These colormaps have different properties w.r.t global order.
For legend-based, they must suffice Vmin > 0 and for intuitive Trmin > 0.

4.4 Smoothness
Terms such as no boundaries [29, 30, 55, 89] no sharp transitions [8],
continuity [8,46,50,52], no irregular perception [46], no artificial Mach
bands [46], no artifacts [8, 46, 60, 89], no sharp bends [86], or low
curvature [57, 90] can be grouped into the concept of smoothness [46,
57, 60, 79, 88, 90]. This colormap property is surprisingly complex as
the perceptual smoothness of a colormap can be influenced by many
factors. Areas of a colormap can produce the impression of sharp bends
due to varying speed, actual bends in the path of the colormap, changes
in visual importance, or borders between areas of colors belonging to a
common name group.

There are approaches to mathematically estimate the visual impor-
tance or how much attention a color attracts [6, 31, 42, 55]. They are
based on how saturated and how bright a color is perceived [13, 20]
and are given by

√
L2 +

√
a2 +b2. For the classical definition of cur-

vature, we need the concept of an angle, not available in a metric space
without an inner product. We currently do not see how we can express
smoothness through a mathematical formula that is valid without los-
ing the invariance with respect to the underlying metric space or the
characteristics of the observer. Development of smoothness measures
using only a non-Euclidean metric is left for future work.

4.5 Properties w.r.t. Attributes
Attribute-related properties are defined analogously to the above prop-
erties. However, any experiments would be performed after projection
of the colormap to the attribute under study. One-dimensional attributes
include luminance, hue, saturation, chroma, red, green, blue, the color-
opponent channels, or any other arbitrarily chosen one-dimensional
submanifold of a colorspace. Two-dimensional attributes are a com-
bination of two 1D attributes, e.g., an isoluminant plane in CIELAB.
In this way, we can define order, discriminative power, and uniformity
with respect to a specific attribute.

Note that in the literature, certain attributes are sometimes referred
to as retinal or perceptual variables [57, 79, 81], axes [25, 57, 74, 88,
89], (perceptual) dimensions [50, 60, 86, 88], (retinal/color opponent)
channels [55, 83], (color/primary) components [6, 7, 52, 55, 71, 74, 86],
subspaces [9], among other terms. We chose the term attribute because
the other terms are either too restrictive or in conflict with fundamental
definitions in mathematics, physics, biology, or perceptual science.

In the literature, the most commonly suggested property of an at-
tribute is monotonocity. A one-dimensional function f : R → R is
monotonic, if it suffices:

∀s ≤ t : f (s)≤ f (t) or ∀s ≤ t : f (s)≥ f (t). (21)

Please note that monotonocity in an attribute is only defined if the
attribute is at least a partially ordered set. Luminance is the attribute
most often associated with monotonicity [5, 8, 19, 25, 30, 31, 49, 50, 52,
55, 58, 60, 61, 83], but monotonic behavior has also been demanded
for RGB components [30, 50, 52], saturation, hue [30, 55], or the di-
mensions of CIELCH [88]. Also the explicit violation of the rule,
namely non-monotonicity in at least one color-opponent channel has
been suggested [55, 83].

The question of redundancy [19, 55, 69, 83] also falls into the cate-
gory of attributes. A colormap is perceptually redundant with respect
to a property if it still satisfies the property in question after an at-
tribute is removed. Further properties regarding attributes that have
been suggested include a fixed order of the magnitudes of the RGB
components [50, 52] or uniformity in only the luminance attribute [28].
Monotonicity is often referred to as a property necessary for order. A
rigorous experimental analysis of this will be future work.

4.6 Robustness
Generally speaking, a colormap is robust with respect to any of its
defined perceptual properties if it performs comparably well when
distorted. The most common sources of distortion include CVD [31,
42, 46, 55, 88], perceptual interaction with the background [6, 55],
dependence on the display device [6, 88], contrast effects [55, 83], or
interference with the shading on 3D surfaces [46, 55]. We currently
do not see how we can express robustness through a mathematical
formula without taking user, task, and data into account. However,
for the interested reader, methods such as outlined in Mittelstädt, et
al. [44,45] can be used to compensate for background effects and spatial
distributions of the data.

5 COLORMEASURES.ORG

In order to facilitate comparing colormaps and informing decisions
on choice of colormaps, the measures for colormap assessment and
the visualizations from this paper have been implemented in an online
tool at http://colormeasures.org. There, users can reproduce our results
and assess any arbitrary good, bad, or ugly colormap of their choos-
ing. After opening the colormeasures viewer, a user can browse their
computer to choose a colormap (in .json format) or download one of
our examples. The colormeasures tool will output the mathematical
measures for each of the three colorspaces discussed, ∆E76, ∆E00, and
∆E02, as well as the visualizations described above. Additionally, the
measure values are output into a form where they can be easily copied
offline for further study and comparison. We invite the user to test the
colormeasures tool, assess their own colormap choices, and use this
information to inform their choice of a colormap to best fit the needs of
their data. We welcome any feedback or suggestions for improvement.

6 DISCUSSION AND FUTURE WORK

We have developed a mathematical framework to describe and assess
colormap properties, based solely on an assumed ∆E metric that mimics
human perception. By separating local from global interpretations of
the colormap design rules from the literature, we were thereby able to
distinguish different uses of the same terms. This clarification enabled
us to use mathematical formulas to cast the taxonomy in stone and
provide measures that always exist in any metric space to evaluate
them. Often, we could make use of already suggested formulas as we
found relationships between the perceptual rules in Table 1 and the
mathematical ones in Table 2. Table 3 summarizes our main findings,
listing the correspondence between the mathematical and the perceptual
concepts as well as our suggested measures for their evaluation.

Mathematical descriptions relating the discriminative power and
uniformity to the speed have occasionally been described within the
literature. We have structured them into a coherent framework. To our
knowledge, this is the first time that a mathematical formulation for the
concept of order has been suggested.

We hope that establishing this framework and the resultant measures
will aid in experimental design and make colormap assessment more
accessible. As an example, a recent paper by Ware et al. [85] develops
an experimental approach to assess perceptual uniformity, an approach
inspired by both previous research in color and by collaboration on this
paper. Using a coherent taxonomy significantly aided the collaboration
between researchers from diferent fields because the necessary terms
had unambiguous definitions. The differences between the experimen-
tally measured uniformity from [85] and the predicted measures in
the three colorspaces discussed here are indicative of how far we have
to go to reach a colorspace that truly mimics human perception. Yet
the conclusions from Ware et al. are echoed by these mathematically
derived measures. Experimental approaches such as [85] and [14], can
provide roadmaps to move from theoretical to practical applications.

As discussed in Subsection 3.2, we plan on expanding our frame-
work to discrete and cyclic colormaps in future work. We want to find
a mathematical description for smoothness. We plan on conducting
experiments to assess whether or not monotonicity in certain attributes
implies order. Further, we will collect and compare other measures
that can be used to assess the design rules and evaluate experimentally
which ones correspond best to human intuition. We also plan on com-
paring algorithms for the automatic adaption of colormaps to satisfy
the suggested design rules, such as uniformization or linearization al-
gortihms. Once we have evaluated which algorithms perform best, we
plan on integrating them into colormeasures.org to extend it into an
interactive colormap design and improvement tool. While currently
agnostic on the use of the suggested measures to declare any specific
colormap to be good, bad, or ugly, we hope that by developing these
mathematical foundations, this work will lead to further research in
color, both experimental and theoretical, that will eventually allow us
to provide detailed guidance in choosing and designing colormaps for
specific tasks and data types.

Perceptual Rule Mathematical Rule Evaluation Measure
L/G discr. power Long path / - Average L/G speed
L/G uniformity Const. speed / linearity Deviation of L/G speed
L/G Legend-based order L/G Invertibility Minimal L/G speed
L/G intuitive order - / - L/G triangle side diff.

Table 3: Summary of the relations between the perceptual, the mathe-
matical rules printed bold in Tables 1 and 2, and the available measures
in all metric color spaces that can be used for their evaluation. L/G
stands for local / global.
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(a) Greyscale Tr
∆E76
min = 5. (b) Half g.s. Tr

∆E76
min =−100. (c) Flat g.s. Tr

∆E76
min =−5. (d) Divergent Tr

∆E76
min =−0.2. (e) Rainbow Tr

∆E76
min =−85. (f) Viridis Tr

∆E76
min =−1.4.

Fig. 11: The global intuitive order can be evaluated using the triangle side difference. For each (i,k), the top row shows how much
Tr∆E76

min = mini< j<k Tr∆E76
i, j,k over all j between them goes below zero. The bottom row shows the color that of this j where the minimum is assumed.

It is positive if the colors can be sorted and becomes more negative
the further the middle point is away from the outer ones. Scaling with
t j+1−t j−1 prevents it from decreasing with growing n. An visualization
of this concept can be found in Figure 8.

A positive minimal local triangle side difference trmin ∈ R:

trmin := min
j∈{1,...,n−1}

tr j (17)

indicates that a colormap suffices local order everywhere. The local
intuitive order can be read off the subdiagonal of the global plot in
Figure 11. It is positive for all of our showcase colormaps except for
the point of inflection in the half greyscale.

(a) Greyscale satisfies local tr
∆E76
min = 5 as well as global Tr

∆E76
min = 5 intuitive order.

(b) Rainbow satisfies local tr
∆E67
min = 4 but not global Tr

∆E76
min =−85 intuitive order.

(c) Flat greyscale has neither local tr
∆E76
min =−5 nor global Tr

∆E76
min =−37 intuitive order.

Fig. 12: Intuitive order of different colormaps. For local, they must
suffice trmin > 0 and for global Trmin > 0.

The global analogue, global intuitive order is given by:

∀i < j < k ∈ {1, ...,n} : Di, j < Di,k > D j,k. (18)

It can be measured by the global triangle side difference Tri, j,k :
[0,1]2 → R:

Tri, j,k :=
Di,k −max(Di, j,D j,k)

tk − ti
. (19)

If the minimal global triangle side difference Trmin ∈ R:

Trmin := min
i< j<k∈{1,...,n−1}

Tr(i, j,k) (20)

is positive, the colormap can be intuitively ordered everywhere.
Note that the actual positive value of the triangle side difference

itself is not easy to interpret because it assumes values close to zero if
one of the points is far away from the other two. That means it does not
correlate to how close to perceptually linear a colormap is, but depends
on the resolution.

The global triangle side difference is a 3D function [0,1]3 → R. To
visualize it, we check, for every pair i,k, if there is a sample point
j : i < j < k with Tr(i, j,k) < 0. If so, we plot the j that minimizes
Tr(i, j,k) at the coordinates i,k. Thus the user can immediately see
which area of the colormaps cannot be globally ordered in an intuitive
way and why. From Figure 11, the greyscale can be intuitively ordered.
The point of inflection breaks the intuitive order of the half greyscale.
In the rainbow, green is furthest away from red and blue.

Examples of colormaps satisfying intuitive order in a global or local
sense can be found in Figure 12. The difference between legend-based
and intuitive order in a global sense is illustrated in Figure 13.

(a) Greyscale satisfies legend-based V
∆E76
min = 100 as well as intuitive Tr

∆E76
min = 5 order.

(b) Rainbow satisfies legend-based V
∆E76
min = 62 but not intuitive Tr

∆E76
min =−85 order.

(c) Half greyscale has neither legend-based V
∆E76
min = 0 nor intuitive Tr

∆E76
min =−50 order.

Fig. 13: These colormaps have different properties w.r.t global order.
For legend-based, they must suffice Vmin > 0 and for intuitive Trmin > 0.

4.4 Smoothness
Terms such as no boundaries [29, 30, 55, 89] no sharp transitions [8],
continuity [8,46,50,52], no irregular perception [46], no artificial Mach
bands [46], no artifacts [8, 46, 60, 89], no sharp bends [86], or low
curvature [57, 90] can be grouped into the concept of smoothness [46,
57, 60, 79, 88, 90]. This colormap property is surprisingly complex as
the perceptual smoothness of a colormap can be influenced by many
factors. Areas of a colormap can produce the impression of sharp bends
due to varying speed, actual bends in the path of the colormap, changes
in visual importance, or borders between areas of colors belonging to a
common name group.

There are approaches to mathematically estimate the visual impor-
tance or how much attention a color attracts [6, 31, 42, 55]. They are
based on how saturated and how bright a color is perceived [13, 20]
and are given by

√
L2 +

√
a2 +b2. For the classical definition of cur-

vature, we need the concept of an angle, not available in a metric space
without an inner product. We currently do not see how we can express
smoothness through a mathematical formula that is valid without los-
ing the invariance with respect to the underlying metric space or the
characteristics of the observer. Development of smoothness measures
using only a non-Euclidean metric is left for future work.

4.5 Properties w.r.t. Attributes
Attribute-related properties are defined analogously to the above prop-
erties. However, any experiments would be performed after projection
of the colormap to the attribute under study. One-dimensional attributes
include luminance, hue, saturation, chroma, red, green, blue, the color-
opponent channels, or any other arbitrarily chosen one-dimensional
submanifold of a colorspace. Two-dimensional attributes are a com-
bination of two 1D attributes, e.g., an isoluminant plane in CIELAB.
In this way, we can define order, discriminative power, and uniformity
with respect to a specific attribute.

Note that in the literature, certain attributes are sometimes referred
to as retinal or perceptual variables [57, 79, 81], axes [25, 57, 74, 88,
89], (perceptual) dimensions [50, 60, 86, 88], (retinal/color opponent)
channels [55, 83], (color/primary) components [6, 7, 52, 55, 71, 74, 86],
subspaces [9], among other terms. We chose the term attribute because
the other terms are either too restrictive or in conflict with fundamental
definitions in mathematics, physics, biology, or perceptual science.

In the literature, the most commonly suggested property of an at-
tribute is monotonocity. A one-dimensional function f : R → R is
monotonic, if it suffices:

∀s ≤ t : f (s)≤ f (t) or ∀s ≤ t : f (s)≥ f (t). (21)

Please note that monotonocity in an attribute is only defined if the
attribute is at least a partially ordered set. Luminance is the attribute
most often associated with monotonicity [5, 8, 19, 25, 30, 31, 49, 50, 52,
55, 58, 60, 61, 83], but monotonic behavior has also been demanded
for RGB components [30, 50, 52], saturation, hue [30, 55], or the di-
mensions of CIELCH [88]. Also the explicit violation of the rule,
namely non-monotonicity in at least one color-opponent channel has
been suggested [55, 83].

The question of redundancy [19, 55, 69, 83] also falls into the cate-
gory of attributes. A colormap is perceptually redundant with respect
to a property if it still satisfies the property in question after an at-
tribute is removed. Further properties regarding attributes that have
been suggested include a fixed order of the magnitudes of the RGB
components [50, 52] or uniformity in only the luminance attribute [28].
Monotonicity is often referred to as a property necessary for order. A
rigorous experimental analysis of this will be future work.

4.6 Robustness
Generally speaking, a colormap is robust with respect to any of its
defined perceptual properties if it performs comparably well when
distorted. The most common sources of distortion include CVD [31,
42, 46, 55, 88], perceptual interaction with the background [6, 55],
dependence on the display device [6, 88], contrast effects [55, 83], or
interference with the shading on 3D surfaces [46, 55]. We currently
do not see how we can express robustness through a mathematical
formula without taking user, task, and data into account. However,
for the interested reader, methods such as outlined in Mittelstädt, et
al. [44,45] can be used to compensate for background effects and spatial
distributions of the data.

5 COLORMEASURES.ORG

In order to facilitate comparing colormaps and informing decisions
on choice of colormaps, the measures for colormap assessment and
the visualizations from this paper have been implemented in an online
tool at http://colormeasures.org. There, users can reproduce our results
and assess any arbitrary good, bad, or ugly colormap of their choos-
ing. After opening the colormeasures viewer, a user can browse their
computer to choose a colormap (in .json format) or download one of
our examples. The colormeasures tool will output the mathematical
measures for each of the three colorspaces discussed, ∆E76, ∆E00, and
∆E02, as well as the visualizations described above. Additionally, the
measure values are output into a form where they can be easily copied
offline for further study and comparison. We invite the user to test the
colormeasures tool, assess their own colormap choices, and use this
information to inform their choice of a colormap to best fit the needs of
their data. We welcome any feedback or suggestions for improvement.

6 DISCUSSION AND FUTURE WORK

We have developed a mathematical framework to describe and assess
colormap properties, based solely on an assumed ∆E metric that mimics
human perception. By separating local from global interpretations of
the colormap design rules from the literature, we were thereby able to
distinguish different uses of the same terms. This clarification enabled
us to use mathematical formulas to cast the taxonomy in stone and
provide measures that always exist in any metric space to evaluate
them. Often, we could make use of already suggested formulas as we
found relationships between the perceptual rules in Table 1 and the
mathematical ones in Table 2. Table 3 summarizes our main findings,
listing the correspondence between the mathematical and the perceptual
concepts as well as our suggested measures for their evaluation.

Mathematical descriptions relating the discriminative power and
uniformity to the speed have occasionally been described within the
literature. We have structured them into a coherent framework. To our
knowledge, this is the first time that a mathematical formulation for the
concept of order has been suggested.

We hope that establishing this framework and the resultant measures
will aid in experimental design and make colormap assessment more
accessible. As an example, a recent paper by Ware et al. [85] develops
an experimental approach to assess perceptual uniformity, an approach
inspired by both previous research in color and by collaboration on this
paper. Using a coherent taxonomy significantly aided the collaboration
between researchers from diferent fields because the necessary terms
had unambiguous definitions. The differences between the experimen-
tally measured uniformity from [85] and the predicted measures in
the three colorspaces discussed here are indicative of how far we have
to go to reach a colorspace that truly mimics human perception. Yet
the conclusions from Ware et al. are echoed by these mathematically
derived measures. Experimental approaches such as [85] and [14], can
provide roadmaps to move from theoretical to practical applications.

As discussed in Subsection 3.2, we plan on expanding our frame-
work to discrete and cyclic colormaps in future work. We want to find
a mathematical description for smoothness. We plan on conducting
experiments to assess whether or not monotonicity in certain attributes
implies order. Further, we will collect and compare other measures
that can be used to assess the design rules and evaluate experimentally
which ones correspond best to human intuition. We also plan on com-
paring algorithms for the automatic adaption of colormaps to satisfy
the suggested design rules, such as uniformization or linearization al-
gortihms. Once we have evaluated which algorithms perform best, we
plan on integrating them into colormeasures.org to extend it into an
interactive colormap design and improvement tool. While currently
agnostic on the use of the suggested measures to declare any specific
colormap to be good, bad, or ugly, we hope that by developing these
mathematical foundations, this work will lead to further research in
color, both experimental and theoretical, that will eventually allow us
to provide detailed guidance in choosing and designing colormaps for
specific tasks and data types.

Perceptual Rule Mathematical Rule Evaluation Measure
L/G discr. power Long path / - Average L/G speed
L/G uniformity Const. speed / linearity Deviation of L/G speed
L/G Legend-based order L/G Invertibility Minimal L/G speed
L/G intuitive order - / - L/G triangle side diff.

Table 3: Summary of the relations between the perceptual, the mathe-
matical rules printed bold in Tables 1 and 2, and the available measures
in all metric color spaces that can be used for their evaluation. L/G
stands for local / global.
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